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1 Introduction

These are some notes that I handed out during the two times I taught (what
was) Math 1140 at Brown University. This is a course on manifolds. The
course covers the following topics:

1. Facts about differentiation; inverse and implicit function theorems
2. Basic definitions of manifolds; tangent spaces; diffeomorphisms

3. Exterior algebra and differential forms

4. Stokes’ Theorem on manifolds and applications.

I used the book Mathematical Analysis by Andrew Browder, and mostly
covered chapters 11,12,13,14. I often found that the proofs in the book were
not as efficient as I would like, so I often wrote up my own notes. I have
gathered all these notes together in one place in case someone else teaching
a similar course would find them useful. The notes do not cover everything
in the book; just topics that I thought I could clarify. Some of the notes are
on slightly extraneous topics.

The notes are not guaranteed to be correct! I have tried my best to get
everything right but perhaps there are still some glitches and omissions. In
particular, you will probably find a lot of typos. Sometimes the proofs are
things I thought of myself, but I really don’t make many claims to originality.
I am sure that I learned practically everything in this bundle somewhere.



Here is a list of topics covered in these notes.

Two results about differentiation

Equality of the Mixed Partials

The Inverse and Implicit Function Theorems
Elementary Properties of Volume

Change of Variables formula (for integration in R™)
Abstract Manifolds: Basic Definitons

Tangent Spaces and Orientation

Tensor Transformations

Partitions of Unity

The Poincare Lemma (for deRham cohomology)
The Brouwer Fixed Point Theorem

Integrating Functions on Manifolds

Harmonic Functions and the Hodge Star Operator

Each topic is contained in an essentially stand-alone set of notes. However,
occasionally the later notes refer back to the earlier ones. I have tried to
minimize this.



2 Two Results about Differentiation

The purposes of these notes is to prove two results about differentiation.
The first result is that C' maps are differentiable and the second result is
the Chain Rule. We assume that all maps we consider fix the origin. You
can easily extract the general case from this.

2.1 Basic Definitions

Let FF: R — R" be a map. Let eq,...,¢e, be the standard basis vectors.
The expression

OF , . .. F(a+he;)— F(a)
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is called the jth partial derivative of F' at a. The higher partial derivatives
are defined in an iterative way. For instance
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The derivative just listed has order 2. In general, the partial derivative of a

kth order partial derivative has order k + 1.
Here are some basic definitions.

1. Fis called C* if the order j partial derivatives exist and are continuous
forall y =1,..., k.

2. Fis called C* if F is C* for all k. In this case, F is also called smooth.

In this class we are going to work exclusively with smooth maps.
It turns out that when F is C*, all the defined partial derivatives com-
mute. In particular, if F'is C? then
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This is by no means obvious. Your first homework assignment takes you
through a proof.

Here is a related notion. Now assume that F(O) = O, where O is the
origin. We say that F'is differentiable at O if there is a linear transformation
T with the following property.
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To expand this out, Equation 2 says that for any € > 0 there is some N such
that ||v|| < 1/N implies that ||F(v) — T'(v)|| < €||v||. We usually denote T
by F*. When F' is differentiable at 0, the first partial derivatives exist and

or .
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This means that F™ is just the matrix of first partial derivatives evaluated
at the origin.

The converse is trickier. It is not obvious that [F' is differentiable at O
even if all its partial derivatives exist at all points. In fact, this is false in
general.

2.2 A Strange Example

Here we construct a map F' : R*> — R which has partial derivatives at all
points of R? but is not differentiable at O.

Choose any smooth (7/2)-periodic function ¢, with ¢(0) = 0. This means
that ¢(km/2) =0 for k = 1,2,3,... We arrange that ¢(m/4) = 1. Using polar

coordinates, define F(r,0) = r¢(6). Here are some properties of F:
e [ is continuous on R* and C* on R* — O.

e The partial derivatives of F' exist everywhere. Since F' = 0 on the
coordinate axes we have 0F/0z1(0) = 0F /0x,1(0) = 0.

Suppose F' is differentiable at O. The polar coordinates of the vector (h, h)
are (hy/2,7/4). Hence F(h,h) = hy/2. If F is differentiable at O then F*
is the 0 matrix, because it is given by the matrix of first partials. Thus
F*(h,h) = 0 for all h. In particular F*(1,1) = 0. On the other hand, by
Equation 2 we have

1 F*(h,h) .. F(hh
F(L1) = P () = fim TR g FRB)

This is a contradiction. Hence F' is not differentiable at O. The issue here is
that F is not C.



2.3 Continuous Differentiability

You don’t have to worry about garbage like the above example in our class.
In this section we prove that F is differentiable at O provided that F is C*.
This result extends easily to other points. So, C' maps are differentiable
everywhere in their domain. In particular, smooth maps are differentiable at
every point in their domain and their derivative matrices vary continuously.

Let us call a function F' nice if F' is C* and differentiable at O. We want
to prove that all C! functions (which fix O) are nice.

Let us first clean off the statement we want to prove. Here F'is a general
map from R™ to R". We can write F' = (F1, ..., F},). The function F' is nice
if and only if each F; separately is nice. So, it suffices to prove the case when
F: R™ — R is a function.

We now observe that two functions G; and G5 are both nice, then so is
G1 £ G4. This follows from the usual sum and difference rules for taking
limits. We next observe that all linear functions are nice. In particular, the
matrix F” of partials of F' (which is really just the gradient of F') at the origin
is also nice. This means that F — F” is nice if and only if F' is nice. So, we
can assume that all 0F/0x;(0) =0 for all i = 1, ..., m.

Given a point v = (x1, ..., z,) let vy = (21, ..., 2, 0,...,0). Note that vy
and vy differ in the (k + 1)st coordinate. Notice that

F(v) = E(F(vml) — F(vg)).
Hence -
I1F ()]l < kZ_: [ F (vet1) — F(vp)]]- (4)

Let Ly be the line segment connecting vgy1 to vi. The restriction of F
to Lj is just a single variable function. This single variable function is, in
particular, differentiable.

Lemma 2.1 ||F(vgt1) — F(vr)|| < AxBy where

OF
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Proof: This is just the Fundamental Theorem of Calculus. But let’s give
a self-contained proof. By scaling and translation it suffices to consider the



single variable case of f : R — R with f(0) = 0 and sup,¢ ) |f'(z)| < 1.
We want to see that |f(1)| < 1.
Fix some 1 > 1. Let us call a sub-interval J C [0, 1] bad if

[f(Jo) = F(J)| > nlJ].

Here Jy, J; are the endpoints of J and |J]| is the length of J. We are trying
to prove that [0, 1] is not bad with respect to any n > 1.

If J is bad then one of the two intervals obtained by subdividing J in half
is bad. This is just the triangle inequality. So, if [0, 1] is bad we can find an
infinite nested sequence {J,} of intervals, all bad, such that |.J,| — 0. By
compactness (or the completeness of R) the intersection () .J, has a single
point z of intersection. But, by construction |f’(x)| > 7. This is a contra-
diction. &

Now we apply Lemma 2.1 to Equation 4. Since F'is C* and the partials
vanish at 0, we can make these partials as small as we like when we work
close to the origin. That is, we can make the expression By as small as we
like by taking ||v|| small. But then, for any ¢ > 0 we can find some N such
that when |[v|| < 1/N we have By < € for all k. At the same time we have
Ay, < ||v|| for all k. Hence, by Equation 4 ||F(v)|| < nel|v||. But then

[1£(v) = T(v)ll
Il

< ne.

Here T is the 0O-map. This shows that F' is differentiable at O and F* is the
O0-map. Hence F'is nice.
This completes the proof.

2.4 Reformulation of Differentiability

Our next goal is to prove the Chain Rule. We first reformulate the notion of
differentiability and then give the Chain Rule Proof.

Let F': R™ — R" be a map such that F'(O) = O. Let D,, be the map
which dilates distances by 1/n. For n large, D,, is massively shrinking points.
Define

F,=DyoF oDy, (5)

Note that F), is differentiable at 0 if and only if F' is differentiable at 0. Also
Fr = F*. Finally, the behavior of F' on any set K is the same as the behavior
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of F,, on the set D, (K). We call this the scaling principle.

Definition: Let G, be a family of functions indexed by the positive re-
als. We say that G,, — G uniformly on a compact set K if the following
is true. For any € > 0 there is some N such that n > N implies that
|G (z) — G(z)|| < € for all x € K. We say that G,, — G uniformly on
compacta if G, — G uniformly on any compact set K.

Now we reformulate differentiability in terms of this kind of convergence.

Lemma 2.2 Suppose F' is differentiable at O. Then F,, — F* uniformly on
compacta.

Proof: Let K be an arbitrary compact subset of R™. Being compact, K is
closed and bounded. So, we can assume that K is the ball of some radius
centered at the origin. Using the scaling principle (i.e., by replacing F' by
some F), if needed) we can assume that K is the unit ball.

Let € > 0 be given. Equation 2 says that there is some N such that
|lv]] < 1/N implies that

() = F*(0)|| < eflv]]

In particular this is true for the vector v = w/N, where w € K is any vector.
What we are saying is that

|1F(w/N) = F*(w/N)|| < elw/N[| < e/N.
But this is just saying that
|F o Dyw(w) — F* o Dyw(w)]| < ¢/N.
Scaling this equation by N we find that
[En(w) = Fr(w)|| < (6)

Here we are using the fact that Dy o F™* o Dy )y = F*. Equation 6 exactly
expresses the uniform convergence condition.

Lemma 2.3 If F,, — T uniformly on compacta then F' s differentiable at 0
and T = F*.



Proof: The proof really just amounts to reversing the implications of all the
steps given for the previous proof. Let’s work it out. The hypotheses imply,
in particular, that F,, — T uniformly on the unit ball.

Let € > 0 be given. There is some N so that || F,(w) — T(w)]|| < € for any
unit vector w in the ball of radius 1 centered at the origin and any n > N. If
we have any vector v with [|v|| < 1/N then we can write v = w/n for some
unit vector w and some n > N. (This n is not necessarily an integer.) We
have

[1F(v) = T )| = [[F(w/n) = T(w/n)|| =

[£5 0 Dyjn(w) =T o Dyjn(w)|| < €/n = eljv]].
Dividing through by ||v|| we see that

[F(v) = T ()]l
0]

<e€

provided that [|v|| < 1/N. This is equivalent to differentiability. By defin-
tion, we have T'= F™*. &

2.5 The Chain Rule

Now suppose that H = F o G. We assume that all these functions map 0
to 0. We also assume that ' and G are differentiable at 0. We want to
prove that H is differentiable at 0 and that H* = F* o G*. We will use the
reformulation.

Recall that I, = D, o F'o D;/,. Define G, and H,, similarly. We have

H,=F,oG,. (7)
Let K be any compact set and let v € K. We have
[Hn(v) = F" 0 G*(v)|| =

[ 0 G(v) = F* 0 G*(v)]| =
[Fn 0 Ga(v) = F* o Gy(v) + F* o Gu(v) — FP o G*(v)|| <
[F 0 Gu(v) = F* 0 Gu(v)[| + [[F7 0 Gu(v) = F* 0 G*(v)]].

Call the terms on the last line A and B. We estimate these two terms
separately. Because G,, — G uniformly on compacta, there is some larger
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compact subset K’ such that G,(K) C K’ for n sufficiently large. But
F,, — F* uniformly on K’. That means that we can make A as small as we
like, independent of v, by taking n large enough.

Consider B. The map F™, being a linear transformation, only expands
distances by at most a constant factor: There is some ¢ with the following
property: If ||wy — ws|| < € then ||[F*(w;) — F*(wy)|| < fe. We can make
|G (v) — G*(v)|| as small as we like by taking n large. But then B will only
be ¢ times bigger. Hence, we can make B as small as we like by taking n
large enough.

Since we can make both A and B as small as we like, we can make
|H,(v) — F* o G*(v)|| as small as we like by taking n large. This shows that
H,, converges uniformly on compacta to F* o G*. But this means that H is
differentiable at 0 and H* = F* o G*.



3 Equality of the Mixed Partials

This set of notes is actually a worksheet. The goal of the worksheet is to
prove that the mixed second partials of a function F' : R" — R are equal
when they are continuous. This seems to be one of the most fundamental
results about partial derivatives.

Mostly we’ll work with n = 2. One disadvantage to this outline is that
the first problem is possibly the hardest.

Defintion: Say that F : R*> — R is special if F has continuous sec-
ond partial derivatives, and F' vanishes on the coordinate axes. That is,

F(t,0) = F(0,t) =0 for all .

1. Suppose F' is special and

O’F
0,0) =0.
8x8y( ,0)
Prove that Ft.1)
%1_r>r01 = 0. (8)

Hint: First show that

|E(t,t)| <t x sup |[0F/dy(t,s)|.

s€[0,t]
2. Suppose that F' is special and
;jgy(o, 0)=C.

(Hint: Apply Exercise 1 to the function G(z,y) = F(z,y) — Czy, which is
again special.

3: Prove that the second mixed partials of a special function are equal at
the origin. Hint: use Exercise 2.
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4. Let V denote the set of functions on R? whose second mixed partials
exist and are equal at the origin. Prove that V is a real vector space. (The
addition law is just (f+g)(z) = f(x)+g(z)). It follows from Exercise 3 that
Y contains all special functions.

5. Say that a function G : R*> — R is simple if one of the following two
properties holds:

e G(x,y) = F(x,0) for some function F' having first partial derivatives.
e G(z,y) = F(0,y) for some function F' having first partial derivatives.

Prove that the second mixed partials of a simple function are 0. Hence, the
vector space V) contains all simple functions, and all finite sums of simple
functions.

6. Let ' : R> — R be a function whose second partials exist and are
continuous. Prove that F'is the sum of a special function and finitely many
(in fact three) simple functions. Hence F' € V.

7. Let F : R" — R be a function whose second partials exist and are
continuous. Prove that
PF  O°F
8xi8xj n 8%-8@’

for all ¢ and j. Hint: reduce this to the case n = 2, and then compose F
with suitable translations. In other words, if you can prove something at the
origin for all functions, you can prove the same thing for all functions at all
points.
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4 Inverse and Implicit Function Theorems

The purpose of these notes is to prove the Inverse Function Theorem and the
Implicit Function Theorem.

4.1 Some Technical Preliminaries

If you have a smooth function F' and dF' is invertible, you can translate,
compose with linear transformations, and scale so that dF is really close to
the identity in a huge neighborhood. Let’s study this situation first.

Let B, denote the ball of radius r centered at the origin. Suppose that F’
is defined in Bjgy, and smooth, and at all points F* is within 107!% of the
identity matrix. The first result is crucial to the whole business. It says that
the vectors F'(p) — F'(q) and p — q are almost the same vector in some sense.

Lemma 4.1 Given any points p,q € Bigy, we have
I(F(q) = F(p)) — (» — )|l < llp — ¢ll/1000.

Proof: Let «; : I — R" be the straight line segment joining p to q. We
parametrize so that y; has unit speed. Let 75 = F'(71). By the Chain Rule
dya/dt = F*(dy,/dt). Given that F* is within 107'% of the identity along
71, we see that dvy;/dt and dry,/dt are almost the same vector at each point.
More precisely, dys/dt = dvy,/dt 4+ v, where ||v|| < 1/1000. Integrating, we
see that

(Fla) = F) — (= p) = [ do/dt dt— [ dupfdt di = [ v .

This last vector-valued integral has norm less than ||p — ¢||/1000. &

Corollary 4.2 F' is injective on Bigg.

Proof: Suppose not. Then we have p # ¢ € Bigy with F(q) — F(p) = 0.
This violates Lemma 4.1. &

Let O be the origin. Assume now that F'(O) = O.

Lemma 4.3 Bl C F(Blo)
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Proof: Suppose this is false. Let y € B; be a point not in the image of By.
Let ¢(x) = |[F'(z) — yl|. Let

= inf .
a=f ¢
Since By is compact there is some x € By such that ¢(z) = a. If @ =0 we
are done. Suppose not.
By Lemma 4.1, we have ||z|| < 2. Let 2/ = z + (y — F(z)). We have
x' € By C Bjp. By Lemma 4.1, there is some v with ||v|| < /100 such that

F@)—Fx)=2 —x+v=y— F(z) +v.
Simplifying this, we get F'(2') — y = v. Hence ¢(2’) < «, a contradiction. @
We need one last technical result.

Lemma 4.4 Let ¢ = goh where g is smooth and h is k-times differentiable.
Then ¢ is k-times differentiable.

Proof: This goes by induction. Let f* be the matrix derivative of f, and
likewise for the other functions. When £ = 1 the result is just the Chain
Rule. Consider the general case. From the Chain Rule, we have

¢ =1(g"oh) x h".

The product is matrix multiplication. The function ¢g* is smooth because g
is smooth. The function h is & — 1 times differentiable because it is (more
strongly) k times differentiable. So, by induction ¢g* o h is k — 1 times dif-
ferentiable. Also h* is k — 1 times differentiable because it is the matrix of
first partials of h. By the product rule, this product is also k — 1 times dif-
ferentiable. Since ¢* is k—1 times differentiable, ¢ is k-times differentiable. &

4.2 The Inverse Function Theorem

Let U,V be subsets of R". A diffeomorphism from U to V is a bijection
F : U — V such that I and F~! are both smooth and the derivatives F™*
and (F~1)* are invertible at all points of their domains.

Here is the Inverse Function Theorem.
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Theorem 4.5 Let U be an open subset of R" and let f : U — R" be a
smooth map. Suppose that f* is invertible at some point x € U. Then there
are open subset U, C U and V, = F(U,) such that x € U, and F : U, — V,
is a diffeomorphism.

Composing with linear transformations, translating, and scaling, we can
assume that F' is normalized as in §4.1. The results §4.1 show that F is
injective on Bjgy. In particular, F' is injective on U, the open unit ball.

Lemma 4.6 V is an open set and F~! is continuous on V.

Proof: Choose any y € V and let x € U be such that F(z) = y. By
translation and scaling and Lemma 4.3, F' maps some small ball around z to
a set which contains a small ball around y. Hence V' contains an open ball
centered about y. Hence V' is open

To show that F~! is continuous it suffices to show that F maps open
subsets of U to open subsets of V. But this is just the same argument that
we just gave. #

Lemma 4.7 F~! is differentiable and (F~')* = (F*)' o F~t on V.

Proof: Let D, be dilation by n. Translating, we reduce to proving this
equation at O. The dilated map F,, = D,, o F'o D, converges to I *|lo uni-
formly on compacta. But (F'~'), = (F,)™!, and (F,)™! converges uniformly
on compacta to (F*)~!. But this implies that F~! is differentiable at O and
its derivative is the inverse of F*|p. #

Now we know that F~! is differentiable. Suppose that F'~! is k-times dif-
ferentiable. The formula in Equation 4.7 combines with Lemma 4.4 to show
that (F~1)* is k-times differentiable. Hence F~! is k+ 1 times differentiable.
By induction, F'~! has partial derivatives of all orders. Since differentiable
functions are continuous, all the partials of F'~! are also continuous. Hence
F~!is smooth. We're done.
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4.3 The Implicit Function Theorem

Suppose that F : RN — R™ with n < N. We call p € RY a reqular point
for F'if F*|, is a surjective linear map. Let F|y be the restriction of F' to an
open subset V.

Theorem 4.8 (Implicit Function Theorem) Suppose that p is a regular
value for F. Let ¢ = F(p). Then there is an open neighborhood V' of p and
an an open subset U C RY™™ and a smooth bijection f : U — VN (F|%/—1(q)
such that f* has full rank at each point.

I am stopping short of calling f a diffeomorhism because it is not a map
from a Euclidean space to itself. It is a map from RY ™™ to R". Otherwise
it behaves like a diffeomorphism.

Composing with linear maps and translating, it suffices to consider the
case when F(O) = O and F*|o is just the projection from R™ to R". In
particular, F*|o is the identity on the vectors ey, ..., e, and kills the remaining
standard basis vectors.

We introduce the new map F : RN — RN by the formula

F(v1, .oy Uny Uity ooy On) = (F(V1, 0, UN), Ut 1y ooy UN)- (10)
That is, the first n coordinates are taken up by F" and then we pad out the
remaining coordinates. By construction F *|lo is the identity matrix. By the
Inverse Function Theorem, There are open subsets U and V about the
origin such that F*: U — V is a diffeomorphism. We can trim these sets
so that V is an open ball centered at the origin. Now let IT be the copy
of RN ™" given by the last N — n coordinates. That is, II = {0} x RN,
Notice that F(x) € II if and only if F(z) = O. Hence F gives a map from
UN(Flp)~1(0) to VNIL
Since F is a diffeomorphism from U to ‘7, the inverse F~! gives a diffeo-
morphism from Vto U , and this diffeomorphism maps V N1I to the set we
care about, U N (ﬁ’ﬁ)_l(O). Now we change notation in the following way:

o Let U=VnNIL
o LetV="0U.

e Let f be the restriction of £~ to U.

By construction f is a smooth bijection from U to V N F~1(0). Since F1
is a diffeomorphism, the derivative of f has full rank everywhere.
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5 Elementary Properties of Volume

This is a worksheet which deals with elementary properties of volume. Prob-
lem 5 is the really significant and useful problem.

1: Define the area of a parallelogram P in R? in the following way. For
each covering U of P by a finite union of squares @1, ..., Q),, whose sides are
parallel to the coordinate axes define

pl) =>"d2, d; = side length(Q;).
i=1

Now define
area(P) = igf,u(bl)

where the infimum is taken over all covers. Of course this definition works
much more generally, and also coincides with the Lebesgue measure of P.

Let M be an elementary matrix, namely one with 1s on the diagonal and
then a single other nonzero element. Let () be the unit square. Prove that
M(Q) also has area 1. This matches with the fact that det(M) = 1.

2: Suppose that M is an elementary 2 x 2 matrix as in Problem 1. Use
the result of Problem 3 to prove that for any parallelogram P the two paral-
lelograms P and M (P) have the same area. Prove the same result when M
is a diagonal matrix with positive entries.

3: Prove that for every positive determinant 2 x 2 matrix M and every
parallelogram P we have

A(M(P))

A(P) = det(M).

Here A(-) is the area function defined as in Problem 3. Hint: Use the fact
that M is the product of a diagonal matrix and elementary matrices.

The purpose of this problem is to reconcile two common definitions of the
area of a parallelogram. One definition is given by cube covers as above, and
the other is just that the area of a parallelogram P is det(M) where M is
positive determinant linear transformation mapping the unit square ) to P.
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4: Formulate a result similar the one in in Problem 3 for R" and at least
sketch how you would prove it.

5: Let M be an positive determinant linear transformation of R". Suppose
that {f;} is a sequence of smooth maps defined on R" such that f;(0) =0
and the matrix derivative D f; differs from M at every point by less than
1/j. Let @ be the unit cube. Use the result of Problem 6 to show that the
volume of f;(Q)) converges to det(M). Extended Hint: look at the symmetric
difference between are f;(Q) and M (Q). Show this is small. You to this by
writing f; = L; + €¢; where L; is the linear map given by Df;|o and ¢; is a
map that you prove is extremely small.
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6 The Change of Variables Formula

Consider the following data.
1. U and V are open subsets in R".
2. F:U — V is a diffeomorphism.
3. f:V — R be a continuous function.
4. K C V is a compact set.

The purpose of these notes is to give a self-contained proof of the following
result.

/Kf AV = /F_I(K)(foF) det(dF). (11)

The result also holds when f is just Lebesgue measurable. But, this re-
sult requires some auxiliary results from measure theory, like the monotone
convergence theorem. The special case when f is continuous suffices for all
applications in the class, because these have to do with integrating smooth
differential forms on manifolds.

I’ll prove the result through a series of steps, each treating a more general
case.

6.1 Step 1

The case when K is a cube and F' is a linear transformation and f is a
constant function just boils down to the determinant.

6.2 Step 2

Let’s prove this result when K is a cube and f is a constant function. If
f = 0 then both integrals are obviously 0. So, we can scale so that f = 1.
Introduce the function

fFfl(K) det(DF)
u(K)
Equation 11 is equivalent to the statement that J(K, F') = 1.

Suppose that there is some b > 0 such that J(K, F) > 1+ b. Then, for
every € > 0, there is some sub-cube K’ C K such that the side length of

J(K,F) = (12)
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K’ is less than € and J(K', F') > 1+ b. This comes from the additivity the
integral. If the ratio were near 1 on all small scales, it would also be near
one on the large scale.

However, once € is sufficiently small, the restriction of F' to K’ is nearly
a linear map, and the ratio J(K’, F') must converge to 1. This is a contra-
diction. The same argument shows that there cannot be any b > 0 so that
J(K,F)<1—b0.

These two cases combine to show that J(K, F') = 1.

6.3 Step 3
Suppose that K is a cube and f is continuous. This time define

fF*l(K)(foF) det(DF)
Jk [

The same argument as in Step 2 works here. The point is that the re-
striction of f to a small cube K’ C K is nearly constant. So, up to an error
which vanishes as € > 0 we are back in the constant function case.

J(K,F, f) =

(13)

6.4 Step 4

Say that two cubes are almost disjoint if they have disjoint interiors. Say that
K is approxzimable by cubes if, for every € > 0, there is some finite collection
Q1, ..., Qm of almost disjoint cubes (with m depending on €) so that

KcQ=Uan  uK) > uQ) - (14)

Here i denotes Lebesgue measure.

Now I'll prove the result assuming that K is approximable by cubes. Once
e is sufficiently small, we have () C V. By compactness, there is some upper
bound C} for the restriction of |f| to (). Hence

‘/Qf—/Kf‘<Cle. (15)

Since Fis a diffeomorphism and () is compact, there exists some constant
C! such that the restriction of F~! to Q expands distances by a factor of C}
and hence volume by at most Cy = (C4)". Hence

WFHQ — K)) < Coe. (16)
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By compactness again, there is a constant C'3 so that the restriction of
|det(DF)| to F71(Q) is at most Cs. Hence

/FI(Q)(]COF) det(DF) — /Fl(K)(fOF) det(DF)‘ < C1C,Cse. (17)

Since the cubes @, ..., @, are almost disjoint, we have

g/if=/Qf. (18)

}:/1@1 F) det(DF) = Lﬁ@%foF)@dDF) (19)

Since Equation 11 is true for individual cubes, it is also true for finite
sums of cubes, as in the set ). But then Equations 15 and 17 tell us that
Equation 11 holds for K up to an error of Cye, where Cy = Cy + C1C5C5.
But € is artibrary. Hence Equation 11 holds for K.

6.5 Step 5

Now we show that every compact K C V' is approximable by cubes. With-
out loss of generality, we can assume that K C [0,1]". For notational con-
venience, set X = [0,1]". Say that a dyadic interval is an interval whose
endpoints are rational numbers of the form k/2™ for integers k and m. Say
that a dyadic cube is the product of dyadic intervals which all have the same
length. The set of centers of dyadic cubes is dense in R™ and also the set
of possible diameters of such cubes is dense. For this reason, X — K is the
countable union of dyadic cubes.
Let Py, Py, Ps, ... be this infinite collection. We have

Zu pX - K). (20)
Setting
J4
Pt =] P, (21)
=1
we have
lim p(P%) = (X — K), KcX-— P (22)
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Given e, we can choose ¢ so that u(X — K) < u(P*) + e. Using the fact
that
W)+ p(X = K) = 1= p(PY) + p(X — PY) (23)
we see that
WE) > (X = P e (24)

But X — P! is a finite union of almost disjoint cubes, say Q1,...,Qm. The
way to see this is that we can scale up the whole picture by some power of 2
so that every cube in sight has integer coordinates. Then the set of interest
to us is tiled by integer cubes.
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7 Manifolds

The purpose of these notes is to define what is meant by a manifold, and
then to give some examples.

7.1 Topological Spaces

If you haven’t seen topological spaces yet, just skip this section.

The space underlying a manifold is traditionally taken to be a second-
countable Hausdorff topological space. To say that a space X is second
countable is to say that there is a countable collection of open subsets of X
such that every open subset of X is a union of members from the countable
collection — i.e., X has a countable basis. To say that X is Hausdorff is to
say that, for every two distinct points z,y € X, there are disjoint open sets
U, and U, such that x € U, and y € U,.

That is all I'm going to say about topological spaces. Below I'm going to
define manifolds in terms of metric spaces. The definition I give is equivalent
to the definition that is given in terms of topological spaces, even though at
first glance it looks different.

7.2 Metric Spaces
A metric space is a set X together with a function d : X x X — R such that

e d(x,y) >0 for all z,y € X, with equality if and only if z = y.
e d(z,y) =d(y,x) for all z,y € X.
o d(z,z) <d(x,y)+d(y,z) for all z,y,z € X.

d is called the distance function on X.

Example 0: It almost goes without saying, but I'll say explicitly that any
subset of a metric space is automatically a metric space, with the same met-
ric. This fact is frequently and implicitly used.

Example 1: The classic example of a metric space is a subset X C R"

equipped with the distance function given by d(x,y) = || — y||, here || - || is
the Euclidean norm.
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Example 2: This example is unrelated to the rest of the material in the
notes, but I like it. Choose a prime p and on Z define d(z,y) = p~*. where k
is the largest integer such that p* divides z —y. This is known as the p-adic
metric on Z. Geometrically, Z looks like a dense subset of points in a Cantor
set when it is equipped with the p-adic metric.

From now on, X denotes a metric space, and d the metric on X.

Balls: Given z € X and some r > 0, we define
B,(z) = {y € X[ d(z,y) <r}. (25)
The set B,.(z) is known as the open ball of radius r about z.

Open Sets: A subset U C X is open if, for every x € U, there is some
r > 0 such that B,(x) C U.

Continuity: Given to metric spaces X and Y, amap f: X — Y is called
continuous if, for all open V' C Y the inverse image U = f~1(V) is open in
X. This definition is equivalent to the usual € — ¢ definition of continuity.
From our definition, it is clear that the composition of continuous functions
is continuous. If f: X — Y and g : Y — Z are both continuous, then so is
gof: X —Z.

Homeomorphisms: A map f : X — Y is a homeomorphism if f is a
bijection and both f and f~! are continuous. So, in particular, a homeomor-
phism from X and Y induces a bijection between the open subsets of X and
the open subsets of Y. To test your understanding, prove that the open ball
in R" is homeomorphic to R" but the closed ball in R" is not.

Compactness: A covering of X is a collection of open sets whose union
equals X. A subcover of a covering is some subset of the covering which
is, itself, a covering. A subset of X is compact if every covering of X has a
subcovering with finitely many elements. It is a classic theorem that a subset
of R" is compact if and only if it is closed and bounded.

o-Compactness X is called o-compact if X is a countable union of compact
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subsets. For instance, any closed subset of R" is o-compact, but only the
bounded closed subsets are compact.

7.3 Topological Manifolds

Coordinate Charts: Let M be a metric space. A coordinate chart in M is
an open set U C M and a homeomorphism

h:RF—U. (26)

We write this as (U, h). This coordinate chart is said to contain p if p € U.
Here k could depend on the point — e.g. when M is the union of a line and
a plane — but we’re going to be interested in the case when k is the same for
all points.

Basic Definition: A topological k-manifold is a o-compact metric space
M such that every point of M is contained in some coordinate chart.

Examples: Here are some examples of topological manifolds.
e R" itself.

e S the n-dimensional sphere.

The surface of any polyhedron.
The Koch snowflake.

e The square torus - i.e. the square with sides identified.

The simplest example of a o-compact metric space which is not a topological
manifold is the union of the coordinate axes in R

Overlap Functions: Suppose that M is a topological manifold. Suppose
that (Uy, hy) and (Us, he) are two coordinate charts in M. Suppose that these
charts overlap. That is, the set V' = U; N U, is nonempty. Then we have a
map

hytohy : hi (V) — hyH(V). (27)

This map is a homeomorphism because it is the composition of homeomor-
phism. The function hy' o hy is called an overlap function.
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7.4 Smooth Manifolds

Compatible Charts: Let M be a topological manifold. Two coordinate
charts Uy, Uy € M are smoothly compatible if the overlap function defined by
these charts is not just a homeomorphism, but actually smooth.

Atlases: A smooth atlas A on M is a system of coordinate charts which
are all compatible with each other. We insist that every point of M is con-
tained in at least one chart of A. The atlas A is called maximal if there is no
additional coordinate chart, not in A, which is compatible with all the coor-
dinate charts in \A. Each smooth atlas on M can be completed to a maximal
atlas: You just define the maximal atlas as the set of all charts which are
compatible with the charts you already have.

Main Definition: A smooth manifold is a topological manifold equipped
with a maximal smooth atlas.

Example 1: Let F' : R" — R™ be a smooth map and let ¢ € R™ be
some point. We call ¢ a regular value, if for every p € F~1(q), the differential
dF (p) is surjective. In this situation, the Implicit Function Theorem gives a
coordinate chart about p, and this coordinate chart is smooth in the usual
sense. So, when ¢ is a regular value, F~!(q) is a smooth manifold of dimen-
sion n — m assuming that it is nonempty.

Example 2: Take the unit cube in R" and identify opposite sides in the
most direct possible way. Call the resulting space X. If you want to make
X into a metric space, define d(z,y) to be the length of the shortest path
joining x to y, where these paths are allowed to go through the identified
sides. You can find coordinate charts from X into R" which are local isome-
tries i.e. distance preserving when restricted to small enough open sets. (Try
this for n = 2 first.) The overlap functions are again local isometries and
hence smooth. So, the unit cube in R" with its sides identified is naturally
a smooth n-manifold. It is known as the square n-torus.
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7.5 Maps between Smooth Manifolds

Main Definition: Suppose that M; and M, are smooth manifolds. A map
[ My — M,y is smooth if all compositions of the form

h;lofohl (28)

are smooth, where h; is a homeomorphism associated to a chart in M; and
hy is a homeomorphism associated to a chart in M,;. What makes this a
good definition is that all the overlap functions are smooth. So, to verify
the smoothness of f, you don’t have to examine all the uncountably many
coordinate charts in the two maximal atlases. You just to verify it for some
pair of sub-atlases.

Diffeomorphisms: A map f : M; — M is a diffeomorphism if f is a
bijection and both f and f~! are smooth. It is easy to verify that the com-
position of smooth diffeomorphisms is again a diffeomorphism. In particular,
the set of diffeomorphisms from M to itself is a group! It is written Diff (M).

Exercise: Here is an interesting but somewhat difficult problem. Suppose
that M is any smooth manifold and py,...,p, € M are some finite set of
points. Let m be some permutation of these points. Prove that there is a
diffeomorphism of M which agrees with 7 on these points. Try it first for R?,
and then for homeomorphisms of topological manifolds. Getting the map to
be smooth, on a smooth manifold, is additional work.

7.6 Riemann Surfaces

The same basic framework allows you to define other kinds of structures on
topological manifolds. T'll just give one example, because it is especially im-
portant.

Complex Analytic Maps: Let U C C be an open set. Amap f:U — C
is called complex analytic if it is continuously differentiable, and

o[ 4 2

for all p € U. The real valued functions A(p) and B(p) vary continuously
with p. Geometrically, df(p) is a similarity. When Equation 29 is written
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out in terms of the matrix of partial derivatives, it is known as the Cauchy-
Riemann equations.

Alternate Formulation: It is an amazing fact that a complex analytic
map is always smooth, and equal to a convergent power series

= ¢j(z — z) c;el (30)
=0

in a neighborhood of each point 2y € U. You could take this as an alternate
definition of what it means for a map to be complex analytic.

Main Definition: A Riemann Surface is a 2-dimensional smooth manifold
such that all the overlap functions defined by its atlas are complex analytic.
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8 Tangent Spaces and Orientation

8.1 Smooth Curves

Let M be a smooth manifold and p € M be a point. A curve on M through

p is a smooth map
¢:(—€¢) =M (31)

with ¢(0) = p. To say that ¢ is smooth in the neighborhood of some point s
is to say that h™! o ¢ is smooth at s, where (h,U) is a coordinate chart and
¢(s) € U. This definition does not depend on the coordinate chart, because
the overlap functions are all diffeomorphisms.

Let ¢; and ¢y be two smooth curves through p. We write ¢; ~ ¢o if

d(h™ o ¢1)lo = d(h™" 0 ¢s)lo.

Again, this is independent of the choice of coordinate chart used. The equiv-
alence class of ¢ is denoted [¢], so we are saying that [¢1] = [¢a].

We say that a tangent vector at p € M is an equivalence class of regular
curves through p. We let T,,(M) be the set of tangent vectors at p.

8.2 Vector Space Structure

We would like to show that T,(M) is a vector space, and not just a set.

Suppose that M is k-dimensional, so that our coordinate charts are maps

from R* to M. Given a vector V € RF, let Ly denote the parametrized

straight line through the origin whose velocity is V. That is Ly (t) = tV.
Let (U, h) be a coordinate chart with 4(0) = p. We define a map

dh: RF — T,(M)

by the rule
dh(V') = [ho Ly].

Lemma 8.1 dh is injective.

Proof: Suppose that dh(V) = dh(W). Then [ho Ly] = [ho Ly|. But we
can use the chart (h,U) to measure the equivalence. So,

d(h™ " ohoLy)lg=d(h ™ ohoLy)l.
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But then
V =d(Ly)|o = d(Lw)|o = W.

This completes the proof. &

Lemma 8.2 dh is surjective.

Proof: Let [¢] € T,(M) be some tangent vector. Let V be the velocity of
the curve h™! o ¢. By construction dh(V) ~ ¢. #

Now we know that dh is a bijection from R* to T,(M). We define the
vector space on T,(M) in the unique way which makes h a vector space
isomorphism. That is,

dh(V) + dh(W) = dh(V + W), r dh(V) = dh(rV).

Lemma 8.3 The vector space structure on T,(M) is independent of the
choice of coordinate chart.

Proof: Suppose that hy and hsy are two coordinate charts having the property
that hq(0) = he(0) = p. Let

qb:h;lohl

be the overlap function. Since ¢ is a diffeomorphism, d¢|y is a vector space
isomorphism. We just have to check that

d(hy o @) = dhy o do.
Choose some vector V € R* and consider the two curves
1. hyo¢(Ly)
2. hgo Ly, where W = deo (V).

We want to show that these curves are equivalent. We can measure this
equivalence using the chart (U, hy). We want to see that ¢ o Ly and Ly
have the same velocity at 0. The velocity of Ly, at 0 is just W. The velocity
of ¢ o Ly at 0 is, by definition, d¢(V'). This is W. So, these two curves are
equivalent. &

Now we know that T,(M) is a k-dimensional real vector space at each
point p € M.
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8.3 The Tangent Map

Suppose M and N are smooth manifolds and f : M — N is a smooth map.
Given p € M let ¢ = f(p). We have the differential map:

dflp « T,(M) — T,(N),
defined as follows: Given any [¢] € T,,(M) define

df ([¢]) = [f o ¢].

Lemma 8.4 This definition is independent of all choices.

Proof: Suppose that ¢; and ¢o are two curves with ¢; ~ ¢5. We want to
see that fog; ~ fogpe. Let (U, g) be a coordinate chart for M with p = ¢(0)
and let (V,h) be a coordinate chart for N with ¢ = h(0). We are trying to
show that

d(h™ o fodr)lo=d(h™" o f o)l
Note that
h™lofog;=(h""ofog)o(g'og,.

The maps on the right hand side are maps between Fuclidean spaces, and
the chain rule applies. Since ¢; ~ ¢, we know that

d(g~" o p1)|o =d(g™" o d2)lo,

because ¢; ~ ¢o. The desired equality now follows from the chain rule. &

Let’s check that our new definition of df gives us the same definition in
cases we have already worked out.

Lemma 8.5 If M = RF and N = R™ and f(0) = 0, then the definition of
df agrees with the usual one.

Proof: For Euclidean spaces, we can always use the identity coordinate
charts. There is a canonical isomorphism from 7,(M) and R" which maps
[¢] to the velocity of ¢ at 0. Note that df,q maps V' to the velocity of f o ¢.
But this is just the velocity of dfyew([0]). #
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Lemma 8.6 If M = R* and f : M — N is a coordinate chart, then df
agrees with the initial definition of df given in terms of straight lines.

Proof: The previous definition tells us that df (V) = [f o Ly]. But this
matches the new definition, since every tangent vector in 7,,(M) can be rep-
resented by some Ly . #

Now let’s talk about the Chain Rule.

Lemma 8.7 Smooth maps between manifolds obey the chain rule.

Proof: Suppose fis : M7 — Ms and fo3 : My — M3 are smooth maps. Then

d(f23 ° d12)

maps the tangent vector [¢] to [fas o fi2 0 ¢]. But this is clearly the same as
dfas o dfi2[¢]. #

Even though we have established the chain rule, we don’t yet know that
df is a linear map. So, here’s this final result.

Lemma 8.8 df is a linear map.

Proof: Let g and h be coordinates for M and N, as above. Introduce the
map

Y = h='o fog.
Note that

f=hovog™
By the Chain Rule, we have

Afly = (dh) o (do) o (dg) "

Here diy) means di|p. All three of the maps on the right are linear maps, so
df is as well. &
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8.4 Orientations on Manifolds

Orientations on a Vector Space: Let V be a finite dimensional vector
space over R. Let {vy,...,v,} and {wy, ..., w,} be two bases for V. We have
the transition matrix 7;; which expresses the identity map I : V' — V rela-
tive to these two bases. Call this matrix 7. We call the two bases equivalent
if det(7") > 0. By construction, this is an equivalence relation, and there are
precisely two equivalence classes. An orientation of V' is a choice of one of
the equivalance classes.

Behavior under Linear Isomorphism: If V and W are vector spaces and
T :V — W is a vector space isomorphism, then T respects the equivalence
relations used to define orientations. So, T" maps the set of two orientations
on V to the set of two orientations on W.

Pointwise Orientations: Let M be a smooth manifold and S C M be
some set. A pointwise orientation on S is a choice of orientation on 7,(M)
for each p € S.

Suppose that M and N are smooth manifolds and f : M — N is a smooth
and injective map. Let S C M be some set and let T = f(M). Let p € S and
q = f(p) € T. The differential df, is linear, and hence induces a map from
the set of (two) orientations on 7,(M) to the set of (two) orientations on
T,(N). So, df maps a pointwise orientation on M to a pointwise orientation

on N.

Constant Orientations: When M = RF, there are two constant orien-
tations. In either case, we just identify all the tangent spaces of M by trans-
lation, and take the same orientation at each point. If U,V C R" is an open
set and h : U — V is a diffeomorphism, then dh maps a constant orientation
on U to a constant orientation on V. The point is that the determinant of
dh never changes sign.

The result here is worth pondering. Even though dh could vary from
point to point, on the level of orientations it is always a constant map.

Local Orientations: Let M be a manifold and let U C M be an open
set. A pointwise orientation on U is a local orientation if the orientation
is the image of a constant orientation under a coordinate chart. It follows
from the chain rule, and from the facts already mentioned about constant
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orientations, that this definition is independent of coordinate chart.
Global Orientations: A global orientation on M is a pointwise orienta-

tion which is a local orientation relative to every coordinate chart. If M has
a global orientation, then M is said to be orientable/
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9 Tensor Transformations

Let V and W be vector spaces and let M : V' — W be a linear transformation.
The map M gives a linear transformation

M* T (W) = T"(V). (32)

Note that V' and W have switched. Let T : W" — R be a tensor of type r.
We have the tensor M*T" : V" — R defined by the equation

MAT)(Vr, -, Vi) = T(M(V1), ..., M(V2)). (33)

In other words, we map Vi, ..., V.. into W and then apply the tensor to them.
Everything involved is linear, so M* is a linear map. The goal of these notes
is to explain the action of M*.

Let {vy, ..., v} is a basis for V and {wy, ..., w,} is a basis for W. We have
the formula .

k=1

The goal is to express the map M* in terms of these coefficients.

There are three cases, the first of which is just a warm-up: the linear
functional case, the general case, and the alternating case.

9.1 Linear Functional Case

We are interested in M* : W* — V*. We have the dual bases {v7,...,v5}
and {wj,...,w;}. Here vf(v;) = 11if i = j and 0 otherwise. Same goes for
w;. The matrix for M* is just the transpose of the matrix for M.
To figure out the matrix for M*, we just have to see that M*(w}) does
to v;. We compute
M () (01) =

J

wj (M (v;)) =

J

wi( Y (Mywy)) =

k=1n
Z w;f(Mikwk) =

k=1
M.

¥R
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In short,
M () (v1) = M. (35)

But that means that .
k=1

This is why the matrix for M* is just the transpose of M;;.

9.2 General Case

Let’s introduce the multi-index notation. Let I = (iy,...,4,) be an r-tuple of
numbers. We write
v = 0] ® ... Q] . (37)

We write the same thing for wj. Also, we write
vy = (Uil, ceey UZ‘T,).

This is just an r-tuple of vectors. We have vj(v;) = 1if [ = J and 0
otherwise.

We want to figure out what M*(w?%) does to vy. This gives the component
M7 ; of the giant matrix representing M™*.

We compute

M (wy)(vr) =
wy(M(vr)) =
wy(M(viy), ooy M(v;,.)) =
w; ® wi (M(vy,), ..., M(v;,)) =

Jr
wi (M(viy)) x .. xwj (M(vy,)) =
M, ... M;

1J1 i g

So, the bottom line is that

My = M, ..M, . (38)

1,71

35



9.3 Alternating Case

The basis elements for A"(V*) are given by
[v]] = A(v]) = vy, Ao Ay

Sinilarly for A"(W*). The tensor M*([w,]*) is some linear combination of
the various [v7]*. We want to find the coefficients. We have

[wy] = > e(o)wy,. (39)

g

Here o is a permutation, and €(o) is the sign of o, and oJ denotes the multi-
index you get when you permute the entries of J according to the action of
.

Now let’s take I to be an increasing multi-index: 4; < ... < 7,. From the
previous case, and linearity, we have

M ([wil)(vr) =3 (@) Mrgs = €(0) Miso(ir)s s Mis o). (40)

g o

This last expression is just the determinant of the r x r matrix you get by
taking I rows of M and the J columns.

9.4 Crucial Special Case

Suppose that V' = W and r = n = dim(V). Then the transformation law
tells us that M* is just multiplication by det(M). In particular, M* is the
identity map if det(M) = 1.
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10 Partitions of Unity

10.1 The Result
Let M be a smooth manifold. This means that

e )M is a metric space.
e )M is a countable union of compact subsets.

e M is locally homeomorphic to R". These local homeomorphisms are
the coordinate charts.

e M has a maximal covering by coordinate charts, such that all overlap
functions are smooth.

Let {©,} be an open cover of M. The goal of these notes is to prove that
M has a partition of unity subordinate to {©,}. This means that there is a
countable collection {f;} of smooth functions on M such that:

e fi(p) €[0,1] for all pe M.
e The support of f; is a compact subset of some ©, from the cover.

e For any compact subset K C M, we have f;, = 0 on K except for
finitely many indices i.

e > filp)=1forallpe M.

The support of f; is the closure of the set p € M such that f;(p) > 0.

These notes will assume that you already know how to construct bump
functions in R". Note: I deliberately picked a weird letter for the cover, so
that it doesn’t interfere with the rest of the construction.

10.2 The Compact Case

As a warm-up, let’s consider the case when M is compact. For every p € M
there is some open set V,, such that

e pelV,.

e V, C O, for some O, from our cover.
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e 1/, is contained in a coordinate chart.

Using the fact that we are entirely inside a coordinate chart, we can construct
a bump function f : M — [0, 1] such that f(p) > 0 and the support of f is
contained in a compact subset of V,,. Let W, C V,, denote the set of points
where f > 0. Then W, is an open set which contains p. Call W, a nice open
set.

The set {W,| p € M} is an open covering of M. Since M is compact, we
can find a finite number W4, ..., W,, of nice open sets such that M = JW;.
Let ¢4, ..., gm be the functions associated to these open sets. By construction,
g; > 0 on W;. This means that the sum ) g; is positive on M. Define

fi = Zg;-' (41)

Then fi, ..., f,n make the desired partition of unity.
The rest of the notes deal with the case when M is not compact.

10.3 Fattening Compact Sets

We need two technical lemmas.

Lemma 10.1 Let p € M be any point. For all sufficiently small €, the ball
of radius € has compact closure in M.

Proof: There is some neighborhood U of p which is homeomorphic to R".
Let ¢ : U — R" be a homeomorphism. Choose some closed ball B C R"
which contains ¢(p). Consider ¢—'(B). This is a compact subset of M, and
it contains the open set U’ = ¢! (interior(B)). Any sufficiently small open €
ball A about p will be contained in U’ and hence will have closure contained
in the compact set ¢~'(B). A closed subset of a compact set is compact.
Hence, the closure of A is compact. This is what we wanted to prove. #

Lemma 10.2 If X C M is compact, then there exists some compact subset
Y such that X is contained in the interior of Y.

Proof: For each p € X, there is some € ball A, whose closure in M is com-
pact. The union of such balls covers X. Since X is compact, we can take a
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finite subcover. That is, X C AjU...UA,,. Let Y be the union of the closures
of these balls. Since Y is a finite union of compact sets, Y is compact. The
interior of Y contains the union of these open balls, and hence contains X. &

10.4 Cleaning up the Compact Sets

Lemma 10.3 There exists a countable collection {K;} of compact sets such
that K; is contained in the interior of K;y1 for alli, and M = | K;.

Proof: We know already that M = | K;, where K; is compact and the
union is countable. Replacing K,, by K; U ... U K,,, it suffices to consider
the case when Ky C Ky C K;....

Suppose we know already that K; is contained in the interior of K,
for © = 0,...,m. By the preceding lemma, we can replace K,,,o by a larger
compact set L,,, o which contains K, o in its interior. Now we redefine
Km+3 = Lm+2 U Km+3 and Km+4 = Lm+2 U Km+3 U Km+47 etc. The new col-
lection of compact sets has K; C K,y for all i =0,...,m + 1. By induction,
we can get this property for all i. &

Lemma 10.4 We can write M = U L;, where L; is compact for all ©, and
LinL;=0ifj<i—1.

Proof: We know that M = | K;, where each K, is compact, and K; is
contained in the interior of K, for all . Define
Li = f(z — interior(Ki_l). (42)

Note that L; is disjoint from K for j < ¢ — 1. Hence L; is disjoint from L;
for j < ¢ — 1. By construction L; is a compact set minus an open set. In
other words, L; is the intersection of a compact set and a closed set. Hence
L; is compact. Also, M =JL;. #

10.5 The Main Construction

We keep the notation from the previous section. Consider L;. Each p € L;
has an open metric ball U such that
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e U is disjoint from L; for all j < ¢ — 1. This uses the fact that there is
a minimum positive distance between U; and U, for all j <7 — 1.

e U is contained in some O, from our cover.
e U is contained in a coordinate chart.

As in the compact case, we can construct a bump function f such that
f(p) > 0 and the support of f is contained in a compact subset of U. Let
W C U denote the set where f > 0. Call W a nice set. Since L; is compact,
we can cover L; by finitely many nice sets, say Wiy, ..., Win,. (The number
depends on 1.)

Now we consider the covering

Wi, oo, Wiy, War, o, W, .

We rename these sets X7, X5, X3, ... and let g1, g2, g3 be the associated func-
tions. These functions have the following properties.

e For every p € M, there is some g; such that g; > 0. This comes from
the fact that p € L; for some j, and then p is contained in some nice
set on our list.

e Any compact set only intersects finitely many X;. The point is that
any compact set is contained in the union of finitely many L;.

e The support of each g; is contained in some O, from the original cover.
This comes from the fact that the support of g; is the closure of a nice
set.

Now we define f; = g;/ > g;, as in the compact case. The sum is locally
finite at each point. This gives us the partition of unity.
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11 The Poincare Lemma

The purpose of these notes is to explain the proof of Poincare’s lemma from
the book in somewhat less compressed form.

11.1 De Rham Cohomology

Let U C R" be any open set. Recall that Q"(U) is the space of smooth
r-forms on U. On Q7(U) we have the basic equation d* = 0. We let

Z"(U) c Q" (U)
denote the set of forms w such that dw = 0. We let
B"(U) Cc Q"(U)

denote the set of forms w such that w = da for some a € Q"*(U). Both
Z"(U) and B"(U) are vector spaces, and B"(U) C Z"(U). The space Z"(U)
is often called the set of closed forms on U and the set B"(U) is often called

the set of exact forms on U.

We define
Z"(U)

Br(U)
Here we are taking the quotient of vector spaces. The vector space H"(U) is
often called the r-th de Rham cohomology of U.

The de Rham Cohomology is a diffeomorphism invariant. Suppose that
f U — V is a diffeomorphism. Then f*d = df*. This means that the
pullback f* maps Z"(V') into Z"(U) and B"(V') into B"(U). So, f induces a
map f*: H"(V) — H"U). Since f~! is also smooth we see that f* has an

inverse, namely (f~!)*. Hence f* is an isomorphism. In other words, if U
and V' are diffeomorphic then H"(U) and H"(V') are isomorphic.

H(U) . (43)

11.2 The Main Result

A domain U C R" is star shaped with respect to p € R" if, for each ¢ € U, the
entire segment pq lies in U. We say that U is star-shaped if U is star-shaped
with respect to some point. Here is the main result.

Lemma 11.1 (Poincare) If U C R" is open and star-shaped then we have
H"(U) =0 for all > 0. In other words, every closed form on U is exact.
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First I will prove an algebraic result that works for any open subset of
R", star shaped or not, and then I'll apply the result to the Poincare Lemma.

11.3 An Algebraic Result

Let U C R" be any open set, not necessarily star-shaped. Let U be an open
subset of R™™ which contains U XA[O’ 1]. We set 2,41 = 1.
We define g; : U — U x {j} C U by the formula

9;(p) = (p, J)- (44)

~

here j = 0 and j = 1. Let g5 : Q"(U) — Q"(U) be the pull-back operator.
We now construct a map J : Q1(U) — Q*(U) for every value of s > 0.
The map will have the property that

(-1 (47 = Jd) = g; - gi. (45)

In the context of de Rham cohomology, the map J is called a chain homotopy.

To define J we just have to specify what it does to a form w = fdx; and
then extend linearly. Here I = (iy,...,%,41) is an increasing multi-index. If
irr1 <n+ 1 we define J(w) =0. If i, 1 = n+ 1 we define

Jw) = Fdrp,  Fo)= [ Yty dt, T = (i), (46)

Here p = (x4, ..., z,). You might say that J “integrates out” the last coordi-
nate. Since both sides of Equation 45 are linear, it suffices to check Equation
45 on our form w.

Case 1: Suppose that 7,,1 < n+ 1. We note first that

g; @)y = f(p,j)dX;.

All we are doing is restricting w to the slice U x {j}. We already know that
J(w) = 0. Hence dJ(w) = 0 as well. We have

of

dw = (—1) T

dX; A dt + other terms.
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The other terms do not involve dt. This means that Jd(w) only involves the
first term. By the Fundamental Theorem of Calculus,

/01 (Z(?” t)=f(p,1) = f(p,0).

Therefore,

Jd(w)l, = (=1)"(f(p,1) = f(p,0)dX; = (=1)"(g7(w) — g5(w))-

Combining this equation with the fact that dJ(w) = 0 gives us Equation 45.

Case 2: Suppose that ¢2,.7 = n+ 1. Thus w = fdXp A dt. Note that

the image of Dg,(1,(U)) is perpendicular to the ¢-direction. For this reason

g;(w) = 0. So, in this case we just need to establish that dJ(w) = Jd(w).
We have

" OF
dJ(w) = d(F Ndxp) = 5, dxi A dzp.
=1 J

We do not have a term in the n + 1-th coordinate because we would get
dt A dt = 0 in this case. At the same time

"0
dw=>" 8f Ndxj Ndzp Adt. (47)
i=1 Ui
Differentiating under the integral sign, we have

1 of
; %(p’t) dt

_oF

5 ) (48)

Combining Equations 47 and 48 with the definition of J, we see that

" OF
Jdw) =>" gdﬁ Ndxp = dJ(w).

i—1 9T

11.4 The Application

Now we prove the Poincare Lemma as an application of Equation 45. We
return to the case when U is a star-shaped domain. By symmetry, it suffices
to consider the case when U is star-shaped with respect to 0. Let UcR"™!
be the set of all pairs (p,t) such that ¢tp € U. Here we are just scaling p to t.
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Since U is open, the set U is open. Since U is star-shaped with respect to 0,
the set U contains U x [0, 1].
We introduce a map ® : U — U given by

®(p,t) = tp. (49)

Let gg and g; be the maps from the previous subsection. The composition
goo P is the 0-map and the composition g; o ® is the identity map. This gives
us

90®"(w) = 0, g1 & (w) =w (50)

for any w € Q"(U).
Suppose that w € Q"(U) satisfies dw = 0. We define

a=(-1)"JP"(w). (51)

Note that
JdP* (w) = JO*(dw) = 0.

Therefore
do=(—1)"dJ®"(w) =

(—1)T<dJ<I>*(w) _ Jd(I)*(w)) _
g0 (w) — g ®* (W) =w -0 =w.

This proves the Poincare Lemma.
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12 The Brouwer Fixed Point Theorem

The purpose of these notes is to explain the proof of Brouwer’s fixed point
theorem using differential forms. This proof is similar to what is in Browder’s
book, but it emphasizes different points.

12.1 No Retraction Theorem

Let M be a smooth compact oriented n-manifold-with-boundary. Let OM be
the boundary, oriented so that Stokes” Theorem is true for M. Just for fun,
I will prove the no retraction theorem in more generality than I did in class.
Say that a map g : OM — OM is nice if there are (relatively) open subsets
U,V C OM such that g : U — V is a diffeomorphism and ¢~'(V) = U.

Theorem 12.1 There is no smooth map f: M — OM such that the restric-
tion of f to OM 1is nice.

Proof: We suppose f exists and derive a contradiction. Using a bump-
function construction, we can choose a smooth (n — 1)-form « on M which
is supported in U such that [;,, o = 1. Let § = f*(a). We have

48 = df*(a) = f*(da) = f*(0) = 0.

Hence [,;dB = 0. By Stokes” Theorem, [5,,8 = 0. But, by the change
of variables formula for diffeomorphisms, and the properties of f, we have
Jors B = Jopr = 1. This is a contradiction. &

Since the identity map is nice, we see that there is no smooth map f :
M — OM which restricts to the identity on M.

12.2 Brouwer’s Theorem for Smooth Maps

Let B™ be the n-ball.

Theorem 12.2 [f g : B" — B" is a smooth map then Then g(p) = p for
some p € B".
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Proof: We suppose that this is false and derive a contradiction. If it never
happens that g(p) = p then we can define f(p) € 9B, to be the point
where the ray from f(p) through p intersects 0B,. This map is smooth on
the interior of B™ because you find the point f(p) by solving a quadratic
equation whose coefficients vary smoothly with p.

The map f : B"™ — 0B" seems to violate the no-retraction theorem.
However, we have not really shown that f is smooth at points on dB". The
issue is that the extension idea does not necessarily work for points outside
B,,. The ray from f(p) to p might not hit B, at all. (In the book, Browder
does not worry about this.) Here is a trick to deal with this.

Define a new function h : R" — {0} — 0B™ to be radial projection. Also,
choose some emall € > 0 and define a bump function § which is 1 on the ball
of radius 1 — 2¢ centered at the origin and 0 outside the ball of radius 1 — e.
Consider the new function

o(p) = h(B(p)f(p) + (1 — B(p))(p))-

This is a smooth function which maps B" into 0 B™ provided that e is small
enough so that the chord connecting f(p) and h(p) does not contain the
origin when ||p|| > 1 — 2e.

By construction ¢ = h on dB,,. Hence the restriction of ¢ to 0B, is the
identity. Using ¢ (rather than f) we get a map which is smooth on all of B,,.
This contradicts the no retraction theorem. é#

12.3 Convolution

Our final goal is to prove Brouwer’s Theorem for continuous maps. As a pre-
lude, we explain how to approximate a bounded continuous function, defined
on a bounded open subset U of R" by a smooth function.

Let f : U — R be a continuous bounded function. Let g be any smooth
function. We define

frg(z) = /U fy)g(r —y) dy. (52)

Here x,y € R".
Given some standard basis vector e; we compute

f*g(erttei)—g*(ﬂf) :/Uf(y)g(wrtei—yt)—g(fc—y) p
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[ 505w = ) ay+ [ @B —y) dy

Here F; is an “error function” which uniformly tends to 0 on U as ¢t — 0.
So, taking a limit, we see that the ith partial derivative of f * g exists and

Af *g)
8ZEZ'

dg

:f*axi.

(53)

[terating this result and using the smoothness of g we see that f % ¢ has
partial derivatives of all orders and therefore is smooth.

For any N we can choose gy so that [p» gy = 1 and so that the support
of gy is contained in the 1/N neighborhood of the origin. In this case f* gy
is smooth and quite close to f. More precisely f * gy converges uniformly to
fonU as N — oo.

12.4 Brouwer’s Theorem for Continuous Maps

Suppose now that g : B" — B" is a continuous map. We first extend ¢ so
that it is continuous and defined an an open neighborhood U of B,,. Applying
the convolution trick to each coordinate function of g we produce a sequence
{gn} of smooth maps from B,, to B,, which converge uniformly to g.

By the smooth version of Brouwer’s Theorem there are points py € B™
such that gy (pn) = pn. Let p be any accumulation point of {py}. If g(p) # p
then, by continuity, gy (py) # pn for N sufficiently large. Hence g(p) = p.
This proves Brouwer’s fixed point theorem for continuous maps.
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13 Integrating Functions on Manifolds

These notes deal with integrating functions on (Riemannian) manifolds. We
already know how to integrate k-forms on a k-manifold but the topic here is
how to deal with functions. The purpose of these notes is to clarify what is
going on by explaining things in terms of abstract manifolds.

The general way it works is that one can integrate functions on a Rieman-
nian manifold, because the Riemannian metric defines a canonical volume
form locally. The canonical form is defined everywhere, up to a sign. The
sign can’t work out globally if the manifold is non-orientable, but there is a
trick using partitions of unity to make use of these local volume forms even
in the non-orientable case.

When one has a submanifold in R", there is a canonical Riemannian
metric which just comes from the restriction of the dot product. So, you can
use the abstract theory to integrate functions submanifolds of R". The final
theory turns out to be equivalent to what is done in the book.

13.1 Inner Products and Volume Forms

Let V' be a finite dimensional real vector space. An inner product on V is a
map @ : V x V — R such that

1. @ is a symmetric 2-tensor.
2. Q(w,w) > 0 for all w # 0.

Lemma 13.1 There exists an orthonormal basis for Q).

Proof: Given a basis {vy,...,v,} for V we can perform the usual Gram-
Schmidt process for creating an orthonormal basis with respect to ). The
procedure works like this.

e Replace v; by

wy = vy /4/Q(v1,v1)

so arrange that Q(wy,w;) = 1.

e Assuming that wy, ..., w, have been constructed, let

k

wl/€+1 = Ug41 — Z Q(Uk+1, U)Z)U)z
=1
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This guarantees that Q(wj ., w;) =0 for alli=1,... k.

e Replace wj; by

Wk+1 = w;H/\/Q(wQCH, W)
This produces wy, ..., w, such that Q(w;, w;) = 1 if i = j and 0 otherwise. #

Remark: Notice that each w; varies smoothly as a function of vy, ..., v,.
That is, we can think of w; as a function from V" to V, and it is a smooth
function.

Lemma 13.2 Assume that R" is equipped with the dot product. There is a
linear transformation T : R"™ — V which is an isometry between R" and V.

Proof: Let eq,...,e, be the standard basis for R" and let wq, ..., w, be an
orthonormal basis for V. The map T'(e;) does the trick. &

Definition: The adapted volume forms on V are the two forms
(T 1) (doy A ... Aday,).

If V' also has an orientation, we can “prefer” one of these over the other.

13.2 Riemannian Manifolds

A Riemannian metric on a smooth manifold M is a smoothly varying choice
of inner product @, on each tangent space T,,(M). The smoothness has the
following explanation. If o : R"™ — M is any smooth coordinate chart, then
the pullback inner product o*(Q) is given by a symmetric matrix at each
point of R". We want the entries of this matrix to be smooth functions.
This is the usual way we talk about smooth tensor fields on manifolds.
Suppose that M has a Riemannian metric ). For each p € M there are
two adapted volume forms associated to (), and they differ only by sign.
Call these two volume forms +w,. Let V' be a coordinate patch in M. Note
that V' has one of two local orientations, regardless of whether or not M is
orientable. We say that the assignment p — wy, is continuous if w, defines the
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same orientation at each p € V. In other words, w, is either always positive
or always negative when evaluated on a positively oriented basis, as p varies
throughout V. Notice that there are exactly 2 continuous adapted volume
forms on each coordinate chart.

If M is orientable, we can make a consistent choice of a continuous
adapted volume form on M. Otherwise, we have to be content with a system
of continuous adapted volume forms, one per coordinate chart.

13.3 Integration of Functions

Let’s continue with the same notation. Suppose that V' C M is a coordinate
chart. Suppose that f : M — R is a non-negative Borel measurable function
whose support is contained in V.

We choose an orientation on V', as well as the corresponding adapted
volume form w. We then define

[, f, o

Notice that this is a non-negative number, and strictly positive if f > 0
on some open set. Were we to pick the opposite orientation, we would be
integrating — fw with respect to an oppositely oriented coordinate chart, and
we would get the same answer. So, the integral is completely well defined.
Now suppose that f: M — R is any non-negative Borel function whose
support is compact. (This is automatic if M is a compact manifold.) We
choose a partition of unity {¢;} subordinate to some open cover by coordinate

charts, and we define
| 1=%[ or

The compactness guarantees that this is just a finite sum. The same argu-
ment as for the integration of forms shows that this definition is independent
of the choice of partition of unity.

Remark: If you don’t like working with Borel measurable functions, you
can restrict your attention to continuous functions. This is all we really need
for applications in the book. For continuous functions, the integrals involved
can be done by the usual Riemann integral.
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Suppose now that f : M — R is a compactly supported function We can
write f = f, — f_, where f; = max(f,0), and f_ = f — f;. Then we define

Jor= =] s

13.4 Euclidean Submanifolds

Suppose now that A is an n-dimensional submanifold of R™. There is a
canonical Riemannian metric on M, namely

(VW) =V - W, YV, W € T,(M).

We then integrate functions on M with respect to the system of volume forms
adapted to M on coordinate charts.

It is worth pointing out why these volume forms are smooth. Let V' C M
be a coordinate patch on M and let o : R" — V be a coordinate map. We
can get a basis at each point p € V using a.(e1), ..., a.(e,). This basis varies
smoothly. We can then perform Gram-Schmidt to get a smoothly varying
orthonormal basis. The matrix entries of the adapted quadratic form are
rational-function entries of the coefficients of the orthonormal bases, to they
vary smoothly as well.

13.5 Reconciling with the Book

Suppose that f : M — R is a positive function whose support is contained
in the coordinate patch V. Let o be a coordinate chart whose image is V.

Then the expression
\/det(ALA), A= D«

computes the infinitesimal volume multiplier under the action of .. That is,
in each tangent space, the differential map A multiplies volume by det(A*A),
as explained in the book.

But that means that

a(w) = y/det(AtA)dzy A ... A dxy,.
o (fw) = fi/det(AtA)dzy A ... A dxy,.

Hence
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So,
[ 5= fo= [ 0t(w) = [, 1y/det(A1a) du..dz,.

This last expression is what is in the book.

13.6 Another Perspective

Suppose specifically that M is a hypersurface in R". Let v denote a unit
normal field along M. Let ¢, denote the contraction operator. Let

w=dx; A ..Ndz,

be the standard volume form on R". Then ¢,(w) is the volume form along
M. Here
bV ey V1) == w(v, Vi, o V).

The point here is that when Vi, ..., V,,_; is an orthonormal basis at a tangent
space of M then v, Vi, ..., V,,_1 is an orthonormal basis for R". In this case
L,w(Vi, ..., V1) = 1, and the sign choice varies continuously.
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14 Harmonic Functions and Hodge Star

The purpose of these notes is to cover the Hodge star operator, the divergence
form of Stokes” Theorem, and foundational results about harmonic functions.
These notes also have 6 HW exercise in them.

14.1 The Hodge Star Operator

We'll start out by defining the Hodge star operator as a map from A*(R")
to A" *(R"). Here A*(R") denotes the vector space of alternating k-tensors
on R".

Let I = (i1,...,7) be some increasing multi-index of length k. That is
ih < iy < i3 < ... Let J = (ji,..., jn—k) be the complementary increasing
multi-intex. For instance, if n =7 and [ = (1,3,5) then J = (2,4,6,7). Let
Ky denote the full multi-index (1, ...,n).

We first define * on the usual basis elements:

*(dl’[) = :tdl‘J, (54)
where the sign is chosen so that
dxy A x(dxy) = dxy A ... AN dxy,. (55)

We often write *dz; in place of *(dxy). In general, we define

*(Zal dx;) =Y ay (xdz;). (56)

Exercise 1: For any w € A*(R") prove that * * w = (—1)*""y. Hint;
Show this on a basis and use the anti/commutative properties of the wedge.

14.2 Rotational Symmetry

Let O(n) denote the set of orthogonal transformations of R". These are
the transformations which preserve the dot-product. Note that we have
det(M) = £1 for M € O(n). The subgroup SO(n) consists of those ma-
trices having determinant equal to 1. Our next goal is to prove that

M*(xw) = det (M) (x(M*(w)), VM € O(n). (57)
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In particular,
M*(xw) = x(M*(w)), VM € SO(n). (58)

These are meant to hold for all w € A*(R") regardless of the values of k and
n. Equation 58 is the main equation we are interested in, but for the proof
it is useful to sometimes consider maps in O(n) that are not in SO(n).

Exercise 2: Fix some k € {1,....n — 1} and let M be the map such that
M(er) = er+1 and M(ext1) = e, and otherwise M(e;) = e;. So, in other
words, M just swaps two of the coordinates. Prove Equation 57 for M. Hint:
check the equation on a basis. Also, conclude that Equation 57 holds for any
permutation matrix.

Lemma 14.1 Let M be the element of SO(n) which has the following action:
o M(e;) =e; forj=3,4,5,....
e M(ey) = eqcos(f) + egsin(6),
o M(ey) = —eysin(f) + eq cos(6).

In other words, M rotates by 6 in the e1, es plane and fixes the perpendicular

directions. The Equation 57 holds for M.

Proof: It suffices to check this on a basis. Consider dr;. Let J be the
complementary index. We will prove our result when xdx; = dx; (rather
than —dx;.) The other case has the same kind of treatment.

Suppose first that I contains neither 1 nor 2. Then M*(dz;) = dx;.
Also, the complementary multi-index J contains both 1 and 2. Using the
transformation law for forms, we have

M*(dzy) = dxy. (59)

We compute

M*(xdxr) = M*(dzy) = dxy = *dxy.

The case when [ contains both 1 and 2 has the same proof.
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Suppose that I contains 1 but not 2. Then dx; = dx; A dxp. Here I’ is
obtained from [ by omitting 1. Similiarly, we have the equations

«(dry Ndzyp) = *dxyp = dxy = deg ANdz g, *(dre Ndrp) = —dxy Ndxy.

Here J' is obtained from J by omitting 2. The sign change in the second
calculation comes from the fact that

dxoNdxp AN(—dxy)Ndz j = dey ANdep NdegANdx o = depANdry = dzy A ... ANdx,.
We set C' = cos(f) and S = sin(f). An easy computation shows that
M*(dzy) = Cdxy — Sdx,, M*(dxy) = Sdxy + Cdzs.
These calculations tell us that

«M*(dw) = *((Cday — Sdas) Adp) =

*((del A dxp) - *(Sdgc2 A dxp) = Cdxy A dxy + Sdxy A dz .

Similarly
M*(xdxy) = M*(dzy Ndxy) =

(Sdxy 4+ Cdxy) Ndxy = Sdxy A dxy + Cdxg A dz .

The two expressions agree.
There is one more case, when I contains 2 but not 1. This case is sim-
ilar to the last case, and actually follows from the last case and Exercise 1. é#

Exercise 3: Verify Equation 59. Hint: Use basic linearity properties of the
wedge product.

Exercise 4: Let G C O(n) denote the subgroup generated by the per-
mutation matrices and the elements M (for all 8) considered in the previous
lemma. Prove that G = O(n). (Hint: Starting with an arbitrarily element
T € O(n) try to find an element g € G such that goT fixes e; and hence e
Then use induction on on n.) Deduce Equation 57 from this Exercise, and

Exercise 2, and the previous lemma.

Now we deduce an important consequence of Equation 58. Suppose that
wy, ..., Wy, is any orthonormal basis of R". We assume that this is a positively
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oriented basis so that there is some M € SO(n) such that M(w;) = e; for
j =1,...,n. This means that M*(dz;) = dw;. We compute

The sign works out whether or not *dx; = dx; or xdr; = —dxr;. What we
are saying here is that we can define * with respect to any positively oriented
orthonormal basis and we get the same answer as when we use the standard
basis. This beautiful symmetry will help us in the next section.

14.3 Divergence Form of Stokes’ Theorem

Now suppose that M is the unit ball in R™ and S"~! = M is its boundary.
Let V' be a vector field on M, say V = (V4,...,V,). We have the usual

associated 1-form w = > Vidx;. Note that *w is an (n — 1) form on M and

d(*w) is an n-form on M. Stokes’ theorem, applied to *w, tells us that

/ d(xw) = / KW, (60)
M oM
We're going to re-interpret each half of this equation.
The Left Side: A direct calculation shows that
d(xw) =>_0V;/0z; dxy A ... Ndx,, = div(V) dag A ... A dzy,.

So, the left hand side of Equation 60 equals
/ div(V) dx;...dx,,
M

the usual integral of the divergence of a vector field.

The Right Side: Now let’s consider the right hand side of Equation 60.
Consider the form *w at a point p of M. We can find an oriented orthonor-
mal basis for R" at p, say wq, ..., w,, so that

® wi,...,w,_; is an oriented orthonormal basis for T,,(0M).

e v = (—1)""lw, is the normal vector that is compatible with Stokes’
theorem.
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Since w is a 1-form, we can write in our corresponding basis of 1 forms
(where dw; = w}.)

Note that the restriction of *dw; to M at p is 0 unless i = n. Therefore the
restriction of xw to M at p equals b, (xdw,). That is

*wons = by (xdwy,).

But
by = w(w,) = (=) tw) = (-1)""V -1

Finally,
sdw, = (—1)" " tdw; A ... A dw,_;.

Putting these three equations together, we get
swlonyy =V - v dwy A ..o A dwy,_.

Our theory of integrating functions on manifolds tells us that the right hand
side of Equation 60 is

V..
oM

The Interpretation: Putting everything together, we have

/M div(v)= [ V.n (61)

On the left hand side, we are integrating with the usual volume measure on
Euclidean space, and on the right hand side we are integrating a function on
an oriented manifold according to the theory explained in the class. This is
a classical n-dimensional generalization of Gauss’s law of electrostatics.

Really, there is nothing special we used about spheres. This result also holds
when M is any compact n-dimensional manifold in R". In particular, this
result holds when M is a region bounded by two concentric spheres. This is
the case of interest to us.
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14.4 Green’s Identity

Our argument works for any compact n-dimensional manifold M C R". The
point is that all we need here is for the divergence form of Stokes” Theorem
to work.

Let Vf stand for the gradient of a function f and let df stand for the
Laplacian of f. That is

[ of of L« P
Vi= (0:(:1 axn)’ A=Y G (62)

To say that f is harmonic is to say that 6 f = 0.
Let f and g be two smooth functions in M. Then

/f}M(ng'v—gi-V) Z/M(ng—gAf). (63)

Here is the derivation. Consider vector fields V) = gV f and V, = fVg.
We compute

o =0 ([ Of\ 99 0f 2f
div(Vi) = Z ox; (gax) N Z ox; 0x; +Zg@x? -

Vg-Vf+gAf.

A similar calculation gives
div(Vy) = Vf-Vg+ fAg.

Combining these equalities with Equation 61, we get
/ gAf—ng:/ div(Vy) — div(Vy) =
M M
| iv=Veen)= [ (gVf-v—gf-v).
oM oM
This completes the derivation.

There are two special cases of Green’s Identity worth mentioning. When
f is harmonic, we get

| UVg-v=gvi-v)= [ fag (64)
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When f and g are both harmonic, we get

/aMgi.y:/avag.y. (65)

Taking g = 1 gives

Vf-v=0. (66)
oM

14.5 Averaging over Spheres and Balls

Exercise 5: Suppose M is the unit ball in R". Apply Green’s Identity to
the case when g(p) = ||p||> — 1 to deduce that

/E)sz:/Mmf. (67)

In particular, when f = 1 show that this implies
vol(OM) = n vol(M).

Hint compute Vg and Ag. Finally, combine these results to show that

1 1
vol(OM) /8M /= vol(M) /M f (68)

The average of a harmonic function over the unit ball is the same as the
average of the function over the unit sphere!

By scaling and translation, the same result holds for any ball in R".

Exercise 6: Define g(p) = ||p||>™" on R" — {0} for n > 3 and g(p) = log ||p||
on R?*—{0}. Prove that g is harmonic on R"—{0}. First hint: Use symmetry
as much as possible. Second hint: If you don’t want to make a brute-force
calculation (even with symmetry) then flesh out the details of the following
argument: Let S(r) denote the sphere of radius r centered at the origin and
let v be the outward unit normal. First verify using symmetry and scaling

that the integral
/ Vg-v
S(r)

is independent of the radius r > 0. Conclude that the integral of A f on any
region bounded by concentric spheres centered at the origin is 0. Use this
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fact, and symmetry, to deduce that Af = 0 everywhere.

Now let M be the region in R" bounded by two concentric spheres, S
and S;. Let g be the function from Exercise 6 and let f be some other
harmonic function. Both f and ¢ are harmonic on R" — {0}, so we have

/8Mng-V:/8Mgi-V. (69)

Consider the right hand side of the integral. Let S be one of spheres
bounding OM. Suppose S has radius . On S, the function ¢ is constant.

Hence
/Sgi:C/SVf:O

by Equation 66. So, the right hand side of Equation 69 vanishes. This means
that
/ ng~V=/ AR
Sl 52

when both components S; and Sy are oriented the same way. Noting that

Vg-v=—r"
on the sphere of radius r, we get
1 1
= ) 70
rt s, / rpt /52 / (70)

Since S and S5 are arbitrary spheres centered at the origin, this last equation
says that the average value of f is the same on all the spheres centered at
the origin.

As r — 0, we see that the average value of f on S, tends to f(0). This
gives us the following result: f(0) equals the average value of f on any sphere
centered at the origin, which in turn equals the average value of f on any
ball centered at the origin. More generally, the value of f at the center of a
ball is equal to the average of f on that ball.

14.6 Corollaries

Theorem 14.2 (Liouville) A bounded harmonic function on R™ is con-
stant.
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Proof: I'll give the proof when n = 2. The general case is proved in the
same way, using balls instead of disks. Let f be a bounded harmonic function
on R*. We can scale so that |f| < 1.

Let B(r,p) denote the ball of radius r about p. Let X(r,a,b) denote the
set of points in B(r,a) U B(r,b) which are not in B(r,a) N B(r,b). In other
words X (7, a,b) is the symmetric difference of the two balls. The area of
X(r,a,b) grows linearly in r. (Draw a picture!)

1 1

— () = — - —
fla) = £(b) 712 JB(r,a) / w2 R(r,b)f
1 1
— f-= Iz
TTr< JB(r,a)—B(rb) r< JB(r\b)—B(r,a)
But this means that
1 7 area X (r,a,b)
— flb)| < — / < -,
ORIy BN R

Letting r — oo gives |f(a) — f(b)| = 0. Since a and b are arbitrary, f is
constant. &

Theorem 14.3 (Maximum Principle) Suppose f is a non-constant har-
monic function defined on an open subset U of R". Then f cannot have a
maximum at a point p in the interior of U.

Proof: If this is false then we can find points p,q € U and a ball B such
that

e f achieves a max a p.

e p is the center of B and B C U.

* ¢ € Band f(q) < f(p)

In this case f(¢') < f(p) for all ¢’ sufficiently close to q. But then the average
of f on B is less than f(p). This is a contradiction. é
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