M1720: Examples of Manifolds

These notes give some examples of manifolds. I will probably add to them
over the next few weeks.

Open Subsets Any open subset of U C R" is an n-dimensional smooth
manifold. Each point p € U is contained in an open ball B C U, the pair
(1, B) serves as a coordinate chart. Here ¢ : B — R" is the inclusion map.
The overlap functions here are all restrictions of the identity map.

The Circle: Stereographic Projection One way to think of the circle
St is the solution of 22 + y? = 1 in the plane. There is a specially nice map
from S' — (0,1) to R. The map is given by

filz,y) = (1:/0)

The inverse map is given by
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Geometrically (0,1) and (x,y) and fi(x,y) lie on the same ray emanating
from (0,1). The map f; is called stereographic projection, and it gives a
coordinate chart from S* — (0,1) to R. The map

fola,y) — (11@,0)

gives a similar chart from S — (0, —1) to R. The inverse map is given by

2t 1—t2)

—1
t0)=(—-—— —
J2(1,0) (t2+1’t2+1

We compute that

fao fri(t) =1/t
So the overlap function is a diffeomorphism from R — {0} to itself. The two
charts just defined give a smooth atlas for S', consisting of just two charts.

This is great because then there is only one overlap function to consider and
we have done it. This makes the circle into a smooth manifold.



The Circle: Quotient Space Approach:— One view of the circle is the
quotient space R/Z, where two points a,b € R are equivalent iff a — b € Z.
Let 7 : R — R/Z be the quotient map. Each point p € R/Z is contained in
an open set U such that 77(U) is a disjoint union of intervals, say of length
1/3. We can choose any one of these intervals, say Uandlet ¢ : U — U be
the map such that 7 o ¢ is the identity. In this case, all the overlap func-
tions are translations. So, this is another way to see make S! into a smooth
manifold. It is an easy but somewhat tedious exercise to show that the two
methods give diffeomorphic manifolds.

The Sphere: We can think of S™ as the solution to the equation
17" +y* =1

where @ = (z1,...,2,). (This is just the usual eq_)uation if you expand it
out.) There is a nice coordinate chart from S™ — (0',1) to R". This is the
higher dimensional version of stereographic projection. The map is given by
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This is the same equation as for the circle. There is a similar chart f5 :
St —(0,—1) — R" just as for the circle. The overlap function the map
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This agrees with the definition in the case of the circle. This is the most
efficient way to make S™ into a smooth manifold.

The Torus: Quotient Space Approach On R" we define the equiva-
lence p ~ q if p— q € Z". The quotient R"/Z" is the n-torus. We have the
projection map 7 : R" — R"/Z". Each point in R"/Z" is the center of an
open set U such that 771(U) is an infinite union of disjoint open balls in R".
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We define ¢ : U — R" by taking ¢(U) to be some component of 7—!(U) and
forcing mo¢ to be the identity map. With these coordinate charts, the overlap
functions are all translations. This makes the n-torus into a smooth manifold.

The Torus: Cubes We can also think of the torus as the unit cube with
the faces identified by translations. This works because the quotient space
we get is exactly the same as the one we just described. That is, we get
R"/Z" again.

We can cut the big cube into 2" cubes of side-length 1/2 and then we can
imagine suitably gluing these cubes together to make the torus. In the case
of the 2-torus we would be making the 2-torus by gluing together 4 squares
in an appropriate pattern. You should try drawing this out.

Linear Fractional Transformations: As a prelude to talking about higher
genus surfaces, we discuss linear fractional transformations. A [linear frac-
tional transformation is a map of the form

az+b

Z = —
cz+d

where a, b, ¢, d are complex numbers such that ad — bc # 0. The domain for
this map is C U oo. The image of co is defined to be a/c.

Let me give some information about these maps. As you can see by di-
rectly solving the equations, there is a unique linear fractional transformation
T such that T'(z;) = w; for i = 1,2,3. Here 21, 29, 23 are distinct points and
so are wy, we, ws3. A circle in C'U oo is either a round circle or else a union
L U oo where L is a straight line.

Lemma 0.1 Linear fractional transformations map circles to circles.

Proof: You could just compute this out, but it is a bit painful. Here is
a conceptual proof. Let C' be an arbitrary circle. Call a linear fractional
transformation 7' good if T'(C') is a circle. We want to prove that all linear
fractional transformations are good.

The map .
z2—1
zZ+1
maps R U oo to the unit circle. Composing 7Ty with maps of the form

To(z) =

z — az+ b,



a special kind of linear fractional transformation, we see that there is a linear
fractional transformation which maps RU oo to any circle we like. Using the
fact that the linear fractional transformations form a group, we see that for
any circle C” there is a linear fractional transformation L such that L(C) =
C’. We get this linear transformation by mapping C to R U oo and then
mapping RU oo to C.

Now, we can do this procedure in many ways. After we map C to RU oo
we can apply a self-map of R U oo that maps any three points on RU oo to
any other three points. This means that for any triple of points (21, 29, 23)
on C' and any triple (21, 25, 24) on C” we can find a linear transformation L
such that L(C) = C" and L(z;) = 2] for i = 1,2, 3.

If some linear fractional transformation F is bad, and F'(C) is not a circle,
then we pick three points 21, 29, z3 € C' and look at their images z, = F(z;).
There is some circle C’ containing 2}, 21, z5. From what we have said above,
we must have F'(C') = C'. Hence F is good after all. &

Hyperbolic Geometry Prelude: As a prelude to talking about higher
genus surfaces, we talk about the hyperbolic plane. A model for the hyper-
bolic plane is the open unit disk, which we denote by H? We denote the
boundary of H? by S*. The geodesics in H? are arcs of circles which meet
the boundary at right angles.

An orientation preserving automorphism of H? is a linear fractional
transformation which maps H? to itself in a bijective way. There are lots of
these: We just pick two triples (z1, 29, 23) and (wq, wq, w3) of clockwise ori-
ented points in S and then take the linear fractional transformation 7' such
that T'(z;) = w; for i = 1,2, 3. Linear fractional transformations also preserve
angles, because they map circles to circles. So, the derivative is a similarity.
(For those of you who know complex analysis, this means that linear frac-
tional transformations satisfy the Cauchy-Riemann equations.) From this
property we see that an automorphism of H? maps geodesics to geodesics.

The map z — Z also preserves H? and maps geodesics to geodesics and
preserves angles. An automorphism of H? is any map of H? which is finite
composition of linear fractional transformations and the map z — Z.

It turns out that we can make H? into a metric space in such a way that
all automorphisms are isometries. Given b,c € H? we let a,d € S* be the
points so that a, b, ¢, d appear on the geodesic through b and c¢. The distance



from b to c is given by
(a—c)(b—d)
(a—0b)(c—d)

You can check by a direct calculation that this is invariant. It is a bit
harder to show that this also satisfies the triangle inequality, but this is not
something we need to know. We mention this because the automorphisms
of H? are precisely the isometries of this space. H? is very much like the
Euclidean plane; it is homogeneous and isotropic.

A geodesic polygon in H? is a region bounded by a finite chain of geodesic
segments. If you draw a few figures, you can see that it is possible to make
a right angled and totally symmetric geodesic hexagon. (Small hexagons
will have angles close to their Euclidean counterparts and big ones will have
angles near 0.) Call this thing a regular right-angled hexagon, or RRH for
short. The image of a regular right-angled hexagon under an automorphism
of H? is also called an RRH. All the sides of an RRH have the same length,
and all the angles are right angles.
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Higher Genus Surfaces: Take two copies of an RRH and color the sides
alternately red and glue on each one. Now glue the blue sides of one to the
blue sides of the other by the identity map. Topologically, this produces
a sphere with 3 holes cut out. This is how you might sew a pair of pants
together.

Now take two pairs of pants. Each one has 3 red circular boundary
components. Glue each boundary component on one to the corresponding
boundary component on the other. Topologically, you have made a genus 2
surface.

To get a nice atlas of coordinate charts, we can map the neighborhood of
each point of the quotient space into H? by maps which are local isometies
on each hexagon. If you do this, the overlap functions will be automorphisms
of H? and hence smooth. Just as you can build the torus out of 4 squares,
you can build the genus 2 surface out of 4 RRGs.

You can build the genus 3 surface out of 8 RRGs. And so on.



