
The purpose of this homework assignment is to give some additional in-
formation about the objects related to Weierstrass uniformization. If you
read the last set of notes, you will find some answers, or at least partial an-
swers, to some of these problems.

Let SL2(Z) denote the group of 2× 2 integer matrices with determinant
1. This group is known as the modular group. Let H2 denote the set of
complex numbers of the form x+ iy where y > 0. So, H2 is the open upper
half plane. H2 is also known as the hyperbolic plane.

There is a natural group action of SL2(Z) on H2. Given

M =
[

a b
c d

]

∈ SL2(Z),

we define

TM(z) =
az + b

cz + d
.

Exercise 1: Check on a non-trivial example that TA(TB(z)) = TAB(z),
where AB denotes matrix multiplication. You could also prove it in general,
but this is messy.

As is usual, we can abuse notation slightly and write M(z) = TM(z),
when M ∈ SL2(Z). That is, we think of SL2(Z) as “acting directly” on
H2. We define the orbit if a point z ∈ H2 to be the set {g(z)| g ∈ SL2(Z)}.

Recall that a lattice is a set of the form

Λ(α, β) = {mα + nβ| n,m ∈ Z}

with α/β 6∈ R. Note that either α/β ∈ H2 or β/α ∈ H2. By convention, we
order α and β so that β/α ∈ H2. Say that two lattices Λ1 and Λ2 are equiv-
alent if and only if there is some complex number w 6= 0 so that wΛ1 = Λ2.
In other words, the one grid of points is just a scaled/rotated copy of the
other.

Exercise 2. Prove that every lattice is equivalent to a lattice of the form
Λ(1, z), with z ∈ H2, and that Λ(1, z) and Λ(1, z′) are equivalent if and only
if they lie in the same SL2(Z) orbit. You can find the basic ideas for the
proof in the notes, but try to do it without looking it up.
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According to Exercise 2, the ”space of equivalence classes” of lattices is
the same as the space of SL2(Z) orbits in H2. This space is typically written
as H2/SL2(Z). In light of the Weierstrass uniformization result, this space
is often called the moduli space of elliptic curves . We’re going to picture it.

Exercise 3: Say that two fractions p1/q1 and p2/q2 are Farey related if

±
[

p1 q1
p2 q2

]

∈ SL2(Z).

I mean that one sign choice or the other works. For instance 1/2 and 2/3 are
Farey related. Define

p1
q1

⊕
p2
q2

=
p1 + p2
q1 + q2

.

This operation is known as Farey addition. If you added fractions this way
in fourth grade, you were sent to the corner of the room, but amazingly this
operation is closely related to the modular group and the space of lattices.
Prove the following statement. If r1 and r2 are two Farey related fractions,
then r1 ⊕ r2 is Farey related to both r1 and r2.

Exercise 4: The Farey graph is a graph whose vertices are the elements
of Q ∪∞. (It is nice to think of Q ∪∞ as the projective line over Q.) The
point ∞ is interpreted as the fraction 1/0, and the integer n is interpreted as
n/1. Two vertices are joined by an edge if and only if they are Farey related.
For instance ∞ is joined to every integer. You can get a nice picture of the
Farey graph by representing the edge connecting 1/0 to n/1 as a vertical ray
starting at the point (n, 0) and representing the remaining edges as semi-
circles with endpoints on the real line. Draw enough of the Farey graph so
that you see what it looks like. Hint: use Exercise 3 to generate lots of edges.

Exercise 5: Call a curve in H2 a geodesic if it is either an open semicircle
with endpoints on the real line, or else a vertical ray. So, the edges of the
Farey graph are made from geodesics. Let’s take it as an axiom that SL2(Z)
acts on H2 in such a way that it maps geodesics to geodesics. (One can prove
this by direct calculation.) Assuming this axiom, prove that SL2(Z) acts on
H2 so as to induce a group of isomorphisms of the Farey graph. All you have
to prove here is the following: If r1 and r2 are Farey related fractions, then
so are TM(r1) and TM(r2) for any M ∈ SL2(Z).
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It is worth mentioning that there is a special way of measuring distances
on H2, known as the Hyperbolic metric, so that the geodesics become the
‘straight lines”. With this interpretation, the Farey graph is a hyperbolic
geometry version of a regular tesselation and SL2(Z) is its symmetry group.

Exercse 6: Say that a Farey triangle is a triple of edges that cyclically
share an endpoint. For instance, the edges joining 0, 1, and ∞ make a Farey
triangle. Look carefully at the Farey graph and notice that all of H2 is filled
with Farey triangles. Color some of these black and white in an alternating
pattern so as to make a pretty picture.

Exercise 7: By construction, SL2(Z) acts on H2 so as to permute the
Farey triangles. Let τ0 be the Farey triangle from Exercise 6. Let τ be
any other Farey triangle. Prove that there is some M ∈ SL2(Z) such that
TM(τ) = τ0. Hint: prove this when τ and τ0 share an edge, and then use
induction on the “combinatorial distance” between τ and τ0, in general.

Exercise 8: Let Γ3 ⊂ SL2(Z) denote the subgroup consisting of elements
M such that TM(τ0) = τ0. Prove that Γ3 has order 3. The elements of Γ3

cyclically permute the vertices of τ0 and act as “rotations”.

Exercise 9: Let E be the edge of the Farey graph that joins 0 to ∞. Let
Γ2 ⊂ SL2(Z) denote those elements M such that TM(E) = E. Prove that
Γ2 has order 2. The nontrivial element reverses the endpoints of E.

Exercise 10: Put everything together and argue that H2/SL2(Z) is home-
omorphic to the space with the following description: Start with a solid
equilateral triangle T and remove the vertex. Let G3 denote the group of
rotations of T . Define p, q ∈ T to be equivalent if p, q are in the same G3

orbit. If p, q ∈ ∂T (the boundary) say additionally that p ∼ q if p and q lie
on the same edge, at the same distance from the midpoint. Convince yourself
(and the grader) that T/ ∼ is homeomorphic to a plane. Hint: Divide T into
3 nice pieces. Let T ′ be one of the pieces. Every equivalence class intersects
T ′. In the interior of T ′, each equivalence class is uniquely represented. On
the boundary of T ′, each equivalence class has 2 representatives, and these
must be “sewn together”. When you do the sewing, T ′ folds up like a taco.
You would get a sphere, but the vertex is removed. So, you get a plane.
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