
Notes on Rings and Polynomials: The purpose of these notes is to give a
businesslike account of what you need to know from ring theory for this class.

Let F be a field. A polynomial in F is an expression of the form

P (x) = a0 + a1x+ ...+ anx
n, a0, ..., an ∈ F .

Assuming an is nonzero, the degree of P is n, We denote this by writing
deg(P ) = n. The set of all polynomials is a ring with respect to the usual
addition and multiplication. It is denoted F [x]. There are 4 basic facts we
want to know:

1. F [x] is a Euclidean domain.

2. F [x] is a Principle Ideal Domain.

3. If P is an irreducible polynomial then F [x]/(P ) is a field.

4. F [x] is a Unique Factorization Domain.

I’ll prove these statements in turn, and give relevant definitions as I go.

Euclidean Domain: We begin with a preliminary lemma.

Lemma 0.1 If P and Q are polynomials with deg(Q) ≥ deg(P ) then we can

find some polynomial D1 such that deg(Q−D1P ) < deg(Q).

Proof: Let K = deg(Q)− deg(P ). Write

P = a0 + ...+ anx
n, Q = b0 + ...+ bn+Kx

n+K ,

with an 6= 0. Let D1 = (bn+K/an)x
K . We compute that

Q−D1P = b0 + ...+ bn+K−1x
n+K−1.

Hence deg(Q−D1P ) ≤ n+K − 1 < deg(Q). ♠

Theorem 0.2 F [x] is a Euclidean Domain. In other words, given any pol-

nomials P and Q then there is some polynomial D such that Q = DP + R
where either R = 0 or deg(R) < deg(P ).
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Proof: If deg(Q) < deg(P ) we can take D = 0 and R = Q. Now assume
that deg(Q) ≥ deg(P ). The proof goes by induction on deg(Q) − deg(P ).
By Lemma 0.1 we can find some polynomial D1 such that deg(Q−D1P ) <
deg(Q). Let Q1 = Q − D1P . Since deg(Q1) < deg(Q) we can use the
induction step to find some polynomial D2 such that Q1 = D2P + R with
either R = 0 or deg(R) < deg(P ). But then we have

Q = Q1 +D1P = (D2P +R) +D1P = (D1 +D2)P +R.

Setting D = D1 +D2 we have Q = DP +R, as desired. ♠

Principle Ideal Domain: An ideal in F [x] is any sub-ring I ⊂ F [x] such
that PI ⊂ I for all r ∈ F [x]. Here PI = {PQ| Q ∈ I}. I is called principle

if there is a single element P ∈ F [x] such that I = PF [x]. In other words,
every element of I is a multiple of P . We will write I = (P ) in this case.

Theorem 0.3 F [x] is a PID: Every ideal is principle.

Proof: Choose some P ∈ I which has smallest degree. We want to show
that every other Q ∈ I is a multiple of P . Suppose not. Since F [x] is a
Euclidean Domain, we can write Q = DP + R where deg(R) < deg(P ) and
R is nonzero. (Otherwise Q is a multiple of P .) Note that R = Q−DP ∈ I
because I is an ideal. This contradicts the fact that P is the member of I
with smallest degree. ♠

Maximal Ideals: In the definitions to follow, we insist that the polynomial
P is not a constant polynomial. That is, deg(P ) ≥ 1. The polynomial
P is reducible if P = AB where A and B are two polynomials such that
deg(A) < deg(P ) and deg(B) < deg(P ). If P is not reducible, it is called
irreducible. When polynomials P and A are multiples of each other, they are
called associate.

Lemma 0.4 If P is irreducible and a multiple of some polynomial A, then
A is either constant or an associate of P .

Proof: If P = AB then deg(P ) = deg(A) + deg(B). When P is irreducible,
we have deg(A) = 0 or deg(B) = 0. In the first case A is a constant and in
the second case A is an associate of P . ♠
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An ideal I ⊂ F [x] is maximal if there is no other ideal J such that I ⊂ J
and J 6= I and J 6= F [x].

Lemma 0.5 If P is irreducible, then the ideal (P ) is maximal.

Proof: Let I = (P ). If I is not maximal, then we can find the above kind of
J . Since F [x] is a PID, all elements of I, including P , are multiples of some
S ∈ J . But since P is irreducible either P and S are associates or else S is
a constant. In the first case I = J and in the second case J = F [x]. This
contradiction shows that I is maximal. ♠

Lemma 0.6 Suppose that R is a commutative ring with 1 which has no

ideals other than the trivial ideal and R. Then R is a field.

Proof: Let a ∈ R be arbitrary nonzero element. Consider the ideal (a)
consisting of all multiples of R. Since (a) contains 1a = a, it is nontrivial.
Hence (a) = R. But then 1 ∈ (a). So, there is some b ∈ R such that ab = 1.
This shows that R− {0} is an abelian group. Hence R is a field. ♠

Now for the main result.

Theorem 0.7 If P is irreducible, then the quotient ring F [x]/(P ) is a field.

Proof: Recall that R = F [x]/(P ) consists of the cosets of P , namely ele-
ments of the form a + (P ) where a is some polynomial. The addition and
multiplication laws are given by

[a1+(P )]+[a2+(P )] = [(a1+a2)+(P )], [a1+(P )][a2+(P )] = [(a1a2)+(P )].

The element 1+ (P ) serves as “the 1” in R, so R is a commutative ring with
1. Suppose, for the sake of constraciction, that R is not a field. Then R
has some nontrivial proper ideal J . Let I ⊂ R consists of all those cosets
a + (P ) with a ∈ J . The addition and multiplication laws guarantee that
I is an ideal of R. Note that (P ) ⊂ I. Since (P ) is maximal, I = R. But
then 1 + (P ) ∈ J . Since J contains “the 1”, we must have J = R. This is a
contradiction. Hence R is a field. ♠

Unique Factorization Domain: Now we show that F [x] is a unique fac-
torization domain.
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Lemma 0.8 Every polynomial in F [x] factors into irreducibles.

Proof: Let P be such a polynomial. The proof goes by induction on deg(P ).
If deg(P ) ≤ 1 the result is true because there are no two positive integers
whose sum is at most 1. In general, if P is reducible, we can write P = AB
where deg(A) < deg(P ) and deg(B) < deg(P ). But then, by induction, A
and B factor into irreducibles. Multiply these together and you get a factor-
ing of P into irreducibles. ♠

To show that F [x] is a UFD, we want to show that the factorization above
is unique. We need a few preliminary lemmas first.

Lemma 0.9 Suppose that P is irreducible and Q is any other polynomial.

Then either Q is a multiple of P or there are polynomials M and N such

that PM +QN = 1.

Proof: Let I be the set of polynomials of the form PM +QN . By construc-
tion I is an ideal. Let S be some element of I having minimal degree. We
already know that every element of I is a multiple of S. Since P ∈ I, we
know that P is a multiple of S. Since P is irreducible, either S is a constant
or P is a multiple of S.

If S is a constant, then the equation S = MP +NQ gives

1 = (M/S)P + (M/S)Q.

This works because F is a field. The other possibility is that S = cP for
some constant c. But then, since Q ∈ I, we know that Q is a multiple of cP .
That is, Q = D(cP ). But then Q = (cD)P . Hence Q is a multiple of P . ♠

Lemma 0.10 If P is irreducible and AB is a multiple of P then either A is

a multiple of P or B is a multiple of P .

Proof: If this is false, then by the previous lemma we have

1 = M1P +N1A, 1 = M2P +N2A.

Multiply these together and collect terms, to give

1 = M3P +N3(AB).
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Since AB = DP we can write

1 = M3P +N3(DP ) = M4P.

But then 0 = deg(M4) + deg(P ), which is a contradiction. ♠

Lemma 0.11 Suppose that A is irreducible and B1, ..., Bn are irreducible. If

B1...Bn is a multiple of A then some Bj is an associate of A.

Proof: By the preceding lemma, either B1 is a multiple of A or else B2...Bn

is a multiple of A. Repeating this argument, either B2 is a multiple of A or
else B3...Bn is a multiple of A. In this way we must reach some index j such
that Bj is a multiple of A. But then Bj and A are associates. ♠

Theorem 0.12 F [x] is a UFD. That is, every polynomial factors uniquely

into irreducibles, up to reording the factors or replacing some of the factors

by associates.

Proof: We already have shown that any polynomial factors into irreducibles.
We just have to take care of uniqueness. Suppose that

P = A1...Am = B1...Bn

with all the factors irreducible. If the uniqueness fails, we can take a counter-
example where m is as small as possible. For this minimal example, none of
the As is an associate of any of the Bs because otherwise we could cancel off
associates from both sides and get a smaller counter-example. However, since
B1...Bn is a multiple of A1, the previous lemma says that Bj is an associate
of A1 for some j. This is a contradiction. ♠
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