
M1720: Primer on Topological Spaces

These notes give some basic information about topological spaces, and they
end with the definition of a topological manifold.

Main Definition: A topological space is a set X together with a collec-
tion C of subsets of X which have the following properties.

• The emptyset belongs to C.

• X itself belongs to C.

• Arbitrary unions of members of C belong to C.

• Finite intersections of members of C belong to C

The sets in C are called open, and C is called a topology on X.
Sometimes it is convenient to specify a topology by specifying the closed

sets. These are the sets whose complements are open. Arbitrary intersections
of closed sets are closed and finite unions of closed sets are closed.

Bases: Suppose X is a set. A basis for a topology on X is a collection
B of subsets of X with the following properties:

• Every point of X is contained in some member of B.

• If A and B are two members of B and p ∈ A ∩ B, then there is a
member C of B such that p ∈ C ⊂ A ∩B.

The basis B is not necessarily a topology on X. However we define C to be
the set of arbitrary unions of subsets of B. You can check that the properties
of B imply that C is a topology. The main thing you need to check is the
finite intersection property.

Metric Spaces: Let X be a metric space. The set B of open balls of
X forms a basis for a topology on X. In this way a metric space is naturally
a topological space.

Subspace Topology: Suppose X is a topological space and Y is a sub-
set of X. Then Y inherits a topology from X. A subset of Y is declared to
be open if and only if it has the form U ∩ Y , where U is open in X.
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This definition plays well with metric spaces. If X is a metric space then
Y inherits the metric from X. Now there are two ways to get a topology on
Y . We can either take the induced metric on Y and then take the topology
coming from the metric on Y or we can take the subspace topology on Y .
Both give the same topology on Y .

Product Topology: Suppose that X and Y are topological spaces. Then
the product X×Y has a natural topology. A basis for the topology on X×Y
is given by sets of the form U × V where U is open in X and V is open in
Y . Let’s check the main property to make sure it works. Suppose that
(x, y) ∈ (U1×V1)∩ (U2×V2). Then x ∈ U3 := U1∩U2 and y ∈ V3 := V1∩V2.
But then U3 × V3 is a basis element that that contains (x, y) and also lies in
Uj × Vj for j = 1, 2.

Continuous Maps: Let X and Y be topological spaces. A map f : X → Y
is continuous if it has the following property: If V is open in Y then f−1(V ),
meaning the set-theoretic inverse, is open in X. You can check that this
definition subsumes the old-school metric space definition of continuity when
X and Y are metric spaces.

The composition of continuous maps is continuous. That is, if f : X → Y
is continuous and g : Y → Z is continuous, then g ◦f : X → Z is continuous.
This follows almost immediately from the definition.

Homeomorphisms: The map f is a homeomorphism if f is a bijection
and both f and f−1 are continuous. In other words, f just renames the open
sets. The set of self-homeomorphisms of a topological space forms a group
under composition.

The Quotient Topology: Suppose X is a topolgical space and ∼ is an
equivalence relation on X. Let X = X/ ∼ denote the set of equivalence
classes. We have the quotient map f : X → X. Here f(x) is just the equiv-
alence class of x. We define a topology on X as follows. A subset U ⊂ X is
open if and only if the set-theoretic inverse f−1(U) is open in X. You can
check that this defines a topology on X. It is called the quotient topology.

Hausdorff Spaces: A topological space X is called Hausdorff if it has
the following property. For any two points p ̸= q ∈ X there are open sets
U, V such that p ∈ U and q ∈ V and U ∩ V = ∅. This notion imitates some
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properties of metric spaces. In the metric space case, we can place any two
distinct points inside disjoint open balls.

If X is a finite Hausdorff topological space, then (you can check that)
every subset of X is open. So, the only interesting finite topological spaces
are non-Hausdorff.

Non-Hausdorff Examples: Let me give some examples of non-Hausdorff
spaces.

• On any set X we can pick the topology in which ∅ and X are the only
open sets. If X has more than one point, then X is not Hausdorff.

• Given any polyhedron (like a cube) we define X to be the (finite) set
of vertices, edges, and faces of the polyhedron. We define the closed
subsets of X to be those unions of vertices, faces, and edges which are
closed in the usual topology in R3. In the cube case, one of the closed
sets has 9 elements: It is the union of a face and the 4 surrounding
edges, and the 4 incident vertices. This weird topological space is a
surprisingly geometric topology on a finite set. It is not Hausdorff.

• Let X denote the space (R − {0}) ∪ 0+ ∪ 0−. As a set we get X by
removing {0} and replacing it with two “twin zeros”. There are two
natural subsets of X, namely R+ = X − {0−} and R− = X − {0+}.
We say that a basis for a topology on X is the set of open intervals
in R+ and the set of open intervals in R−, when these two subsets
are identified with R. This turns X into a topological space. The
inclusions R± → X are both continuous. (You just need to check this
on the basis.) Note that X is not Hausdorff because you cannot place
0+ and 0− in disjoint open sets.

These few examples are just intended to show you the weirdness of non-
Hausdorff topological spaces. This class will deal exclusively with Hausdorff
topological spaces.

Compactness: A topological space X is called compact if every open cover
of X has a finite sub-cover. You should recall the Heine-Borel Theorem: A
subset of Rn with the usual topology is compact if and only if it is closed
and bounded.

To say that a subset K ⊂ X is compact is to say that K is a compact
topological space when given the subspace topology. But, since open subsets
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of K are just intersections of K with open subsets of X, we get the following
alternate characterization. A subset K of a topological space X is compact
if every open cover of K by open subsets of X has a finite subcover.

Some Useful Lemmas: Here are some useful results about how the various
properties we defined interact with each other.

Lemma 0.1 A compact subset of a Hausdorff space is closed.

Proof: It suffices to prove that the complement X − K is open. For this,
it suffices to prove that each p ∈ X −K is contained in an open set U such
that U ⊂ X −K.

Since X is Hausdorff, each q ∈ K has the following property. There are
open neighborhoods Uq and Vq such that p ∈ Up and q ∈ Vq and Up ∩Vq = ∅.
Now {Vq} is an open cover of K. Since K is compact, there is some finite
subcover V1, ..., Vn. Let U = U1 ∩ ... ∩ Un. By definition U is open, and by
construction U is disjoint from V1 ∪ ... ∪ Vn, a set which contains K. Hence
p ∈ U ⊂ X −K. ♠

Lemma 0.2 Suppose f : X → Y is a continuous map between topological
spaces. If X is compact then f(X) is compact.

Proof: Let {Uα} be some open cover of f(X). Then {f−1(Uα)} is an open
cover of X. Since f is continuous f−1(U) is open for each member U of this
cover. Since X is compact, there is a finite subcover of X,

f−1(U1), ..., f
−1(Un).

But then U1, ..., Un is a cover of f(X). Hence every open cover of f(X) has
a finite subcover. ♠

Lemma 0.3 Suppose X is compact and K ⊂ X is closed. Then K is com-
pact.

Proof: Choose an open cover {Uα} of K. Since K is closed, V = X −K is
open. But then {Uα, V } is an open cover of X. Since X is compact, there is
a finite subcover. If this subcover contains V as a member, we delete V . In
either case, we still have a finite cover of K. ♠
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Lemma 0.4 Suppose f : X → Y is a continuous bijection. If X is compact
and Y is Hausdorff then f is a homeomorphism.

Proof: The only property we need to check is the following one: If U ⊂ X
is open the f(U) is open. This is equivalent to showing that if K ⊂ X is
closed then f(K) is closed.

Since K is closed and X is compact, K is compact. But then f(K) is
compact. Since Y is Hausdorff, f(K) is closed. ♠

Second Countability: A topological space X is second-countable if it has
a countable basis. For instance Rn is second-countable. For a basis, you can
use the open balls centered at rational points and having rational radii.

There are plenty of topological spaces which are not second-countable.
For instance, we can put the discrete topology on an uncountable collection of
points: Every set is open. This space is Hausdorff but not second-countable.

Topological Manifolds: A topological space X is an n-dimensional topo-
logical manifold if it has the following properties:

• X is Hausdorff.

• X is second-countable.

• Each point p ∈ X is contained in an open subset U such that U is
homeomorphic to Rn.

Since open balls in Rn are homeomorphic to Rn, you can replace the third
condition by saying that U is homeomorphic to an open ball in Rn.

It is a theorem, though not so easy to prove, that these conditions imply
that X is homeomorphic to a metric space. So, if you don’t like Hausdorff
topological spaces, you can alternatively say that an n-dimensional topologi-
cal manifold is a second-countable metric space that is locally homeomorphic
toRn. This is kind of a weird definition, but it gives exactly the same objects.
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