
Math 153 Midterm 1 Solutions: Prof. Schwartz

1. First, a = eae−1 for all a ∈ G. So a ∼ a. Second, if a ∼ b then
a = gbg−1. But then b = g−1a(g−1)−1. So b ∼ a. Third, if a ∼ b

and b ∼ a then a = gbg−1 and b = hch−1. Combining these, we get
a = g(hch−1)g−1 = (gh)c(gh)−1. Therefore a ∼ c. That is what you need for
an equivalence relation.

2. Suppose first that K ⊂ H. We want to show that φ−1(H) = H.
Pick h ∈ H. Then h ∈ φ−1(φ(h)). This shows that h ∈ φ−1(H). Hence
H ⊂ φ−1(H). Still assuming that K ⊂ H, choose h ∈ φ−1(H). We have
φ(h) ∈ H. So φ(h) = φ(a) for some a ∈ H. But then φ(ah−1) = e. So
ah−1 ∈ K. But K ⊂ H. Hence ah−1 ∈ H. This shows that h ∈ H. So,
we have shown that φ−1(H) ⊂ H. Combining this with the knowledge that
H ⊂ φ−1(H), we conclude that H = φ−1(H).

Conversely, suppose that H = φ−1(H). This means, in particular, that

K = φ−1(e) ⊂ φ−1(H) = H.

So K ⊂ H.

3: There are 3 things we need to show:

1. HK is closed under taking products.

2. HK is closed under taking inverses.

3. g(HK)g−1 ⊂ HK.

In the proof all h’s belong to H and all k’s belong to K. For the first item
(h1k1)(h2k2) = h1(k1h2)k2 by the associative law. Note that

k1h2 ∈ k1H = Hk1.

The equality uses the fact that the left cosets of H equal the right cosets of
H, and tells us that k1h2 = h3k1. Therefore

h1(k1h2)k2 = h1(h3k1)k2 = h4k3 ∈ HK.

This proves the first item.
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For the second item,

(hk)−1 = k−1h−1 ∈ k−1H = Hk−1,

again using the fact that the left cosets of H equal the right cosets of H. So
(hk)−1 = h′k−1 ∈ HK. This proves the second item.

For the third item, choose any hk ∈ HK, and any g ∈ G. We have

g(hk)g−1 = (ghg−1)(gkg−1) ∈ HK.

The last containment uses the fact that both H and K are normal. This
shows that g(HK)g−1 ⊂ HK for all g ∈ G.

4. The groups are not isomorphic. There are various ways to see this and
here is one way. All the flips in D4 have order 2. So D4 has more than one
element of order 2. On the other hand, Q only has one element of order 2,
namely −1. To see this, note that I2 = J2 = K2 = −1, so none of these
elements has order 2. Also (−I)2 = (−J)2 = (−K)2 = −1, so none of these
elements has order 2 either.

5a. There is a bijection from Z → 2Z, namely φ(n) = 2n. Let’s use φ

to give a bijection from G1 to G2. Given some g1 ∈ G1, define

Φ(g1) := g2 = φ ◦ g1 ◦ φ
−1.

The map φ−1 is a bijection from 2Z to Z, and then g1 is a bijection from Z

to itself, and then φ is a bijection from Z to 2Z. So, g2 is a bijection from
2Z to 2Z. Hence g2 ∈ G2. We need to prove that φ is a homomorphism, φ
is injective, and φ is surjective.

For the first item, choose a, b ∈ G1.

Φ(ab) = φ ◦ (a ◦ b) ◦ φ−1 = (φ ◦ a ◦ φ−1) ◦ (φ ◦ b ◦ φ−1) = Φ(a)Φ(b).

This proves that Φ is a homomorphism.
For the second item, Let I1 and I2 respectively be the identity elements

in G1 and G2. Suppose that Φ(g1) = I2. Then

g1 = φ−1g2φ = φ−1I2φ = φφ−1 = I1.

So, the kernel of Φ is trivial. Hence Φ is injective.
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For the third item, choose g2 ∈ G2. Let g1 = φ−1 ◦ g2 ◦ φ. Then

Φ(g1) = φ ◦ (φ−1 ◦ g2 ◦ φ) ◦ φ
−1 = (φ ◦ φ−1) ◦ g2 ◦ (φ

−1 ◦ φ) = g2.

This shows that Φ is onto.

5b. Let’s change notation, and let G denote the group of permutations
of the integers. Let Z0 denote the even integers and let Z1 denote the odd
integers. Let Gj be the group of permutations of Zj. By part a, there is
an isomorphism Φ0 : G0 → G, The same argument gives an isomorphism
Φ1 : G1 → G. Let H ⊂ G be the subset of permutations h such that
h(Zj) = Zj for j = 0, 1. Clearly H is closed under products and inverses.
So, H is a subgroup. Let hj be the restriction of h to Zj. Define

Φ(h) = (Φ0(h0),Φ1(h1)).

This gives a map from G into G×G. The map Φ is a homomorphism because
(h ◦ h′)j = hj ◦ (h

′)j for j = 0, 1. We are just composing the permutations
on each of Z0 and Z1.

To show that Φ is injective, suppose that Φ(h) is the identity. Then both
h0 and h1 are the identity. But then h is the identity.

To show that Φ is surjective, pick any pair (g0, g1) ∈ G×G. Let h be the
permutation such that hj = Φ−1

j (gj). In other words, use gj to determine the
action of h on Zj. By construction Φ(h) = (g0, g1). So, Φ is surjective.

All in all, we produced an isomorphism from H to G×G.

6. Let H be a nontrivial subgroup of Z. We claim that H consists of
powers of a single element. That is, H = {nd|n ∈ Z} for some nonzero
d ∈ Z. Once we know this, there is an isomorphism from H to Z, namely
the map which sends nd to n.

To prove our claim, let d denote the smallest positive element of H. Since
H is nontrivial and a subgroup, d > 0. If there is some a ∈ H such that d
does not divide a, then we can write a = md + r where r > 0 and r < d.
But then r ∈ H, and this contradicts the choice of d. So all elements of H
are multiples of d. At the same time, any integer multiple of d belongs to H,
because H is a subgroup. This proves our claim about H, and finishes the
problem.
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