
1 Notes on Weierstrass Uniformization

1.1 Overview

The goal of these notes is to explain Weierstrass Uniformization. Here’s the
outline.

• §1.2: We define a lattice Λ ⊂ C. Informally, Λ is an infinite grid
containing 0. The quotient C/Λ turns out to be a torus and a group.

• §1.3: We construct a function P : C → C ∪∞ called the Weierstrass

P function. This function turns out to be Λ-periodic, in the sense that
P (z + λ) = P (z) for all z. This means that P induces a well defined
map from C/Λ into C ∪∞.

• §1.4: We define what a holomorphic function is, show that the Weier-
strass P function is holomorphic, and we compute the complex deriva-
tive P ′ of P .

• §1.5: We show that P satisfies the differential equation

(P ′)2 = 4P 3 + g2P + g3. (1)

The constants g2 and g3 depend on the lattice Λ.

• We now define
Ψ(z) = (P (z), P ′(z)). (2)

The image of Ψ is an elliptic curve which, under a very simple change
of coordinates, becomes a Weierstrass elliptic curve! For completeness,
we define Ψ(z) = [0 : 1 : 0] when z ∈ Λ.

• The remaining sections deal with the fine points of the equation above.
In particular, we apply tools from complex analysis to show that Ψ
is a bi-holomorphism and a group isomorphism. “bi-holomorphism”
means a bijective complex analytic map whose inverse is also complex
analytic. It is the isomorphism in the category of Riemann surfaces.
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1.2 Lattices

A lattice in C is a set of points of the form

Λ = {mα + nβ m, n ∈ Z}, (3)

where α and β are not real multiples of each other. The set of points in Λ
forms a grid of parallelograms. The classic case is when α = 1 and β = i. In
this case Λ = Z[i], the Gaussian integers.

The quotient C/Λ has several nice properties.

1. C/Λ is homeomorphic to a torus – namely, a single parallelogram with
its sides identified.

2. C/Λ abelian group under addition, since both C and Λ are abelian
groups under addition.

A map f : Λ → C ∪ ∞ is called Λ-periodic if f(λ + z) = f(z) for all
z ∈ C and all λ ∈ Λ. In this case, f induces a map from C/Λ into C ∪∞.
This new map is usually also denoted by f .

1.3 The Weierstrass Function

Let Λ be any lattice. Informally, the function we are interested in is

∑

λ∈Λ

1

(z − λ)2
(4)

The nice thing about this “function” is that it is clearly Λ-periodic. The bad
thing is that the series above does not converge, so the “function” does not
exist.

The Weierstrass function is the function that the expression in Equation
4 wants to be. Here is the definition.

P (z) =
1

z2
+

∑

λ 6=0

(

1

(z − λ)2
−

1

λ2

)

=
1

z2
+

∑

λ 6=0

2zλ− z2

λ2(z − λ2)
. (5)

To study the convergence of this series, choose z 6∈ Λ. For all λ sufficiently
large, we have the estimate

∣

∣

∣

∣

z2 − 2zλ

λ2(z − λ2)

∣

∣

∣

∣

<
Cz

|λ|3
. (6)
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Here Cz is a constant that depends on z in a way that we don’t care about.
The series in Equation 5 does converge because the corresponding series

∑

λ 6=0

1

|λ|3

converges.
The Weierstrass function P (z) is defined for all z ∈ C−Λ. As z → λ ∈ Λ,

the quantity |P (z)| tends to ∞. We define P (λ) = ∞ for λ ∈ Λ.

Periodicity and Evenness: We can describe Equation 5 in a way which
makes it more clear that P is Λ-periodic. We choose some large disk ∆ about
the origin and we take the sum in Equation 4 over all points in Λ ∩∆. This
gives us an enormous number. We then subtract off the sum of 1/λ2 for all
nonzero λ ∈ Λ ∩∆. We then take the limit as the radius of ∆ tends to ∞.
From this definition it is more clear that P is Λ-invariant.

This desciption also shows that P is an even function: P (−z) = P (z).
The point is that the finite ∆-sum we just mentioned is an even function, by
symmetry, and therefore so is the limit of these functions.

1.4 Holomorphic Functions

Let U ⊂ C be an open set. Let us call a function f : U → C holomorphic

point z0 ∈ U we have an equation

f(z) =
∞
∑

i=0

ai(z − z0)
i, (7)

which holds as long as |z − z0| is smaller than the (nonzero) radius of con-
vergence of the series. Here ai ∈ C. Convergent power series themselves are
holomorphic within their open disk of convergence, so in practice if you can
establish Equation 7 for some point z0, then a similar equation holds for all
z1 sufficiently close to z0.

Lemma 1.1 P (z)− 1/z2 = a2z
2 + a4z

4 + ... in some disk centered at 0.

Proof: P (z)− 1/z2 is the sum of terms of the form

1

(z − λ)2
−

1

λ2
.
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The series expansion for this term is

2z

λ3
+

3z2

λ4
+

4z3

λ5
...

Summing these over all λ it is not too hard to see everything converges to a
single series of the form given in Equation 7. This gives the series a0 = 0. All
the odd terms in the series vanish because P (z)−1/z2 is an even function. ♠

Lemma 1.2 P (z) is holomorphic in C − Λ.

Proof: Let z0 ∈ C−Λ and let H(z) = P (z0+ z). It suffices to show that H
equals a convergent power series at 0. The first term in H(z) is 1/(z0 + z)2.
As in the preceding result, this equals a power series in a neighborhood of 0.
The remaining terms have the form

1

(z − λ∗)2
−

1

λ2
∗

+
(

1

λ2
−

1

λ2
∗

)

, λ∗ = λ− z0.

If we ignore the terms in parentheses and sum, we get the same kind of series
as above, with respect to the shifted grid

⋃

λ∈Λ λ − z0. Moreover, the sum
of the terms in parentheses is finite. So, adding it all together, we get one
convergent power series. ♠

The complex derivative of a holomorphic function given f is given by the
difference quotient

f ′(z) = lim
h→0

f(z + h)− f(z)

h
. (8)

This differs from the usual notion of a derivative because h is allowed to be
complex. Here is a nice and relevant example. When z 6= 0 and φ(z) = 1/z2,
we have φ′(z) = −2/z3. All the usual formulas for the differentiation of
rational functions apply here.

Lemma 1.3 P ′(z) exists and is holomorphic in C − Λ. Moreover,

P ′(z) + 2/z3 = 2a2z + 4a4z
3 + ...

in a neighborhood of 0.

Proof: For holomorphic functions as we have defined them, the complex
derivative always exists and equals the term-by-term differentiation of the
original series at any point where it is expressed. ♠
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1.5 The Differential Equation

In this subsection we’ll establish the differential equation

(P ′)2 = 4P 3 + g2P + g3. (9)

Lemma 1.4 In a neighborhood of 0 we have

P (z) =
1

z2
+ z2m1(z); P ′(z) =

−2

z3
+ zm2(z).

Here m1 and m2 are holomorphic.

Proof: In view of the lemmas in the previous section, the functions

m1(z) = a2 + a4z
2 + ..., m2 = 2a2 + 4a4z

2 + ...

do the job. ♠

Using Lemma 1.4 we have

(P ′(z))2 =
4

z6
−

m2(z)

z2
.

P 3(z) =
1

z6
+

3m1(z)

z2
+ 3m2

1
(z)z2 +m3

1
(z)z6.

Therefore

(P ′(z))2 − 4P 3(z) =
m3(z)

z2
+m4(z).

Here m3 and m4 are functions which are holomorphic in a neighborhood of
0. For a suitable constant g2 we therefore have

(P ′(z))2 − 4P 3(z)− g2P (z) = m5(z),

for some function m5 which is holomorphic in a neighborhood of 0. Setting
g3 = m5(0) we have

(P ′(z))2 − 4P 3(z)− q2P (z)− g3 = m6(z)

where m6(z) is holomorphic in a neighborhood of 0 and m6(0) = 0.

Lemma 1.5 m6 is identically 0.
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Proof: For later reference, the argument we use is known as the Maximum

Principle.
Note that m6 is Λ periodic. Therefore, m6 is is holomorphic in a neigh-

borhood of every lattice point, and vanishes at every lattice point. Away
from the lattice points, we know that m6 is holomorphic. Hence m6 is holo-
morphic on all of C and also Λ-invariant. It follows from compactness that
|m6| achieves its max at some z0 ∈ C.

If m6 is not identically 0 then we can expand m6 out in a nontrivial series
about z0. There is some m such that

m6(z) = m6(z0) + am(z − z0)
m + higher order terms .

But for z very near z0 the expression am(z−z0)
m is much larger than all other

terms, and the map z → am(z − z0)
m maps a small disk about z0 to a small

disk ∆ about 0. But then m6 maps a small disk about z0 completely over
a small disk containing m6(z0). This contradicts the fact that |m6| achieves
its max at z0. ♠

Since m6 is identically 0, we have

(P ′)2 = 4P 3 + g2P + g3.

This is the Weierstrass differential equation, just as in Equation 1. We now
define the map Ψ as in Equation 2. The rest of these notes are devoted to
establishing the various nice properties of Ψ.

Remark: With a bit of effort, one can trace through the proof above and
prove that

g2 =
∑

λ 6=0

−60

λ4
; g3 =

∑

λ 6=0

−140

λ6
. (10)

1.6 Holomorphic Maps

Let P 2(C) be the complex projective plane. We say that a map

f : C → P
2(C)

is holomorphic if for each z ∈ C there is at least one of the 3 coordinate charts
φ : P 2(C)′ → C

2 such that the two coordinates of φ ◦ f are holomorphic
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functions. Here P
2(C)′ denotes the subset of P 2(C) where the map φ is

defined. Because the changes of coordinates (where defined) are themselves
holomorphic map, this definition does not depend on which coordinate chart
we use in the cases when there is more than one choice available.

We define Ψ as Equation 2. We regard the image of Ψ as lying in P
2(C).

That is
Ψ(z) = [P (z) : P ′(z)) : 1], (11)

for z 6∈ Λ and Ψ(z) = [0 : 1 : 0] for z ∈ Λ.

Lemma 1.6 Ψ is holomorphic on all of C.

Proof: Away from Λ both coordinates of Ψ are holomorphic. Therefore,
by definition, Ψ is a holomorphic on C − Λ. It remains to understand what
happens at points of Λ. We will use the coordinate chart in which we divide
out by the second coordinate. Ths makes sense because Ψ maps lattice points
to [0 : 1 : 0], the ‘origin” of this chart, so to speak. Since Ψ is Λ-periodic it
suffices to consider what happens at 0. We have

[P (z)/P ′(z) : 1 : 1/P ′(z)].

Consider the third coordinate:

1

P ′(z)
=

1
−2

z3
+ 2a2z + 4a4z3...

=
(−1/2)z3

1 + ∆
= (−1/2)z3(1−∆+∆2 −∆3...),

∆ = 2a2z
4 + 4a4z

6 + ... (12)

When we expand this all out, we see that 1/P ′(z) again equals a power series
in a neighborhood of 0. Similarly

P (z)

P ′(z)
=

(−1/2)(z + a2z
3 + a4z

5 + a6z
7...)

1 + ∆
= b1z + b2z

2 + b3z
3... (13)

which is just another series. We don’t care about this series but we do note
for later use that b1 = −1/2, a nonzero number. ♠
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1.7 Surjectivity

Let E be the elliptic curve. We have our map Ψ : C/Λ → P
2(C), but the

image is contained in E, so we may also write this as Ψ : C/Λ → E.
In this section I’ll prove that Ψ is surjective. Suppose not. Then there is

some g ∈ E not in the image of Ψ. Let Tg : E → E be the map which is left
multiplication by g−1. That is, Tg(h) = g−1 ⊕ h. Since the addition law is
given by rational functions, the composition Φ = Tg◦Ψ is again holomorphic.
Since Ψ does not hit g, the new map Φ does not hit [0 : 1 : 0] the only “infinite
point” on E.

So, the image of Φ is contained entirely in C
2. The same Maximum

Principle, used in Lemma 1.5, shows that the two coordinate functions of Φ,
in these local coordinates, are constant. But if Φ is the constant map then so
is Ψ. Given the series expansions above, this is certainly not the case. That
contradiction finishes the proof.

1.8 Injectivity

We first show that Ψ is injective near 0. Using the same coordinates as in the
proof of Lemma 1.6 we are reduced to showing that the series in Equation
13 is injective near 0. In other words, if the first coordinte is injective then
of course the whole map is. The following lemma justifies this claim.

Lemma 1.7 The function f(z) = b1z + b2z
2 + b3z

3 + ... is injective near 0
provided that b1 6= 0.

Proof: by scaling it suffices to prove this when b1 = 1. We have f ′(0) = 1.
For z sufficiently near 0 f ′(z) makes an angle of less than 1 degree with 1.
Geometrically, if γ is any straight line segment sufficiently close to 0, then
f(γ) and γ make an angle of less than 1 degree. In other words, f(γ) points
almost in the same direction as γ. Now, if f(p) = f(q) we can join them by
a line segment γ. On the one hand, f(γ) has to start and end at f(p) and on
the other hand, it stays with 1 degree of being a straight line segment. This
is impossible. ♠

Now we know that Ψ : C/Λ → E is injective when restricted to a suffi-
ciently small neighborhood of 0. Furthermore, away from any neighborhood
of 0 in C/Λ, the coordinate functions of Ψ are bounded when viewed in the
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usual local coordinates – i.e. dividing out by the third coordinate. So, if p
is very near 0 and Ψ(p) = Ψ(q), this last fact forces q to also lie very near
0. But then the local injectivity says that p = q. in short, if p is sufficiently
close to 0, then there is no other point q 6= p such that Ψ(p) = Ψ(q).

Now we can finish the proof that Ψ is injective. Call a point z ∈ C/Λ bad

if there is some other point w ∈ C/Λ such that Ψ(z) = Ψ(w). From what
we have just said there is some positive minimal distance between any bad
point and 0. Let d be this minimal distance. Let {zn} be a sequence of bad
points such that ‖zn‖ → d. Let {wn} be points such that Ψ(zn) = Ψ(wn).
It may happen that z1 = z2 = z3... That would be fine for the argument.
Passing to a subsequence we can assume (by compactness) that zn → z and
wn → w. There are several cases to consider.

Case 1: Suppose z 6= w. Then z is bad and Ψ(z) = Ψ(w). Let p = Ψ(z) and
let Lp be the line tangent to E at p. We have a projection map π which maps
a neighborhood of p in E into Lp. This map is injective and the composition
π ◦Ψ is holomorphic. We pick p to be the origin in Lp so that π ◦Ψ(z) = 0.
There is some m ≥ 1 such that

π ◦Ψ(z′) = am(z
′ − z)m + higher order terms (14)

for z′ sufficiently near z.
When |z′ − z| is sufficiently small, this first term dominates, and π ◦ Ψ

maps a small circle centered at z to a loop which winds m times around 0.
But then, just as in the winding number proof of the Fundamental Theorem
of Algebra, π ◦Ψ maps a small disk centered at 0 onto an open neighborhood
of 0. But all the same may be said for π ◦Ψ acting in a small disk about w.
The images of the two small disks intersect in an open set containing 0. This
shows that all points sufficiently close to z are bad. Some of these points are
closer to 0 than z, and we have a contradiction.

Case 2: Suppose z = w. We make the same constructions as in Case 1.
This time we have m ≥ 2 in Equation 14 because otherwise we contradict
Lemma 1.7. This means that π ◦ Ψ maps a small circle centered about z to
a curve which is nearly circular and winds m times around 0. But from this
picture, we see that each point sufficiently near 0 has m pre-images under
π◦Ψ and these points nearly make a regular m-gon about 0. Hence all points
sufficiently near p are bad. Again, we have a contradiction.
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1.9 The Inverse Map

At this point we know that Ψ : C/Λ → E is a holomorphic bijection. It
remains to see that the inverse map Ψ−1 : E → C/Λ is holomorphic. Tech-
nically, E is not a subset of C, so we need to expand our idea of what this
means.

In the previous section we discussed a number of local coordinate systems
of the form π : E → Lp where Lp is a tangent line to E. In local coordinates,
these maps are just linear projections. Moreover, at least for a neighborhood
of 0, the map π−1 is well-defined. When we say that Ψ−1 is holomorphic,
we mean that Ψ−1 ◦ π−1 is a holomorphic map from an open set of C to
C/Λ. This makes sense because we can identify small open sets in C/Λ with
open subsets in C. In short, if we work entirely in local coordinate systems,
the notion of a holomorphic from E to C/Λ just boils down to the series
definition given above.

Choose some z0 ∈ C/Λ and consider f(z) = π ◦Ψ(z) for z in a neighbor-
hood of z0. Since f is holomorphic we can write

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + ...

We can arrange, as above, that a0 = 0. If a1 = 0 then the same argument as
in Case 2 of the previous section shows that f is not injective. Since this is
false, a1 6= 0. In short

f(z) = a1(z − z0) + higher order terms.

Note that f ′(z0) is nonzero, and this is true at all points in the domain.
There are various ways to show that f−1 is holomorphic, depending on

which definition of holomorphic is used. The traditional definition of a holo-
morphic function is that its complex derivative exists at each point. Thanks
to term-by-term differentiation, convergent power series are traditionally
holomorphic, and indeed have complex derivatives of all orders. The fol-
lowing lemma is tailor made to our situation.

Lemma 1.8 Suppose U and V are open subsets of the plane and f : U → V
is a bijection given by a convergent power series. Then f−1 has complex

derivatives of all orders, and all partial derivatives of f−1 exist.

Proof: The same argument as above shows that f ′ never vanishes in U . We
first show that f−1 has a complex derivative. By translating we can assume
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that the point where we are trying to establish the existence of g′ is 0, and
f(0) = 0. Let g = f−1. We will show that g has a complex derivative at
0. Replacing f by a complex multiple, we can assume that f ′(0) = 1. This
means that at small scales f is near the identity near 0. Here is another
way to put this. Let Dn denote dilation by n. That is, Dn(z) = nz. Since
f ′(0) = 0 the map Dn ◦ f ◦ D1/n converges to the identity map on all of
C as n → ∞. But the inverse of Dn ◦ f ◦ D1/n then also converges to the
identity map. The inverse of Dn ◦ f ◦D1/n is of Dn ◦ g ◦D1/n. Therefore, of
Dn ◦ g ◦ D1/n converges to the identity on C. Therefore g′ exists at 0 and
g′(0) = 1.

Now we can apply the chain rule:

1 = (f ◦ g)′(z) = f ′(g(z))g′(z).

Rearranging, we have the

g′ =
1

f ′ ◦ g
.

Since g and f ′ both have complex derivatives, f ′ ◦ g has a complex deriva-
tive by the chain rule. But then 1/(f ′ ◦ g) has a complex derivative by the
chain rule. Hence g′ has a complex derivative. But this means that g has 2
complex derivatives. Repeating the argument, we see that g has 3 complex
derivatives, and so on. ♠

So, our map Ψ is a bi-holomorphism in the sense that, in local coordi-
nates, both Ψ and Ψ−1 have complex derivatives of all orders.

Remarks:

(i) Convergent power series, conidered as maps of R2, have derivatives of all
orders in the real sense. The same kind of argument as above then establishes
that the inverse of a convergent power series has real partial derivatives of
all orders. In particular, the mixed partials commute, something we will use
below.
(ii) The reader who knows some complex analysis should be able to use the
Cauchy integral formula to prove that a function with complex derivatives of
all orders equals its own Taylor series in a neighborhood of each point. That
is, the inverse of a convergent power series is also a convergent power series.
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1.10 Group Isomorphism

Now we will show that Ψ : C/Λ → E is a group isomorphism. We need one
more result from complex analysis.

Lemma 1.9 A bounded and Λ-periodic holomorphic function is constant.

Proof: Let f be the function under consideration. If we know that f equals
a power series in the neighborhood at each point, then this is exacrly the
argument from Lemma 1.5, namely the Maximum Principle.

However, given the route we took in the last section, we should really
give a proof that only depends on f having complex derivatives of all orders.
Write f = u+iv, where u and v are real valued functions. The fact that f has
a complex derivative means that ux = vy and uy = −vx. Here ux = ∂u/∂x,
etc. These equations are known as the Cauchy-Riemann equations. Hence

uxx + uyy = vxy − vxy = 0. (15)

In Equation 15 we used the fact that the mixed partials commute.
Equation 15 says that u is a harmonic function It follows from Green’s

Theorem that the value of u at each point equals the average of u on a disk
centered at that point. But then u cannot have an interior maximum and we
get the same contradiction as in Lemma 1.5 unless u is constant. The same
argument shows that v is constant. ♠

We want to show that Ψ(a + b) = Ψ(a) + Ψ(b) for any a, b ∈ C/Λ. Let
A = Ψ(a) and B = Ψ(b). Let TA : E → E denote addition by A. This is a
holomorphic map of E. Define

τA = Ψ−1 ◦ TA ◦Ψ (16)

Lemma 1.10 τA is a translation.

Proof: TA is a holomorphic map of E. At the same time, TA is a homeo-
morphism with no fixed points. Hence τA is a holomorphic homeomorphism
of C/Λ with no fixed points. Let τ = τA. We have the quotient map
π : C → C/Λ. Let g = π ◦ τ : C → C/Λ. The derivative g′ makes sense as
a map from C → C. Since g′ is continuous and Λ-periodic, there is some M
such that |g′| < M . But then g′ is both bounded and holomorphic. Hence
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g′ is constant. Hence τ ′ is constant. Since τ preserves the area of C/Λ, we
must have |τ ′| = 1. If τ had any rotational component, it would have a fixed
point. Hence τ ′ = 1. This implies that τ is a translation. ♠

We have

τA(0) = Ψ−1 ◦ TA ◦Ψ(0) = Ψ−1 ◦ TA([0 : 1 : 0]) = Ψ−1(A) = a. (17)

Likewise τB(0) = b. Since τA is a translation and τA(0) = a,

τA(b) = a+ b. (18)

But then
τA ◦ τB(0) = τA(b) = a+ b. (19)

On the other hand.

τA ◦ τB(0) = (Ψ−1 ◦ TA ◦Ψ) ◦ (Ψ−1 ◦ TB ◦Ψ)(0) =

Ψ−1 ◦ TA ◦ TB ◦Ψ(0) =

Ψ−1 ◦ TA ◦ TB([0 : 1 : 0]) = Ψ−1(A+B).

In short
a+ b = τA ◦ τB(0) = Ψ−1(A+B) (20)

Applying Ψ, we see that Ψ(a+ b) = Ψ(a) + Ψ(b), as claimed.
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