Notes on Simple Extensions: The purpose of these notes is to re-write the proof in Herstein about simple roots.

Theorem 0.1 Suppose F and K are fields of characteristic 0 with $F \subset K$. Suppose that $a, b \in K$ are algebraic over F. Then there exists an algebraic number $c \in F(a, b)$ such that F(a, b) = F(c).

Proof: Without loss of generality, assume that K contains all the roots of all the polynomials we consider and every element that we consider.

We're going to set $c = a + \lambda b$ for some $\lambda \in F - \{0\}$. This will guarantee that $c \in F(a, b)$ and $F(c) \subset F(a, b)$. The strategy is to show that there is a choice of λ which forces $b \in F(c)$. But then $a = c - \lambda b \in F(c)$ as well. This means that F(c) = F(a, b).

Let f be the minimal polynomial for a and let g be the minimal polynomial for b. Call λ bad if there are roots a' of f and b' of g such that $a' \neq a$ and $b' \neq b$ and $a' + \lambda b' = a + \lambda b$. Otherwise call λ good. If λ is bad, we can solve for λ in terms of a, b, a', b'. Hence, there are only finitely many bad choices. Since F has characteristic 0, there are infinitely many possible choices of λ . So, we make a good choice of λ .

Consider the polynomial $h(x) = f(c - \lambda x)$. This polynomial is defined over F(c)[x]. Note that $a = c - \lambda b$. Since h(b) = f(a) = 0 the element b is a root of h(x). Hence, the minimal polynomial of b in F(c)[x] divides h(x). Call this polynomial m(x). Since b is a root of g(x), we see that m(x) also divides g(x) in F(c)[x].

Suppose we knew that m(x) has degree 1. Then, since m(b) = 0, we would have m(x) = x - b. But the coefficients of m(x) are in F(c). This means that $b \in F(c)$.

We will suppose that m(x) has degree greater than 1 and derive a contradiction. Since K has characteristic 0 and m has degree greater than 1 there is some other root $b' \neq b \in K$ of m. (See the lemma after this proof.)

Since m(b') = 0 we have h(b') = 0 and g(b') = 0. In particular,

$$h(b') = f(c - \lambda b') = 0.$$

But then $a' = c - \lambda b'$ is a root of f. But then $c = a' + \lambda b'$ where a' is a root of f and b' is a root of g and $a' \neq a$ and $b' \neq b$. This contradicts the goodness of λ .

There is one missing ingredient, another result from the same section in Herstein. In the application, E = F(c).

Lemma 0.2 Suppose that m(x) is an irreducible polynomial in E[x] and E is a field of characteristic 0. Then m does not have multiple roots.

Proof: Let m'(x) denote the formal derivative of m. Since E has characteristic 0, the polynomial m'(x) has degree at least 1. Let K be a splitting field for m. If we can write $m(x) = (x - b)^2 \dots$ in K[x] then m'(b) = 0. We can think of m(x) and m'(x) as polynomials over E[x]. Since m(x) is irreducible in E[x] and m'(x) has lower degree, these two polynomials are relatively prime. That is, we can write

$$\lambda(x)m(x) + \mu(x)m'(x) = 1,$$

where all polynomials are defined in E[x]. Plugging in b we get 0 = 1, a contradiction.