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The purpose of these notes is to describe the famous spin cover . This is
the 2-to-1 surjective homomorphism from SU(2) to SO(3). Here SU(2) is the
group of unit quaternions and SO(3) is the group of orientation preserving
rotations of R3 which fix the origin.

1 The Group of Unit Quaternions

A quaternion is an object of the form

q = a+ bi+ cj + dk, a, b, c, d ∈ R, (1)

where the symbols i, j, k are subject to the rules that

• i2 = j2 = k2 = −1.

• ij = k and jk = i and ki = j.

• ji = −k and kj = −i and ik = −j.

Quaternions are added and subtracted component by component. They are
multiplied together using the distributive law together with the rules above.
With these operations, the quaternions form a non-commutative ring. This
fact is easy, but somewhat tedious, to check directly.

The conjugate of a quaternion q is given by the formula

q = a− bi− cj − dk. (2)

Here q is as in Equation 1. Here is how conjugation and multiplication
interact.
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Lemma 1.1 For any two quaternions q and r, we have qr = (r)(q).

Proof: You can check this directly for the 16 choices q, r ∈ {1, i, j, k}. For
instance

i2 = −1 = (−i)(−i) = (i)2, ij = −k = ji = (−j)(−i) = (j)(i).

The general case follows from these special cases and the distributive law. ♠

The norm of a quaternion is given by

|q| =
√
qq =

√
a2 + b2 + c2 + d2. (3)

Lemma 1.2 For any two quaternions q and r, we have |qr| = |q||r|.

Proof: We have

|qr|2 = (qr)(qr) = qrrq = q|r|2q =∗ qq|r|2 = |q|2|r|2.

The starred equality comes form the fact that any real commutes with any
quaternion. Finally, take square roots of both sides of the equation. ♠

A quaternion q is called a unit quaternion of |q| = 1.

Lemma 1.3 The unit quaternions form a group, with the group law being

multiplication.

Proof: Let G denote the set of unit quaternions. If q, r ∈ G then |qr| =
|q||r| = 1 by the previous result. So, G is closed under the operation. The
associative law holds because the quaternions form a ring (and also can be
checked directly.) The identity element is 1, and the inverse of q is q. ♠

The group of unit quaternions is often denoted SU(2). The following
matrices perfectly mimic the behavior of 1, i, j, k and generate a group of
matrices isomorphic to the unit quaternion group.

1 =
[

1 0
0 1

]

I =
[

0 i

i 0

]

J =
[

0 1
−1 0

]

K =
[−i 0
0 i

]

(4)

These matrices are known as special unitary 2× 2 matrices.
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2 Pure Quaternions

The quaternion q in Equation 1 is pure if a = 0. That is, q = bi + cj + dk.
We identify the pure quaternions with R

3 in the obvious way:

bi+ cj + dk ↔ (b, c, d). (5)

Let P denote the set of pure quaternions.

Lemma 2.1 If q ∈ SU(2) and r ∈ P , then qrq−1 ∈ P .

Proof: SU(2) is generated by the elements a + bi, a + bj and a + bk. For
this reason, it suffices to prove our result when q has one of these forms. By
symmetry, it suffices to consider the case when q = a + bi. In this case, we
want to show that

(a+ bi)(xi+ yj + zk)(a− bi)

has no real component. Multiplying out the above expression, we get 12
terms, two of which are real. The two real terms are abx and −abx, and they
cancel. ♠

By the above result, each q ∈ SU(2) gives rise to a mapping Tq : P → P .
The formula is

Tq(p) = qpq−1. (6)

Since we have identified P with R
3, we think of P as being equipped

with the usual notion of Euclidean distance. In terms of our identification,
we have

distance(r1, r2) = |r1 − r2|. (7)

An isometry is a distance-preserving map.

Lemma 2.2 Tq is an isometry of P which fixes the origin.

Proof: First, Tq(0) = q0q−1 = 0. Second

dist(Tq(r1), Tq(r2)) = |qr1q−1 − qr2q
−1| =∗

|q(r1 − r2)q
−1| = |q||r1 − r2||q−1| = |r1 − r2|.

The starred equality is the distributive law. So, Tq is an isometry of P which
fixes the origin. ♠
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3 The Homomorphism

The group SO(3) is the group of orientation preserving isometries of R
3

which fix the origin. Since we have identified P with R
3, we can equally well

think of SO(3) as the group of orientation preserving isometries of P which
fix the origin.

Lemma 3.1 Tq ∈ SO(3).

Proof: The only thing left to prove that Tq is orientation preserving. Note
that Tq is either orientation preserving or orientation reversing. Note also
that, for q1, q2 ∈ SU(2), the corresponding maps T1 and T2 are either both
orientation preserving or both orientation reversing. Why? Because we can
take a continuous path from q1 to q2 and the corresponding maps cannot
suddenly switch from the one kind to the other.

Finally the map corresponding to 1 ∈ SU(2) is the identity map, and
therefore orientation preserving. Hence Tq is orientation preserving for all
q ∈ SU(2). ♠

Define Ψ : SU(2) → SO(3) by the rule

Ψ(q) = Tq. (8)

Lemma 3.2 Ψ is a homomorphism.

Proof:

Tqr(p) = (qr)p(qr)−1 = q(rpr−1)q−1 = Tq(Tr(p)).

Since this works for all p ∈ P , we have

Ψ(qr) = Tqr = Tq ◦ Tr = Ψ(q)Ψ(r).

This does it. ♠

Lemma 3.3 Ψ is surjective.
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Proof: Let H denote the subgroup of SU(2) consisting of elements of the
form a + bi. The image Ψ(H) is a subgroup of SO(3) which fixes the pure
quaternion ri. That is, Ψ(H) consists of rotations which fix the x-axis. As
the coefficients a and b vary, with a = cos(θ) and b = sin(θ), we produce all
such rotations. In short Ψ(SU(2)) contains all rotations which fix the x-axis.

By symmetry, Ψ(SU(2)) also contains all the rotations which fix the y-
axis, and all the rotations which fix the z-axis. But SO(3) is clearly generated
by all these rotations. ♠

Lemma 3.4 Ψ is 2-to-1.

Proof: Since Ψ is a homomorphism, it suffices to prove that kernel(Ψ) has
order 1. The elements 1 and −1 are certainly in the kernel, so we just have
to see that these are the only elements in the kernel. Suppose that q lies in
the kernel. Then Tq is the identity map. This means that qp = pq for all
pure quaternions p.

In particular qi = iq. Letting q be as in Equation 1, we compute

qi = ai− b− ck + dj, iq = ai− b+ ck − dj.

Since these are equal, we must have c = d = 0. Similarly, qj = jq forces
b = 0. Hence q ∈ R. But SU(2) ∩R = {1,−1}. Hence q = ±1. ♠

Even though we are done with the proof, there is a bit more to say. The
groups SU(2) and SO(3) are also manifolds. Or, if you prefer, they are metric
spaces. The map Ψ is continuous with respect to the relevant metrics. This
is pretty easy to prove. The point is that the formulas for Tq, considered as
a matrix, depend continuously on q.

If you know some topology, you’ll appreciate the statement that Ψ is
also a covering map. That’s why Ψ is called the spin cover . The word spin

comes from particle physics. The additional bit of information recorded by
a quaternion is called its spin.
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