
The goal of these notes is to explain why any elliptic curve over C has
a Weierstrass uniformization, up to obvious changes of coordinates. These
notes are sketchy and they wade into topics that are beyond the scope of the
class – invariance of domain, moduli spaces, extremal length, and conformal
metrics. Even so, I hope that they are of some use.

1 Outline

The construction of the Weierstrass uniformizing map gives us a map from
the set of all lattices to the set of Weierstrass elliptic curves. The idea is to
define these sets precisely and analyze what the map does to them. Here is
an outline of the notes.

• We will explain what Invariance of Domain means. I like to think
of Invariance of Domain as a continuous version of the Pidgeonhole
principle. It says that, under the right circumstances, a continuous,
injective, and proper map is surjective. (Properness is defined below.)

• We will define a space Y of certain representatives of Weierstrass elliptic
curves. Every Weierstrass elliptic curve will be equivalent to one of our
representatives up to projective transformations. The space Y is known
as the moduli space of elliptic curves .

• We will define a space X of certain representatives of lattices. Every
lattice will be equivalent to a lattice in X up to scaling. The space X
is known as the moduli space of lattices .

• We will show that the Weierstrass uniformization constructs a well-
defined map f : X → Y that is both continuous and surjective. Invari-
ance of Domain reduces the question of whether f is surjective to the
question of whether f is proper.

• We will define the concepts of extremal length and conformal metrics

and sketch some technical lemmas about them.

• Using the concepts of extremal length and conformal metrics, we will
prove that f is proper. Invariance of Domain allows us to conclude
that f is surjective, and in fact a homeomorphism.
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2 Invariance of Domain

Say that an unbounded sequence in R
k is a sequence {xn} such ‖xn‖ → ∞.

A map f : Rk → R
k is called proper if it carries unbounded sequences to

unbounded sequences. That is, if {xn} is unbounded then so is {f(xn)}.
Lemma 2.1 (Invariance of Domain) Suppose that f : Rk → R

k is con-

tinuous, injective, and proper. Then f is a homeomorphism.

A proof of this result can be found in any book on algebraic topology,
including Allen Hatcher’s online book. All we need is the case k = 2. For
convenience, we will prove this case under an additional hypothesis. When
the time comes, we will verify that the extra hypothesis holds. Let Cr(u)
denote the circle of radius r centered at u ∈ R

2.

Lemma 2.2 Suppose that f : R2 → R
2 is continuous, injective, and proper.

Suppose additionally that there is some point u ∈ R
2 such that f(Cr(u))

winds a nonzero number of times around f(u) for all sufficiently small r.
Then f is a homeomorphism.

Proof: We translate so that u = 0 and f(0) = 0. Let p ∈ R
2 be any point.

Consider the image Dr = f(Cr). Since f is injective, Dr does not contain 0
for r > 0. By hypothesis, Dr winds a nonzero number of times around 0, for
r small enough. But then Dr winds a nonzero number of times around the
origin for all r, because the winding number is a continuous function of r, and
also integer valued. If Dr winds 0 times around p, then Dr winds a different
number of times around p than it does around 0. But then Dr must intersect
the line segment joining 0 to p. Once r is large enough, this contradicts the
fact that f is proper. Hence Dr winds a nonzero number of times around p
for r large. But Dr winds 0 times around p when r is sufficiently small. This
is only possible if the winding number is not defined for some r. That is,
p ∈ Dr for some r. Hence f is surjective.

To finish the proof, we just have to show that f−1 is continuous. If not,
then we can find some p ∈ R

2 and some sequence {qn} → p such that f−1(qn)
does not converge to f−1(p) on any subsequence. Since f is proper, the se-
quence {f−1(qn)} has a convergent subsequence. Let r be some limit of this
sequence. Since f is continuous, we must have f(r) = lim qn = p. Hence
r = f−1(p). Hence, some subsequence of f−1(qn) converges to f−1(p). This
is a contradiction. Hence f−1 is continuous. ♠
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3 The Space of Elliptic Curves

Say that a canonical form for a Weierstrass elliptic curve is either

C∞ : y2 = x3 + 1, (1)

or
Cb : y2 = x3 + x+ b; (2)

There are 2 choices of b for which Cb is singular. Namely b should satisfy
4 + 27b2 = 0. That is

b± = ±2i/
√
27. (3)

Some coordinate change of the form x → αx and y → βy converts an
arbitrary Weierstrass elliptic curve into one in canonical form. The same
kind of coordinate change maps Cb to C−b. It is an exercise to show that Ca

and Cb are projectively equivalent if and only if a = ±b. For this reason, the
space

Y =
(

(C ∪∞)− b+ − b−

)

/± (4)

parametrizes the set of all equivalence classes of Weierstrass elliptic curves.
Any Weierstrass elliptic curve is projectively equivalent to a curve indexed by
a unique point in Y . For this reason, Y is the space of projective equivalence
classes of Weierstrass elliptic curves.

Topologically, the space (C ∪ ∞)/± is still a sphere. Hence the space
Y is topologically a sphere with one point removed, namely [b±]. A sphere
with one point removed is homeomorphic to a plane. So, in short, Y is
homeomorphic to a plane.

4 The Space of Lattices

Recall that a lattice is a set of the form

Λ(α, β) = {mα + nβ|m,n ∈ Z}. (5)

Here α and β are two complex numbers with α/β non-real. We say that two
lattices Λ1 and Λ2 are equivalent if there is a complex number w such that
Λ2 = wΛ1. Here is the significance of this definition.
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Lemma 4.1 Two lattices Λ1 and Λ2 are equivalent if and only if there is a

CA homeomorphism from C/Λ1 to C/Λ2.

Proof: If Λ2 = wΛ1 then the map f(z) = wz induces the CA homeomor-
phism from C/Λ1 to C/Λ2. That is the easy direction.

Suppose that f : C/Λ1 → C/Λ2 is a CA homeomorphism. We can adjust
by a translation so that f(0) = 0. Let πj : C → C/Λj be the quotient map.
Let g = f ◦ π1. Then g is a map from C to C/Λ2. Note that g′ makes
sense as a map from C to C. The map g′ is bounded since g′ is completely
determined by what g does on a single parallelogram in C. Since g′ is both
CA and bounded, g′ is constant. So, g must have the form

g(z) = π2(wz). (6)

Here w = g′. For λ ∈ Λ1 we have

π2(wλ) = f(π1(λ)) = f(0) = 0.

Therefore wλ ∈ Λ2. So, wΛ1 ⊂ Λ2. Reversing the roles of Λ1 and Λ2, we see
that (1/w)Λ2 ⊂ Λ1. These two containments show that wΛ1 = Λ2. ♠

For now on, we always order α and β so that {α, β} makes a positive
basis. That is β/α has positive imaginary part. Let SL2(Z) denote the set
of matrices

[

a b
c d

]

; ad− bc = 1. (7)

That is, the determinant is 1. We write (α′, β′) = M(α, β) if α = aα′ + bβ′

and β′ = cα + dβ.

Lemma 4.2 Λ(α, β) = Λ(α′, β′) if and only if (α′, β′) = M(α, β) for some

M ∈ SL2(Z).

Proof: The “if” direction is obvious. Suppose Λ(α, β) = Λ(α′, β′). Since
α′, β′ ∈ Λ(α, β), we can write α′ = aα + bβ and β′ = cα + dα. At the same
time, we can write α = a′α′ + b′β′ and β = c′α′ + d′β′. The corresponding
matrices M and M ′ are inverses of each other, and both are integer matrices.
Hence, they both must have determinant ±1. The condition on the ordering
forces the determinant to be 1. ♠
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Every lattice is certainly equivalent to one of the form Λ(1, z) where
Im(z) > 0. Letting H

2 denote the set of such z, we can say that every
lattice is equivalent to one of the form Λ(1, z), with z ∈ H

2.

Lemma 4.3 Λ(1, z) and Λ(1, z′) are equivalent if and only if

z′ =
az + b

cz + d
; a, b, c, d ∈ Z; ad− bc = 1. (8)

Proof: The “if” direction follows from Lemma 4.2. Suppose that Λ(1, z)
and Λ(1, z′) are equivalent. Then there is some complex number w such
that Λ(1, z′) = wΛ(1, z). That is Λ(1, z′) = Λ(w,wz). But then (1, z′) =
M(w,wz), where M is as in Equation 7. So, z′ = M(wz)/M(w). Writing
this out and cancelling the extra factor of w in both the numerator and de-
nominator gives Equation 8. ♠

We now see that the space X is the same as the quotient H
2/SL2(Z),

where the equivalence relation is as in Equation 8.

5 The Weierstrass Map

Now we define the map f : X → Y . We choose some lattice Λ = Λ(1, z)
and form the Weierstrass function P . Next, we define Ψ = (P, P ′). We
have already seen that Ψ maps C/Λ onto an elliptic curve E, given by the
equation

y2 = 4x3 + g2x+ g3.

Here g2 and g3 are such that (P ′)2 = 4P 3 + g2P + g3. We then take the
elliptic curve in Y that is equivalent to this elliptic curve.

We need to see that f is well defined. The problem is that points in X are
represented by more than one lattice. If we use the lattice Λ(1, z∗) instead,
with z∗ ∼ z, we get a different elliptic curve

y2 = 4x3 + g∗2x+ g∗3.

We want to see that the two elliptic curves give the same point in Y .
There is a constant w ∈ C such that Λ(1, z∗) = wΛ(1, z). Below, we will

show that g∗2 = w−4g2 and g∗3 = w−6g3. From this information, it is an easy
exercise to show that our two elliptic curves correspond to the same point in
Y .

5



Lemma 5.1 g∗2 = w−4g2 and g∗3 = w−6g3.

Proof: Let P and P ∗ be the Weierstrass functions defined relative to Λ and
Λ∗ respectively. Consider the new function Q(z) = P ∗(wz). The functions
P and Q are both Λ-periodic. Near 0, we have

P (z) = 1/z2 + z2a(z); Q(z) = 1/(wz)2 + z2b(z),

where a(z) and b(z) are CA functions. So, P (z) − w2Q(z) is a bounded
CA function. Hence P (z) − w2Q(z) is constant. But we also know that
P (0) = Q(0) = 0. Hence Q(z) = w−2P (z).

Now we know that P ∗(wz) = w−2P (z). We can equally well write

P ∗(z) = w−2P (z/w). (9)

By the chain rule,
(P ∗)′(z) = w−3P ′(z/w). (10)

Now we can see that

((P ∗)′(z))2 = w−6(P ′(z/w))2 =

w−6(P (z/w)3 + g2P (z/w) + g3) =

P ∗(z)3 + w−4g2P
∗(z) + w−6g3.

This shows that g∗2 = w−4g2 and g∗3 = w−6g3, as claimed. ♠

Lemma 5.2 f is continuous and injective.

Proof: To prove continuity, one just has to obvserve that the differential
equation satisfied by the Weierstrass function pretty clearly depends contin-
uously on the lattice. For injectivity, suppose that f(x1) = f(x2). Then the
map Ψ−1

2 ◦ Ψ1 gives a CA homeomorphism from C/Λ1 to C/Λ2. But then
Λ1 and Λ2 are equivalent by Lemma 4.1. ♠

We want to use Lemma 2.2, so we need to verify the extra hypothesis.
Let u be any point of H2 so that no two points of C sufficiently close to
u are equivalent to each other in the sense of Equation 8. Only countably
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many points in H
2 fail to have this property. For instance u = 1/2+ i/2 has

the desired property. We also assume that f(u) 6= 0.
In a neighborhood of u, the space X is just a copy of an open set of C.

Likewise, in a neighborhood of f(u), the space Y is just a copy of an open
subset of C. For this reason, it makes sense to discuss f as a CA function
in a neighborhood of u.

Let Cr(u) denote the set of points X representing lattices Λ(1, z), where
|z− u| = r. For r small, no two points of Cr(u) are equivalent to each other.
That is Cr(u) is a loop in X.

Lemma 5.3 For r sufficiently small, f(Cr(u)) winds a nonzero number of

times around f(u) in Y .

Proof: An examination of construction of P and its differential equation
shows that the coefficients g2 and g3 are complex analytic functions of the
parameter z when they are constructed from the lattice Λ(1, z). But then,
the map f is CA in a neighborhood of u. Hence there is some integer m such
that

f(z + u)− f(u) = zmg(z) = zmg(0) + zm+1k(z) = zmg(0) + H.O.T..

Here g and k are CA in a neighborhood of 0 and g(0) 6= 0. This equation
shows that f(Cr(u)) winds m times around f(u). ♠

Suppose we knew that f was also proper. Then we could conclude from
Lemma 2.2 that f is a homeomorphism from X to Y . The rest of these
notes are devoted to showing that f is proper. Before giving the details, I’ll
explain the idea. If {pn} is an unbounded sequence in X, the corresponding
quotients C/Λn are becoming increasingly long and skinny. The elliptic
curves corresponding to f(pn) are also becoming long and skinny, in a certain
sense, and therefore f(pn) must be an unbounded sequence in Y . In order to
make this argument work, we need to somehow quantify what we mean by
“long and skinny”. The concept of extremal length does the job for us. Now
for the details...
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6 Extremal Length

Let Λ = Λ(1, z) be a lattice. Suppose that ρ : C/Λ → R
+ is a function,

normalized so that ∫

C/Λ
ρ2 dxdy = 1. (11)

For each y ∈ R, we define

f(y) =
∫ 1

0
ρ(x+ iy)dx (12)

We define
µ(Λ, ρ) = inf

y∈R
f(y). (13)

So far, these definitions pertain to a specific choice of ρ. Finally, we define

µ(Λ) = sup
ρ

µ(Λ, ρ). (14)

For this last equation, we are extremizing over all choices of ρ.
The function ρ is known as a conformal metric on C/Λ. The first integral

expresses the condition that the total area in this metric is 1. The integral
f(y) measures the length of the horizontal loop at height y relative to this
metric. The quantity µ(Λ, ρ) measures the length of the shortest horizontal
loop relative to this metric. The final quantity maximizes the length of the
shortest loop, over all possible unit area conformal metrics. This quantity is
known as the extremal length of a horizontal loop in C/Λ.

Here is the basic result.

Lemma 6.1 Let {pn} be a sequence of points in X that has no convergent

subsequence. Let Λn be the lattice corresponding to pn. Then µ(Λn) → 0.

Proof: Let zn be such that Λ(1, zn) corresponds to pn. Replacing zn by
zn ± 1, we can assume that zn = xn + yn where xn ∈ [0, 1]. For ease of
exposition, we will assume that xn = 0. The general case requires small but
slightly tedious modifications.

Since {pn} has no convergent subsequence, we have yn → ∞. We might
as well re-index our sequence so that yn > n. If this lemma is false, we can
find some a > 0 and a function ρn so that µ(Λn, ρn) > a for all n.
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Let Rn be the rectangle [0, 1]× [0, n]. The rectangle Rn consists of n unit
squares stacked on top of each other. One of these squares has less than
(1/n) times the ρn-area. We can restrict ρn to this square and then rescale
to get a new function α : R1 → R

+ such that

∫

R1

α2(x, y) dxdy < ǫ;
∫ 1

0
α(x+ iy) dx ≥ 2,

for all y ∈ [0, 1]. Here we can make ǫ as small as we like by taking n large
and suitably rescaling.

We can break R1 into a k × k grid of squares so that α is constant on
each square up to a factor of 2. Let αij be the minimum value of α on the
ijth square on the grid. By hypothesis, we have

∑

i,j

α2
ij ≤ ǫ;

∑

i,j

αij ≥ k.

But the first quantity is minimized when αij = 1/k, and the minimum is 1.
This is a contradiction. ♠

7 Conformal Metrics on an Elliptic Curve

We already mentioned that a conformal metric on C/Λ is just a choice of a
positive function ρ. We want to define something similar on an elliptic curve.
Now the situation is more complicated, because elliptic curves are subsets of
P 2(C). This section is going to be a crash course on a bit of Riemannian
geometry.

Let E be an elliptic curve. The important feature of E is that it is
nonsingular. For each P ∈ E there is a tangent line, TP (E), which is a copy
of C. Some of you may recognize the nonsingularity condition as saying that
E is a manifold .

A conformal metric on E is a choice of nontrivial function

ρP : TP (E) → R

for each P ∈ E. The function ρP should have the property that

ρP (az) = |a|ρP (z) (15)
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for all a ∈ C and all z ∈ TP (E). Also, the function should always assign
positive numbers to nonzero elements of TP (E). A conformal metric on E is
a special case of a Riemannian metric on E.

Given a conformal metric on E we can use it to measure the speeds of
curves on E. If we have a curve γ(t) on E, the derivative γ′(t) is naturally an
element of Tγ(t)(P ). So, we can use ργ(t) to define the speed of γ(t). Namely

|γ′(t)| = ργ(t)(γ
′(t)). (16)

Once we have the notion of speed, we can integrate it to obtain the notion
of arc length. That is, the length of the portion of γ joining γ(a) to γ(b) is

∫ b

a
|γ′(t)| dt.

The notion of a conformal metric ties in nicely to the concept we intro-
duced in the previous section. Let Ψ : C/Λ → E be the Weierstrass map and
suppose E comes with a conformal metric. There is a function ρ : C/Λ → R

such that Ψ is an isometry : The length of any curve γ on C/Λ with respect
to ρ is the same as the length of Ψ(γ) with respect to the conformal metric
on E. This works because the Weierstrass map is complex analytic. We say
that the conformal metric on E has unit area if ρ has unit area in the sense
of the previous section.

8 Properness

Now we prove that f is proper.
Let {pn} be a sequence of points inX that has no convergent subsequence.

Let Λn be the lattice corresponding to pn. We have µ(Λn) → 0, by Lemma
6.1.

Let En be the elliptic curve corresponding to f(pn). Suppose that {En}
has a convergent subsequence. Passing to a subsequence, we can assume that
{En} converges to some limit elliptic curve E. We can choose a unit area
conformal metric γn on En, and we can arrange that these metrics converge
to a unit area conformal metric γ on the limit E. There is some ǫ > 0 so
that every loop on E has length at least 2ǫ relative to γ. Hence, once n is
large, every closed loop on En has length at least ǫ relative to γn.

Let ρn be the function on C/Λ so that the Weierstrass map is an isometry
from C/Λn to En relative to ρn and γn. Referring to our notation of extremal
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length, we would have µ(Λn, ρn) ≥ ǫ. But this contradicts that fact that
µ(Λn, ρn) ≤ µ(Λn) and µ(Λn) → 0.

Hence f is proper. Just to summarize, we now know that f : X → Y is
injective, continuous, and proper. So, by Invariance of Domain, f is a home-
omorphism. In particular, f is surjective. So, up to projective equivalence,
every Weierstrass elliptic curve has a Weierstrass uniformization.
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