
Constructing the 17-gon:
In these notes, I’ll give 1.999999 proofs that the 17-gon is constructible.
Showing that the regular 17-gon is constructible is the same as showing that
cos(2π/17) and sin(2π/17) are constructible numbers.

First (Almost) Proof: This is a cheap shot. You can verify computa-
tionally that
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Therefore cos(2π/17) is constructible. Since cos2 +sin2 = 1, we see that
sin(2π/17) is constructible as well.

You might ask how you verify computationally that the two sides of the
equation are equal. You can plug it into a powerful calculator and see that
both sides agree up to (say) 1000000 decimal places. But, if you think about
it, this probably isn’t enough. You either have to go through and work out
the algebra or else you have to prove some result to the effect that very simple
expressions which agree to 1000000 decimal places are equal. So, the above
is not quite a proof.

Where does that equation come from? I found these numbers by tracing
through the steps in the second proof. The second proof is an honest proof,
and goes all the way.

The Second Proof: Before launching into the second proof, I want to
explain the ideas behind the proof. First of all, it is more convenient to work
with complex numbers, so the first part of the proof shows that it suffices to
deal with complex numbers. Part 2 of the proof, the main part, shows that
the 17th root of unity exp(2πi/17) is constructible in a complex sense, and
this suffices by part 1.

For the main part of the proof, the idea is to consider subgroups of the
order 16 group G = (Z/17)∗. To each subset of G, you can associate a
certain sum of 17th roots of unity. It turns out that there are subgroups
Z/2 ⊂ Z/4 ⊂ Z/8 ⊂ Z/16 = (Z/17)∗ and by looking at the sums as-
sociated to these subgroups and their cosets we’ll find a way to construct
exp(2πi/17). Here we go...
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Definition: A complex number ω is real constructible (RC) if its real and
imaginary parts are constructible. ω is complex constructible (CC) if there
is a tower of fields Q = F0 ⊂ ... ⊂ Fn ⊂ C such that [Fi : Fi+1] ≤ 2 for all
i = 0, ..., (n− 1) and ω ∈ Fn.

Lemma 0.1 CC implies RC.

Proof: Suppose ω is CC. Using the quadratic formula, we can find a sequence
of complex numbers λ1, ..., λn and a sequence of complex numbers µ0, ..., µn−1

such that

• Fk = Q(λ1, ..., λk).

• λk =
√
µk−1 where µ0 ∈ Q and µk ∈ Q(λ1, ..., λk) for k ≥ 1.

The real and imaginary parts of ω are obtained from the real and imaginary
parts of λ1, ..., λn and elements of Q by field operations. So, we just have to
prove that λ1, ..., λn are RC. By the same reasoning, µk (for k ≥ 1) is RC
provided that λ1, ..., λk−1 are RC. Also, µ0 ∈ Q is RC.

To finish the proof we have to show that if µk−1 is RC then so is λk. Write
µk−1 = A + Bi and λk = a + bi. Expanding out (a + bi)2 = A + Bi and
equating real and imaginary parts, we have

a2 − b2 = A, 2ab = B.

Substituting the equation b = B/2a into the first equation and multiplying
through by a2 we see that

(a2)2 − (A)(a2)− (B2/4) = 0.

This shows that a2 satisfies a quadratic equation with coefficients inQ(A,B).
By the quadratic formula, a2 is constructible. But then so is

√
a2 = a. Fi-

nally, so is b = B/2a. So, λk is RC. ♠

Thanks to the lemma, it suffices to prove that

ω = cos(2πi/17) + i sin(2πi/17) (1)

is CC. Define
ωk = ω3k . (2)
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For instance ω2 = ω9 and ω3 = ω27 = ω10. Why are we doing this? We’re
doing this because 3 is a generator for the multiplicative group (Z/17)∗ and
the set {3k} gives the whole group mod 17.

Given a positive integer m and k ∈ {0, ...,m− 1} define

αmk =
∑

j≡k (m)

ωj. (3)

The sum is over an irredundant set of j congruent to k mod m. For instance

α20 = ω0 + ω2 + ...+ ω14 = ω1 + ω9 + ω13 + ω15 + ω16 + ω8 + ω4 + ω2.

Group theoretically, we are summing powers with the exponents taken from
various subgroups and cosets of subgroups in (Z/17)∗.

Define the following fields.

• F0 = Q.

• F1 = F0(α20, α21).

• F21 = F1(α41, α43).

• F2 = F1(α40, α41, α42, α43) = F21(α40, α42).

• F3 = F2(α80, α84).

• F4 = F3(ω, ω
16).

Use the notation A → B to mean that A ⊂ B and [A : B] ≤ 2. The following
chain proves that every element of F4 is constructible:

F0 → F1 → F21 → F2 → F3 → F4. (4)

The rest of these notes is devoted to establish this chain, one link at a time.

Lemma 0.2 F0 → F1.

Proof: We have α20 + α21 = −1 and a calculation shows that α20α21 = −4.
Therefore α20 and α21 are roots of a degree 2 polynomial in F0[x]. ♠

Lemma 0.3 F1 → F21.
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Proof: We have α41 + α43 = α21 and a calculation shows that α41α43 = −1.
Therefore α41 and α43 are roots of a degree 2 polynomial in F1[x]. ♠

Lemma 0.4 F21 → F2.

Proof: Note that F2 = F21[α40, α42]. We have α40 + α42 = α20, and a calcu-
lation shows that α40α42 = −1. Therefore α40 and α42 are roots of a degree 2
polynomial in F1[x]. But then, a forteriori , α40 and α42 are roots of a degree
2 polynomial in. F21[x]. ♠

Lemma 0.5 F2 → F3.

Proof: We have α80+α84 = α40, and a calculation shows that α80α84 = α41.
Therefore α80 and α84 are roots of a degree 2 polynomial in F2[x]. ♠

Lemma 0.6 F3 → F4.

Proof: Note that ω = ω0 and ω−1 = ω8. We have ω + ω16 = α80 and
ωω−1 = 1. So, ω and ω16 are roots of the degree 2 polynomial in F3[x]. ♠
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Figure 1: Summary of the proof
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