
The goal of these notes is to explain Weierstrass Uniformization.

1 Lattices

Say that 2 complex numbers α and β are independent of α/β is not real. For
instance 1 and i are independent.

A lattice in C is a set of points of the form

Λ = {mα + nβ m, n ∈ Z}, (1)

where α and β are independent numbers. The set of points in Λ forms a grid
of parallelograms. The classic case is when α = 1 and β = i. In this case
Λ = Z[i], the Gaussian integers.

The quotient C/Λ has several nice properties.

1. C/Λ is homeomorphic to a torus – namely, a single parallelogram with
its sides identified.

2. C/Λ abelian group under addition, since both C and Λ are abelian
groups under addition.

A map f : Λ → C is called Λ-periodic if f(λ + z) = f(z) for all z ∈ C

and all λ ∈ Λ. In this case, f induces a map from C/Λ into C. This new
map is usually also denoted by f . We can also talk about Λ-periodicity when
f is not defined at all points of C. In the case of interest, we will be able to
interpret f as a map from C to C ∪∞.

2 The Weierstrass Function

Let Λ be any lattice. Informally, the function we are interested in is

∑

λ∈Λ

1

(z − λ)2
(2)

The nice thing about this “function” is that it is clearly Λ-periodic. The bad
thing is that the series above does not converge, so the “function” does not
exist.
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The Weierstrass function is the function that the expression in Equation
2 wants to be. Here is the definition.

P (z) =
1

z2
+

∑

λ 6=0

(

1

(z − λ)2
−

1

λ2

)

=
1

z2
+

∑

λ 6=0

2zλ− z2

λ2(z − λ2)
. (3)

To study the convergence of this series, choose z 6∈ Λ. For all λ sufficiently
large, we have the estimate

∣

∣

∣

∣

z2 − 2zλ

λ2(z − λ2)

∣

∣

∣

∣

<
Cz

|λ|3
. (4)

Here Cz is a constant that depends on z in a way that we don’t care about.
The series in Equation 3 does converge because the corresponding series

∑

λ 6=0

1

|λ|3

converges.
The Weierstrass function P (z) is defined for all z ∈ C−Λ. As z → λ ∈ Λ,

the quantity |P (z)| tends to ∞. One says that P (z) has poles at points of Λ.

3 Differentiability

In this section we’ll prove that the function P is complex analytic on C −Λ
and that

P ′(z) =
∑

λ∈Λ

−2

(z − λ)3
, ∀z ∈ C − Λ. (5)

This is the standard proof that term-by-term differentiation works.
For any N we can write P = PN +RN , where

PN(z) =
1

z2
+

∑

0<|λ|<N

(

1

(z − λ)2
−

1

λ2

)

. (6)

and RN is the remainder. In other words, PN is defined just like P , except
we only sum over the lattice points inside the disk of radius N .

Since PN just involves a finite number of terms, we have

dPN/dz = lim
h→0

PN(z + h)− PN(h)

h
=

∑

|λ|<N

−2

(z − λ)3
(7)
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Note that the case λ = 0 is included in the sum.
To understand what happens to the remainder, we write

RN =
∑

|λ≥N

fλ(z); fλ(z) =
1

(z − λ)2
−

1

λ2
. (8)

We have
fλ(z + h)− fλ(z)

h
=

2λ− h− 2z

(z − λ)2(z − λ− h)2
. (9)

For now on, we suppose |h| < 1. Also, we fix z. Once |λ| is large ebough we
have

∣

∣

∣

∣

fλ(z + h)− fλ(z)

h

∣

∣

∣

∣

<
Cz

|z − λ|3
. (10)

Again, the constant Cz depends on z in a way that we don’t care about. For
any ǫ1 > 0 we can choose N large enough so that

∣

∣

∣

∣

RN(z + h)−RN(z)

h

∣

∣

∣

∣

< Cz

∑

|λ≥N

1

|z − λ|3
< ǫ1. (11)

From Equation 11 we have

∣

∣

∣

∣

P (z + h)− P (z)

h
−

∑

λ

−2

(z − λ)3

∣

∣

∣

∣

≤

ǫ1 +
∣

∣

∣

∣

PN(z + h)− PN(z)

h
−

∑

λ

−2

(z − λ)3

∣

∣

∣

∣

≤

ǫ1 + ǫ2 +
∣

∣

∣

∣

PN(z + h)− PN(z)

h
−

∑

|λ|<N

−2

(z − λ)3

∣

∣

∣

∣

≤

ǫ1 + ǫ2 + ǫ3 (12)

The terms ǫ1 and ǫ2 tend to 0 as N → ∞, and the term ǫ3, which comes
from Equation 7, tends to 0 as h → 0. This proves that

lim
h→0

∣

∣

∣

∣

P (z + h)− P (z)

h
−

∑

λ

−2

(z − λ)3

∣

∣

∣

∣

= 0. (13)
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4 The Differential Equation

In this section we’ll establish the differential equation

(P ′)2 = 4P 3 + g2P + g3. (14)

A function f is called even if f(−z) = f(z) for all z. Also, f is called odd

if f(−z) = −f(z) for all z.

Lemma 4.1 P is even and Λ-periodic.

Proof: Since 1/z2 is even, it suffices to prove that Q(z) = P (z) − 1/z2 is
even. Since P ′ is odd, so is Q′. Also, Q(0) = 0. Since Q′ is odd and Q(0) = 0,
we get that Q is even. Hence P is even.

Now we show periodicity. Let λ ∈ Λ be any point. Let Q(z) = P (z+λ)−
P (z). From Equation 5 we see that P ′(z) is clearly Λ-periodic. Therefore
Q′(z) = 0. Hence Q(z) = Cλ, a constant that perhaps depends on λ. We
just have to show that Cλ = 0. But

Cλ = P (−λ/2 + λ)− P (−λ/2) = P (λ/2)− P (−λ/2) = 0,

since P is even. ♠

Lemma 4.2 In a neighborhood of 0 we have

P (z) =
1

z2
+ z2m1(z); P ′(z) =

−2

z3
+ zm2(z).

Here m1 and m2 are CA in a neighborhood of 0.

Proof: Let Q(z) = P (z)− 1/z2. Q(z) is even and Q(0) = 0. Since Q(0) = 0
and Q is CA, the quotient Q(z)/z is bounded in a neighborhood of 0. So,
we can write Q(z) = zR(z) where R(z) is CA in a neighborhood of 0. Note
that R(z) is odd. Hence R(0) = 0. The same argument now shows that
R(z) = zm1(z). Hence Q(z) = z2m1(z). This gives the first equation. The
second equation comes from differentiating the first one. ♠

Lemma 4.2 tells us that

A(z) = 4P 3 − g2P − g3 − (P ′)2 =
m3(z) + g2

z2
+ g3 +m4(z), (15)

where m3 and m4 are CA in a neighborhood of 0. We choose g2 so that
m3(0) + g2 = 0. We choose g3 so that A vanishes at some point.
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Lemma 4.3 A(z) is bounded in a neighborhood of 0.

Proof: Consider the function q(z) = m3(z) + q2. Is suffices to prove that
q(z)/z2 is bounded in a neighborhood of 0. The function q(z) is even and
q(0) = 0. The same argument as in Lemma 4.2 shows that q(z) = z2s(z),
where s(z) is CA in a neighborhood of 0. This does it. ♠

The function A(z) is Λ-periodic. Hence A(z) is bounded in a neighbor-
hood of each lattice point. On the other hand, A(z) is CA in C−Λ. So, A is
bounded in the complement of any neighborhood of Λ. Hence A is bounded.
All the singularities of A are removable, so A extends to a bounded CA func-
tion on C. But then A is constant. Our choice of g3 gives A = 0. This
establishes Equation 14.

Remark: With a bit of effort, one can trace through the proof below and
prove that

g2 =
∑

λ 6=0

−60

λ4
; g3 =

∑

λ 6=0

−140

λ6
. (16)

5 Map to the Elliptic Curve

Let E be the elliptic curve

y2 = 4x3 + g2x+ g3. (17)

We will assume that this elliptic curve is nonsingular, meaning that

4g3
2
+ 27g2

3
6= 0.

In fact, all choices of Λ have this property, but this is a bit of a digression to
prove.

There is a map from C into E, given by

Ψ(z) = (P (z), P ′(z)). (18)

Equation 14 tells us that this map actually lands in E. When z ∈ Λ, we
define Ψ(z) = [0 : 1 : 0], the infinite point.

Since Ψ is Λ-periodic, Ψ induces a map (with the same name)

Ψ : C/Λ → E. (19)

The map Ψ is called the Weierstrass uniformizing map.
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6 Branch Points

As a prelude to understanding the map Ψ, we need some information about
the derivatives of P . A branch point of P is a point z such that P ′(z) = 0.
In this section we characterize the branch points. Let 1

2
Λ denote the set of

points of the form λ/2 where λ ∈ Λ. Let Λ′ = 1

2
Λ− Λ. We will prove:

• P ′(z) = 0 if z ∈ Λ′.

• P ′(z) = 0 only if z ∈ Λ′.

• P ′′(z) 6= 0 if z ∈ Λ′.

Suppose that z ∈ Λ′. Then

P (z + h) = P (z + h− 2z) = P (−z + h) = P (z − h). (20)

The first equality comes from the fact that 2z ∈ Λ and that P is Λ-periodic.
The last equality comes from the fact that Λ is even. Since P ′ is continuous,

2P ′(z) = lim
h→0

P (z + h)− P (z − h)

h
= 0.

It is convenient to define Q = P ′. Suppose that Q(a) = 0. We can write
Q(a + z) = zmg(z), where g(0) 6= 0 and m is some integer. We define m to
be the multiplicity of a. This notion of multiplicity coincides with the notion
of the multiplicity of a root of a polynomial. If both Q(a) and Q′(a) are 0
then a has multiplicity greater than 1. So, either of the remaining claims
above fails, the equation Q = 0 has at least 4 solutions in C/Λ, counting
multiplicity.

The multiplicity has the following topological interpretation. Suppose
that C is a loop that surrounds a and no other roots of Q. Then the multi-
plicity of a counts the number of times Q(C) winds around 0. More generally,
if C is a loop that surrounds the roots a1, ..., ak of Q, then the sum of multi-
plicities of a1, ..., ak counts the number of times Q(C) winds around 0. The
multi-root case can be deduced from the single root case by considering pic-
tures of the kind shown in Figure 1. The idea is that the winding number of
the outer loop, the loop we care about, is the same as the winding number
of the inner loop, and the winding number of the inner loop is the sum of
the winding numbers of the 3 small loops surrounding the individual roots.
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Figure 1.

For any u ∈ C we define N(u) to be the number of solutions to the
equation Q(z) − u = 0, counting multiplicity. We suppose that N(0) ≥ 4.
By Equation 5, we have

Q(z) =
1

z3
+ g(z),

where g(z) is CA in a neighborhood of 0. From this equation we see that
Q(z) − u = 0 only has solutions near lattice points when |u| is large, and
moreover that N(u) = 3 when |u| is large.

It follows from the topological interpretation of multiplicity that the func-
tion u → N(u) varies continuously. On the other hand, this function is
integer-valued. Hence, it is impossible for N(0) > 3. This is a contradiction.
This completes our proofs of the claims.

7 Regularity of the Map

In this section we will show that Ψ is a regular map. This is to say that
Ψ′ never vanishes. First, suppose that z ∈ C − Λ. We have Ψ′(z) =
(P ′(z), P ′′(z)). Note that P ′(z) and P ′′(z) are not both zero, by the result
in §6.

It remains to consider the case when z ∈ Λ. Since Ψ is Λ-periodic, it
suffices to consider the case z = 0. The secret in this case is to change
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coordinates to that we are still dealing with a map into C
2. We can’t use

the usual copy of C2 sitting inside P 2(C), so we will use one of the other
copies. We have Ψ(0) = [0 : 1 : 0]. To analyze the derivative, we consider the
picture in the plane C

2 consisting of points y = 1. For points z ∈ C near 0,

Ψ(z) = [P (z), P ′(z) : 1] = [P (z)/P ′(z) : 1 : 1/P ′(z)].

Consider the first coordinate, g(z) = P (z)/P ′(z). From Lemma 4.2, the
function g(z) is bounded in a neighborhood of 0. Also, limz→0 |g(z)| = 0. So,
we can write g(z) = zh(z). If h(0) = 0 then g(z) = z2m(z), where m(z) is
CA in a neighborhood of 0. This contradicts Lemma 4.2. So, h(0) 6= 0. But
then g′(0) 6= 0. Hence Ψ′(0) 6= 0.

8 Surjectivity of the Map

Now we’ll show that Ψ : C/Λ → E is onto. Be warned that this section
requires a bit of background in real analysis. The main result we will use
is that a nonempty subset of E, which is both open and closed, must be all
of E. This follows from the fact that E is connected. Obviously Ψ(C/Λ) is
nonempty. So, we just need to show that this set is open and closed.

Closed: This follows from the fact that C/Λ is compact, and Ψ is con-
tinuous. The continuous image of a compact set is always closed. Here is a
more elementary argument, which explains the meaning of “compactness”.
Choose some point w that lies in the closure of Ψ(C/Λ). By definition, there
is a sequence {zi} in C/Λ such that Ψ(zi) converges to w. Since C/Λ is com-
pact, we can pass to a subsequence so that {zi} is a convergent subsequence.
Let z = lim zi. By continuity Ψ(z) = w. Hence w ∈ Ψ(C/Λ). Since w was
an arbitrary point in the closure of Ψ(C/Λ), we see that Ψ(C/Λ) contains
its closure. Hence Ψ(C/Λ) is closed.

Open: Let a ∈ C. Let L be the tangent line to E at a. Let π be the
projection map from E onto L. Since E is a nonsingular elliptic curve, π is
a local homeomorphism from a neighborhood of Ψ(a) in E to an open set in
L.

Consider the auxilliary map

π ◦Ψ : C → L.
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This is a C.A. map from C to L, and L is just a copy of C. The map π ◦Ψ is
C.A. Since Ψ is regular, the derivative of π ◦Ψ does not vanish at a. Hence,
π ◦Ψ is a local homeomorphism. Hence π ◦Ψ maps an open neighborhood U
of a in C onto an open neighborhood of π ◦Ψ(a) in L. Given what we have
already said about π, we see that Ψ(U) is an open set in E which contains
Ψ(a). This shows that every point of Ψ(C) is contained in an open subset
of Ψ(C). Hence Ψ(C) is open in E.

Remark: We actually didn’t need to know that Ψ is a regular map. It
always happens that the image of an open set under a non-trivial CA map
is open.

9 Injectivity of the Map

Here we will show that Ψ is injective. Let X ⊂ C/Λ denote those points
where Ψ is not injective. That is, each a ∈ X is such that there is some
distinct b ∈ X such that Ψ(a) 6= Ψ(b). Note that [0] 6∈ X since [0] is the only
point of C/Λ which Ψ maps to the line at infinity. So, X is not all of C/Λ.
We will show that X is both open and closed. Since C/Λ is connected, this
shows that X is empty!

Closed: Suppose a lies in the closure of X. Let {an} be a sequence in
X converging to a. Let {bn} be a sequence so that Ψ(an) = Ψ(bn). Pass-
ing to a subsequence, we can assume that bn → b. By continuity, we have
Ψ(a) = Ψ(b). We just have to prove that a 6= b. Since Ψ is regular, Ψ is a
homeomorphism from a neighborhood U of a into E. The restriction of Ψ
to U is injective. But an ∈ U for n large. Hence bn 6∈ U for n large. Hence
b 6∈ U . Hence a 6= b. This proves that a ∈ X. Hence X is closed.

Open: Suppose that a ∈ X. Let b ∈ X be such that Ψ(a) = Ψ(b) and
a 6= b. Since Ψ is regular, there are small disks Ua and Ub about a and b
such that Ψ(Ua) and Ψ(Ub) are both open sets containing the common point
w = Ψ(a) = Ψ(b). We can take Ua and Ub so small that they are disjoint,
and we can shrink Ua to be so small that Ψ(Ua) ⊂ Ψ(Ub). But then Ua ⊂ X.
Hence X contains an open set which contains a. Since a was an arbitrary
point of X, this shows that X is open.
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10 Crash Course on Riemann Surfaces

It only remains to show that Ψ is a group isomorphism. Before we do this, we
need to make a little digression. We would like to say when a map f : E → E
is complex analytic. This doesn’t quite make sense, because E is not really
C. However, E is nonsingular, and there is a projection from E to each of
its tangent planes. We will use these projections to talk about CA maps of
E. Essentially, we are treating E as a Riemann surface, but we are doing
to do it without making a big fuss about a formal definition of a Riemann
surface.

Given a ∈ E let πa : E → L be the projection from E to the tangent line
at a. We have already considered these maps. Suppose that φ : E → E is a
map of E and b = φ(a). We say that f is CA at a if

πb ◦ f ◦ π−1

a (21)

is CA in a neighborhood of πa(a). The map π−1
a makes sense at least in a

neighborhood of πa(a).

Lemma 10.1 f : E → E is CA if and only if Ψ−1 ◦ f ◦ Ψ is a CA map of

C/Λ.

Proof: The point is that the coordinates of Ψ are CA maps. So, this is just
an exercise in the chain rule. ♠

Here is the main example of interest to us. Let TA : E → E denote
addition by A. That is TA(P ) = A+ P for all P ∈ E.

Lemma 10.2 TA is a CA map of E.

Proof: Recall that there are rational functions describing the group law on
E. Hence, the coordinates of TA are rational functions. The compositions
in Equation 21 are rational functions on C. (Here we are thinking of the
tangent lines as copies of C.) Hence, the compositions in Equation 21 are
all CA. So, by definition TA is CA. ♠
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11 Group Isomorphism

Now we will show that Ψ : C/Λ → E is a group isomorphism. We want to
show that Ψ(a + b) = Ψ(a) + Ψ(b) for any a, b ∈ C/Λ. Let A = Ψ(a) and
B = Ψ(b). Let TA : E → E denote addition by A. This is a CA map of E.
Define

τA = Ψ−1 ◦ TA ◦Ψ (22)

Lemma 11.1 τA is a translation.

Proof: TA is a CA map of E. At the same time, TA is a homeomorphism
with no fixed points. Hence τA is a CA homeomorphism of C/Λ with no
fixed points. Let τ = τA. We have the quotient map π : C → C/Λ. Let
g = π ◦ τ : C → C/Λ. The derivative g′ makes sense as a map from C → C.
Since g′ is continuous and Λ-periodic, there is some M such that |g′| < M .
But then g′ is both bounded and CA. Hence g′ is constant. Hence τ ′ is con-
stant. Since τ preserves the area of C/Λ, we must have |τ ′| = 1. If τ had
any rotational component, it would have a fixed point. Hence τ ′ = 1. This
implies that τ is a translation. ♠

We have

τA(0) = Ψ−1 ◦ TA ◦Ψ(0) = Ψ−1 ◦ TA([0 : 1 : 0]) = Ψ−1(A) = a. (23)

Likewise τB(0) = b. Since τA is a translation and τA(0) = a,

τA(b) = a+ b. (24)

But then
τA ◦ τB(0) = τA(b) = a+ b. (25)

On the other hand.

τA ◦ τB(0) = (Ψ−1 ◦ TA ◦Ψ) ◦ (Ψ−1 ◦ TB ◦Ψ)(0) =

Ψ−1 ◦ TA ◦ TB ◦Ψ(0) =

Ψ−1 ◦ TA ◦ TB([0 : 1 : 0]) = Ψ−1(A+B).

In short
a+ b = τA ◦ τB(0) = Ψ−1(A+B) (26)

Applying Ψ, we see that Ψ(a+ b) = Ψ(a) + Ψ(b), as claimed.
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