
Math 154 Notes

These are some notes on solvability.

1: Roots of Unity Not Necessary: Let F be a field of characteristic
zero. Let p(x) ∈ F [x] be a polynomial which is solvable by radicals. Herstein
proves that the Galois group of p(x) is solvable, assuming the side-condition
that F contains all n-th roots of unity. Here we eliminate the side condition.

The proof in Herstein only uses finitely many roots of unity. Let’s say that
the proof uses roots α1, ...., αk. Let n1, ..., nk be the corresponding orders of
these roots of unity. Let N = n1...nk, and let ω = exp(2πi/N). Then every
αj has the form ωk for some k. So, Herstein’s proof works if F contains ω.

Let’s just assume that F has charactaristic zero, without putting any
assumptions about roots of unity. Let F̃ = F (ω). Let Ẽ be the splitting
field of p(x) over F̃ . The result in Herstein says that G(Ẽ, F̃ ) is solvable.
Let E be the splitting field of p over F . We would like to prove that G(E,F )
is solvable. We can assume that E ⊂ Ẽ because E is obtained from F by
adjoining the roots of p and Ẽ is obtained from F̃ by adjoining the same
roots of p.

Note that Ẽ is the splitting field, over F , of the polynomial p(x)(xN −1).
Hence Ẽ is normal over F . Also E is normal over F . Therefore G(E,F ) is
a quotient of G(Ẽ, F ). The quotient of a solvable group is solvable. So, to
finish our proof, we just have to show that G(Ẽ, F ) is solvable.

Now, F̃ is normal over F , because it is the splitting field for xN − 1.
Therefore, we have an exact sequence

0 → G(Ẽ, F̃ ) → G(Ẽ, F ) → G(F̃ , F ) → 0.

What this means is that the left map is an injection, the right map is an
surjection, and the image of the left map is the kernel of the right map. The
left group is solvable by the result in Herstein. The right group is abelian
and hence solvable. We want to show that the middle group is solvable.

Let’s write the sequence as 0 → L → M → R → 0. Call the right map ρ.
Consider the commutator sequence M0 = M , M1 = [M : M ], etc. Likewise
define this for L and R. We have ρ(M i) ⊂ Ri. Since Rk is trivial for k
large, we have Mk in the kernel of ρ for k large. But then Mk is isomorphic
to a subgroup of L, which is solvable. Hence Mk is solvable. But then the
sequence Mk+1,Mk+2, ... is eventually trivial. Hence M is solvable. That’s it.
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The Vandermonde Matrix: The second portion of these notes discusses
what is known as the Vandermond matrix. We will use the result here in
the next section. Let p be prime and let αk = exp(2πik/p). The numbers
α1, ..., αp are the distinct pth roots of unity. Actually, the result we prove
doesn’t use the fact that p is prime, but this is the case that we will need
below.

Let
Mj = (αj, α2j , ..., αpj) (1)

Let M be the matrix with rows M1, ...,Mp. Our goal is to show that M
has nonzero determinant. This is equivalent to showing that the vectors
M1, ...,Mp are linearly independent in the vector space C

p.
We introduce the Hermitian inner product

〈(z1, ..., zp), (w1, ..., wp)〉 =
p∑

i=1

ziwi. (2)

Here wi is the complex conjugate of wi. This gadget works very much like a
dot product. It obeys the following rules.

• 〈Z1 + Z2,W 〉 = 〈Z1,W 〉+ 〈Z2,W 〉

• 〈aZ,W 〉 = a〈Z,W 〉.

• 〈W,Z〉 = 〈Z,W 〉.

(We don’t actually need to know the third rule, but it is worth stating any-
how.)

We check easily that

〈Mi,Mi〉 = p; 〈Mi,Mj〉 = 0 (3)

when i 6= j. Supposing that c1M1 + ...cpMp = 0, we would get

〈c1M1 + ...+ cpMp, cj〉 = pcj = 0. (4)

Hence cj = 0. But j is arbitrary. Hence c1, ..., cp = 0. This proves that the
vectors M1, ...,Mp are linearly independent. Hence det(M) is nonzero.
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3. Converse to the Solvability Result: The third goal of these notes is
to prove the converse to the result in Herstein – without any assumptions
about roots of unity. I’m adapting this proof from Jacobsen’s book, Algebra.
Let F be a field of characteristic zero and let p(x) ∈ F [x] be a polynomial.
Let E be the splitting field of p(x). Suppose that G(E,F ) is solvable.

Let N be the order of G(E,F ). Let ω = exp(2πiN). Let F̃ = F (ω) and
let Ẽ be the splitting field of p over Ẽ. Note that Ẽ = E(ω). An argument
similar to the one above shows that G(Ẽ, F̃ ) is also solvable. So, in our proof,
we can assume without loss of generality that ω ∈ F .

Let G = G(E,F ). We can find a sequence (e) = Gn ⊂ Gn−1... ⊂ G0 = G
such that each Gi is normal in Gi−1 and Hi = Gi−1/Gi is abelian. Suppose
there is some index i such that Hi is not cyclic of prime order. We have
a surjection φ : Gi−1 → Hi and we let G′

i = φ−1(H ′

i), where H ′

i is some
nontrivial subgroup of Hi. Then G′

i is normal in Gi and Gi−1 is normal in
G′

i, and the two quotients Gi−1/G
′

i and G′

i/Gi are both abelian. In short, if
Hi is not cyclic of prime order, we can insert another group in our sequence.
So, we can assume that Gi−1/Gi is cyclic of prime order for all i. Note that
all these prime orders divide N . Corresponding the sequence of groups, we
can find a tower of fields

F = F0 ⊂ ... ⊂ Fn = E

such that [Fi : Fi−1] has prime order for all i.
Note that all the primes involved divide N . In particular, if [Fi−1 : Fi] = p

then Fi−1 contains all the pth roots of unity. The following lemma finishes
the proof.

Lemma 0.1 Let K be a normal field extension of F of degree p, with p
prime. Suppose also that F contains all the pth roots of unity. Then we have

K = F (a) where ap ∈ F .

Proof: Let αk = exp(2πik/p). Then α1, ..., αp are the pth roots of unity.
We can write K = F (c) for some c ∈ K. The group G(K,F ) has order p
and hence is cyclic. Let η be a generator of G(K,F ). Note that η(αk) = αk

since αk ∈ F . Consider the sums

dk = αkη(c) + α2kη
2(c) + ...+ αpkη

p(c). (5)
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We have η(dk) = dk/αk. Therefore η(dpk) = dk/α
p
k = dk. So, d

p
k is fixed by

G(K,F ). Since K is normal over F , we have dk ∈ F . To finish the proof, we
just have to show that some dk does not belong to F .

We can write Equation 5 in matrix form, as D = MC, where D =
(d1, ..., dp) and C = (c1, ..., cp) and M is the Vandermonde matrix . We have
already seen that det(M) 6= 0. Hence M is invertible and we can write
C = M−1D. But then c is expressible as a linear combination of d1, ..., dp.
Since c 6∈ F , we must have dk 6∈ F for some k. This does it. ♠
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