
General Elliptic Curves:

General Definition: Let F be a field. A general elliptic curve is the
solution set VP ⊂ P 2(F ) to a degree 3 homogeneous polynomial P provided
that.

1. VP is nonsingular: If v ∈ F
3 is a nonzero and P (v) = 0 then∇P (v) 6= 0.

2. P is irreducible: P does not factor into lower degree homogeneous
polynomials. In other words, VP is not the union of a line and a conic.

I have been a bit sloppy about not mentioning this second condition. Some-
times the first condition rules out the second condition and sometimes it
doesn’t. Here are some examples of polynomials which violate one or both
conditions.

• If P is the product of 3 degree 1 polynomials then VP is a union of 3
lines. VP will be singular at the places where the lines intersect. This
example works in any field.

• Suppose that F = R and P = (z)(x2 + y2 − z2). In this case VP is the
union of the line at infinity and the unit circle, and VP is non-singular.

• Consider the previous example with F = C. In this case, both P and
∇P vanish at (1, i, 0). What is going on is that this point is a place
where the conic and the line intersect.

Inflection Points: Let VP be an elliptic curve. An inflection point on VP

is a point p ∈ VP which P contains with multiplicity 3. Geometrically this
means that the tangent line to VP at p only intersects P at p. There is also
an algebraic characterization. (As in the previous notes) we can move the
picture by a projective transformation (which doesn’t effect the multiplicities)
so that the point is [0 : 1 : 0] and the tangent line is given by Z = 0. In this
case the multiplicity of [0 : 1 : 0] is defined to be the multiplicity of the root
x = 0 of the equation f(x) = P (x, 1, 0).

Here is an example. Consider the Weierstrass elliptic curve corresponding
to

P (x, y, z) = y2z − x3 − axz2 − bz3.

We have P (0, 1, 0) = 0 and

∇P (0, 1, 0) = (0, 0, 1).
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So [0 : 1 : 0] ∈ VP and the tangent line to this point is given by Z = 0. This
line only intersects VP at [0 : 1 : 0] so this point is an inflection point. We
can also see this algebraically: P (x, 1, 0) = x3.

When we work over R we can give another geometric characterizaton of
inflection points. Call VP locally convex at p if all points of VP sufficiently
close to p lie on the same side of the tangent line Lp. Figure 1 shows what
local convexity looks like. VP is locally convex at the black point but not at
the red point.

Figure 1: Local convexity and local non-convexity

Lemma 0.1 If p ∈ VP is an inflection point if and only if VP is not locally

convex at p.

Proof: For the purposes of working in the ordinary plane, we swap the roles
of the y and z coordinates. We move by a projective transformation so that
p = [0 : 0 : 1] and Lp is given by Y = 0. That is, the tangent line is the
x-axis.

Suppose first that p is not an inflection point. Then 0 is a double (but
not triple) root of f(x) = P (x, 0, 1). This means that f ′′(0) 6= 0. Let’s
consider the case when f ′′(0) > 0 and ∇P is a positive multiple of (0, 1, 0).
The other cases are similar. In this situation, f(x) ≥ 0 for x near 0. Also,
if all of x, y, y′ are sufficiently near 0 and y < y′ then P (x, y, 1) < P (x, y′, 1).
This comes from the fact that the directional derivative of P in the vertical
direction is positive near (0, 0).

Suppose some point of VP very near (0, 0) lies above the x-axis. Then
P (x, y, 1) = 0 for some pair x, y very near 0 and y > 0. But P (x, y, 1) >
P (x, 0, 1), forcing f(x) < 0. This contradicts the fact that f(x) > 0 for x
sufficiently near 0. So, near (0, 0) all points of VP lie below the x-axis.

When p is an inflection point, 0 is a f(x) takes on both signs near 0. The
same argument shows that VP lies on both sides of the x-axis near (0, 0). ♠
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Existence of Inflection Points: The reason we want inflection points to
exist on elliptic curves is that, in order to define the group law, we need
to let 0 be an inflection point. We have already seen that [0 : 1 : 0] is an
inflection point for any Weierstrass elliptic curve with respect to any field.
This is one reason these are so nice. In this section I’ll sketch an argument
that a general elliptic curve over R has an inflection point. This implies, of
course, that a general elliptic curve over C also has an inflection point. A
more sophisticated algebraic arguement would show that a general elliptic
curve over C has exactly 9 inflection points.

Let VP be a general elliptic curve over R. Assume that VP has no inflec-
tion points. The following lemma works even when VP is assumed to have
inflection points, but we’ll use the extra hypothesis to make proof simpler.
(All we need is one point which is not an inflection point for this to work.)

Lemma 0.2 There exists a line which intersects VP exactly once and is not

tangent to VP .

Proof: Let Lp be any tangent line. Since p is not an inflection point, we
know that locally VP lies on one side of Lp. Let q be the other intersection
point of Lp∩VP . If we consider lines L

∗

p that are near Lp and contain q, then
those on one side of Lp will intersect VP in three points and those on the
other will intersect VP in one point. In particular, we can find a line which
interects VP once and is not tangent to VP at the intersection point. Figure
2 shows the construction. ♠

q
Figure 2: Wiggling the line.

We move the picture by a projective transformation so that the line from
the lemma is the line at infinity. This implies that VP∩R

2 has one unbounded
connected component and a finite union of bounded components.
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We’ll suppose first that VP ∩R
2 has no bounded components. So, VP ∩R

2

is just one connected unbounded component. We orient the tangent lines to
VP ∩ R

2 so that the orientation varies continuously. Locally VP either lies
to the left or to the right of these tangent lines. By continuity, the answer
(left/right) cannot switch. So, let’s say that locally VP always lies on the
left. Suppose that some line intersects VP ∩R

2 in 3 points. Then we get the
contradiction shown in Figure 3: Some tangent line locally contains VP on
the right and some other line locally contains VP on the left. This is just the
mean value theorem in action.

Figure 3: The mean value theorem in action

Since every line which intersects an elliptic curve twice also intersects it
a third time, we see that any line containing two points of VP ∩R

2 which is
not tangent to VP (i.e. a secant line) must also intersect the line at infinity.
Hence VP contains infinitely many points at infinity. But then VP contains
the whole line at infinity, and is not irreducible. This is a contradiction.

It remains to consider the case when VP ∩R has both an unbounded com-
ponent and a bounded component. The argument above shows that there
must exist a line which intersects the unbounded component in two points
and the bounded component in at least one point. But any such line will
either intersect the bounded component in a second point or will be tangent
to it. In either case, we have produced a line which intersects VP four times,
counting multiplicity. This is a contradiction.

Equivalence with Weierstrass Curves: Suppose now that F is any field
and VP is an elliptic curve which has an inflection point. When F = R or
F = C this is always the case, thanks to the argument in the previous sec-
tion. We call VP nice if [0 : 1 : 0] is an inflection point and the line Z = 0 is
the tangent line. So, any elliptic curve with an inflection point is projectively
equivalent to a nice one.

Lemma 0.3 A nice elliptic curve has the equation

Ax3 + Cz3 + Fx2z +Gxz2 +Hy2z + Iyz2 + Jxyz
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with A 6= 0.

Proof: The general equation is P (x, y, z) =

Ax3 + By3 + Cz3 +Dx2y + Exy2 + Fx2z +Gxz2 +Hy2z + Iyz2 + Jxyz.

The conditions imply right away that 0 is a triple root of the polynomial

P (x, 1, 0) = Ax3 +Dx2 + Ex+ B.

When 0 is a triple root, this forces B = D = E = 0 and A 6= 0. ♠

We call the nice elliptic curve excellent if H 6= 0. If we work over R or
C, almost every nice elliptic curve is excellent in the sense that if we pick
the coefficients at random we will get H 6= 0. Put another, the set of nice
elliptic curves forms a 7-dimensional vector space and the set of nice elliptic
curves which are not excellent forms a 6-dimensional vector space. So, in any
reasonable sense of the word, most of the nice ones are excellent.

Theorem 0.4 Every excellent elliptic curve is projectively equivalent to a

Weierstrass elliptic curve.

Proof: All the transformations we make amount to composing with a pro-
jective transformation. The substitution (x, y, z) → (αx, βy, z) for suitable
α, β leads to A = H = 1. The transformation (x, y, z) → (x, y + λx, z) leads
to

x3 + Cz3 + F ′x2z +G′xz2 + y2z + Iyz2 + (J + 2λ)xyz.

Here F ′ and G′ are the new coefficients. (This has nothing to do with taking
derivatives.) Taking λ = −J/2 leads to

x3 + Cz3 + F ′x2z +G′xz2 + y2z + Iyz2.

A suitable transformation (x, y, z) → (x + αz, y + βz, z) kills off F ′ and I.
This gives

x3 + C ′z3 +G′′xz2 + y2z.

This is an equation for a Weierstrass elliptic curve. ♠
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Remark: When H = 0 we can use projective transformations to get to the
equation

yz2 + cxyz − (x3 + axz2 + bz3).

I think that this is not projectively equivalent to a Weierstrass elliptic curve,
but it should be birationally equivalent to one.

A Mystery Explained: The results above do not seem to square with
a dimension count. The space of general cubic curves is 9 dimensional and
the (Lie) group of projective transformations is 8 dimensional. Above we
showed that we can map almost every general elliptic curve to a Weierstrass
elliptic curve, but this does not seem to square with the fact that there is a
2-parameter family of W.-elliptic curves. What is going on?

Let E(a, b) be the W. elliptic curve given by the equation

y2z − (x3 + axz2 + bz3).

The solution to the mystery is that E(a, b) and E(λ2a, λ3b) are projectively
equivalent. The idea is that the change of variables

(x, y, z) → (x/λ, y/λ3/2, z)

transforms the equation above to

λ−3y2z − λ−3(x3 + λ2xz2 + λ3z3).

Cancelling out the λ−3, which does not change the solution set, gives the
equation for E(λ2a, λ3b). So, what is going on is that there is only a 1-
dimensional set of Weierstrass elliptic curves up to projective transforma-
tions.

6


