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The purpose of this first handout is to make sense of the following

Definition: A surface is a metric space which satisfies the following prop-
erty. every point on the surface has a neighborhood which is homeomorphic
to the plane.

Don’t worry if you don’t know what some of the words in the above def-
inition mean. The point of this handout is to explain what they mean.

1 A Word about Sets

A set is an undefined notion for this class. Informally, a set is a collection of
things, called elements . You should be familiar with such sets as

• Z, the integers.

• N = {1, 2, 3...}, the natural numbers.

• R, the real numbers.

A map between sets A and B is a rule, say f , which assigns to each element
a ∈ A, an element b = f(a) ∈ B. This is usually written as f : A → B.
The map f is one to one if f(a1) = f(a2) implies that a1 = a2. The map f
is onto if the set {f(a)| a ∈ A} equals B. The map f is a bijection if it is
both one-to-one and onto. Two sets are bijective if there is some bijection
between them. All the sets we consider will be bijective to either a finite set,
or N or R.

The product A × B of sets is the set of ordered pairs (a, b) with a ∈ A
and b ∈ B. In particular, R

2 = R × R is the plane.
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2 Metric Spaces

A metric space is a set X together with a map d : X × X → R such that

• (nondegeneracy) d(x, y) ≥ 0 for all x, y, with equality iff x = y.

• (symmetry) d(x, y) = d(y, x) for all x, y.

• (triangle inequality) d(x, z) ≤ d(x, y) + d(z, y) for all x, y, z.

d is called a metric on X. Note that the same set can have many different
metrics.

Some examples of metric spaces:

• Exercise 1: Let X = R
2, the plane. Define the dot product

V · W = v1w1 + v2w2.

Here V = (v1, v2) and W = (w1, w2). Also define

‖V ‖ =
√

V · V .

Finally, define d(V, W ) = ‖V − W‖. Prove that d is a metric on R
2.

Hint: You might want to use the Cauchy-Schwarz inequality

|V · W | ≤ ‖V ‖‖W‖.

The metric in this exercise is known as the Euclidean metric on R
2, or

else the standard metric.

• Exercise 2: On Z define d(m, n) = 2−k where k is such that 2k divides
|m − n| but 2k+1 does not. Also define d(m, m) = 0. For instance
d(3, 7) = 2−2 = 1/4 because 22 divides 4 but 23 = 8 does not. Prove
that d is a metric on Z. This metric is called the 2-adic metric. It is
pretty different from the usual metric on the integers.

• If X is a metric space and Y ⊂ X is a subset, then the metric on X
automatically defines a metric on Y , by restriction. For instance, any
subset of the plane automatically can be interpreted as a metric space,
using the metric from Exercise 1.

• Given any set X define d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y.
This is called the discrete metric on X. It is a pretty boring example.
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3 Open and Closed Sets

Let X be a metric space with metric d. An open ball in X is a subset of the
form

{x| d(x, c) < r}.
Here c is the center of the ball and r is the radius. Say that a subset U ⊂ X
is open if for every point x ∈ U there is some open ball Bx such that x ∈ Bx

and Bx ⊂ U . Note that open balls are open sets.

Exercise 3: Prove that the intersection of two open sets is open. Prove
also that the arbitrary union of open sets is open.

Here is some vocabulary, which will be familiar to you if you’ve had a real
analysis class:

• The notation X −A means the complement of A in X, namely the set
of points in X which are not in A.

• Given a point x ∈ X a neighborhood of x is any open subset U ⊂ X
such that x ∈ X. For instance, the ball of radius r about x is a perfectly
good neighborhood of x.

• The interior of a set A ⊂ X is the union of all open subsets of A. By
Exercise 3, the interior of a set is open. Sometimes the interior of A is
denoted as Ao. Put another way Ao is the largest open set contained
in A.

• A set C ⊂ X is closed if X − C is open.

• The closure of a set A is the set

A = X − (X − A)o.

Put another way, A is the smallest closed set which contains A.

• The boundary of A is the set

∂A = A − Ao.

• A set A ⊂ X is dense if A = X. For instance, the set of rational
numbers is dense in the set of real numbers.
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4 Continuous Maps

A map between metric spaces is just a map in the set theoretic sense. There
are two equivalent definitions of continuity for maps between metric spaces.
The first one is much cleaner but the second one is probably more familiar.

Definition 1: The map f : X → Y is continuous if it has the following
property: For any open V ⊂ Y the set

U = f−1(V ) := {x| f(x) ∈ V }
is an open set of X.

Definition 2: First f is continuous at x ∈ X if, for any ǫ > 0, there is
some δ > 0 such that dX(x, x′) < δ implies that dY (f(x), f(x′)) < ǫ. Here
dX is the metric on X and dY is the metric on Y . Then f is continuous on
X if f is continuous at each point of X.

Exercise 4: Show that the two definition of continuity coincide.

Now let X, Y, Z all be metric spaces. Let f : X → Y be a map and let
g : Y → Z be map. The composition h = g ◦ f is defined as h(x) = g(f(x)).
So h is a map from X to Z.

Lemma 4.1 The composition of continuous maps is continuous.

Proof: The first definition is much better for this. Let W be an open
subset of Z. Our goal is to show that h−1(W ) is open in X. Note that
h−1(W ) = f−1(V ) where V = g−1(W ). Since g is continuous, V is open.
Since f is continuous and V is open, U is open. This works for any choice of
open W , so we are done. ♠

Exercise 5 Give an example of metric spaces X and Y , and f : X → Y
such that

• f is a bijection.

• f is continuous.

• f−1 (the inverse map) is not continuous.

This is a classic problem.
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5 Homeomorphisms

Let X and Y be two metric spaces. A map h : X → Y is a homeomorphism

if

• h is a bijection

• h is continuous.

• h−1 is continuous.

Compare Exercise 5. The spaces X and Y are said to be homeomorphic

if there is some homeomorphism from X to Y . Intuitively, two sets are
homeomorphic if one can be “warped” into the other one. Often we don’t
care exactly which metric we are using, but we just bring in the metric to
be able to talk about things like continuity and open sets. Another way to
“throw out the metric” is to introduce the notion of a topological space. In
some ways topological spaces are easier to work with than metric spaces, and
more flexible, but they are more abstract. If you’re interested in this, let me
know.

Even though sets might look very different to the eye, they might be
homeomorphic. The next exercise gives some examples of this.

Exercise 6 Prove that the following subsets of the plane (with the stan-
dard metric) are all homeomorphic to each other:

• An open ball.

• The interior of a (filled in) triangle.

• The plane itself.

Exercise 7: We can give R the standard metric d(x, y) = |x − y|. Prove
that R is not homeomorphic to R

2, with its standard metric.

Exercise 8 (Challenge) You can imitate the construction in Exercise 1
to put a metric on R

3, three dimensional space. Prove that R
2 is not home-

omorphic to R
3. As it turns out R

m and R
n are homeomorphic if and only

if m = n. When you try to prove something like this, you start getting into
algebraic topology.
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6 Surfaces

Now let’s go back to the original definition. Let X be a surface. This means,
first of all, that X is a metric space. So, it makes sense to talk about open
and closed sets on X and also continuous functions from X to other metric
spaces. So, what makes X is surface is that each point x ∈ X has an open
neighborhood U such that U is homeomorphic to R

2. You should picture U
as a little open disk drawn around x. So X has the property that, around
every point, it “looks” like the plane.

Exercise 9: The unit sphere S2 in R
3 is the set {(x, y, z)| x2 +y2 + z2 = 1}.

This set inherits a metric from R
3. Prove that S is a surface, according to

our definition. So, for each point x ∈ S you need to find an open subset
Ux ⊂ S and also a map fx : Ux → R2 which is a homeomorphism. (Hint:
Try to use symmetry to reduce the problem to showing that just one point
in S2 has the desired neighborhood.)

Exercise 10: Consider the following subset of R
4:

T 2 = {(x, y, z, w)| x2 + y2 = 1; z2 + w2 = 1}.

This set inherits a metric from R
4. You might recognize T 2 as the product

of two circles. Prove that T 2 is a surface. This surface is known as a torus.
(Hint: again, try to use symmetry.)

In this class, we’ll construct many more examples of surfaces besides
the ones in Exercises 9 and 10. In the next handout, I’ll explain a general
construction, called gluing which lets you make lots of surfaces.

6


