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The purpose of this handout is work out some of the details of the Schwarz
Christoffel Transformation. I will just work out the special case where the
exponents are all ±1/2. The general case is very similar.

1 The Inverse Function Theorem

The material in this handout uses the Inverse Function Theorem, or IFT, in
several places. Here is the statement:

Theorem 1.1 Let U ⊂ R
2 be an open set and suppose F : U → R

2 is a
smooth map. If the differential dF is nonsingular at p ∈ U then there exists
a neighborhood V of p such that f : V → V ′ = F (V ) is a diffeomorphism.
Furthermore, the two linear matrices dFp and d(F−1)F (p) are inverses of each
other.

The proof of this result can be found in any book on real analysis. In
the case of complex analytic maps, dF is nonsingular if and only if F ′(z) 6= 0.

Exercise 1: Suppose U ⊂ C is an open set and F : U → C is com-
plex analytic. Suppose F ′(p) 6= 0 for some p ∈ U . Prove that there is a
neighborhood V of p such that F : V → F (V ) is a holomorphism. (Hint:
You need to show that the inverse map is complex analytic.)

In the complex analytic case, the intuition behind the result is that

f(z) = f(z0) + f ′(z0)(z − z0) + H.O.T

when f ′(z0) 6= 0. So, f basically looks like a linear map near such points.
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2 The Schwarz-Christoffel Transformation

We’re just going to consider a special case of the S-C Transformation. Sup-
pose that x1 < x2 < ... < xn ∈ R and e1, ..., en are numbers such that

• ej = ±1/2 for j = 1, ..., n.

• e1 + ... + en = −2.

Let U ⊂ C denote the upper halfplane. Let U∗ ⊂ C denote the region ob-
tained by deleting the closed downward pointing rays which start at x1, ..., xn.
Then U∗ is a simply connected open set which contains U and every point
on R except x1, ..., xn. We are mainly interested in U , but the larger region
U∗ is convenient for for technical purposes.

Consider the function

f(z) = (z − x1)
e1 ...(z − xn)en.

If we try to define this function in all of C we run into trouble in that we
cannot consistently define f all the way around a loop which circles around
xj . It is not possible to make any loop like this in U∗ and so f is defined and
complex analytic in all of U∗.

We define
F (z) =

∫
f(z)dz.

This definition requires some explanation. We normalize so that F (i) = 0
and for any other point z ∈ U∗ we choose a smooth path γ connecting i to z
and then define

F (z) =
∫

γ
f(z)dz.

This is well defined, independent of path, because the integral of f around
any loop in U is zero.

Exercise 2: Prove that F is complex analytic in U∗ and F ′(z) = f(z) 6= 0.
(Hint: Just write out the difference quotient and see what happens.)

Exercise 3: Prove that F extends continuously to each of x1, ..., xn and
also to ∞. (Hint: You just need to see that certain integrals are finite.)
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3 The Image the Boundary

We want to understand F (U), and it is useful to first understand F (R∪∞).
Given Exercise 2, and the fact that F is defined on U∗, we know that F
is defined on all of R and has a complex derivative at all points except
x1, ..., xn. These points naturally divide R into n + 1 intervals. I0, ..., In.
Actually, I0 = (−∞, x1) and In = (xn,∞) are rays.

When we square f we get

f 2(z) = (z − x1)
2e1 ...(Z − xN )2en.

Here 2ej = ±1. From this we see that f 2 is positive on In, negative on In−1,
positive on In−2, and so on. This means that f(z) is real for z ∈ In, pure
imaginary for z ∈ In−1, real for z ∈ In−2, and so on. But F ′(z) = f(z), and
the argument of F ′(z) tells us how F rotates points in a neighborhood of
z. Hence F (In) is a segment on a horizontal line; F (In−1) is a segment on
a vertical line; F (In−2) is a segment on a horizontal line; and so on. Since
F is continuous on R ∪∞, we see that these segments all piece together to
give a closed zig-zag path, like the one shown in Figure 1. We’ve drawn an
embedded example, but the curve doesn’t have to be embedded.
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Figure 1

There are several fine points we need to make about this image.
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• We orient R from −∞ to +∞. If you walk along R then U lies to
your left. Being complex analytic, the map F is orientation preserving.
This means that, as you walk around F (R), the image F (U) (at least
locally) lies to the left.

• Exercise 4: Show that F (R) turns left at xj if ej = −1/2 and right
if ej = −1/2. (See Figure 1.) Geometrically, f(U) looks like one
quadrant in a neighborhood of f(xj) if ej = −1/2 and three quadrants
if ej = 1/2.

• Exercise 5: Given Exercise 4, and the fact that e1 + ... + en = −2,
show that F (R) turns once around counterclockwise (the equivalent of
4 left turns.) Hence F (I0) and F (In) travel in the same direction and
fit together seamlessly.

4 The Image of the Upper Half-Plane

Let’s say that F is good if F (R ∪∞) has no self-intersections, as in Figure
1. Our goal is to prove

Theorem 4.1 If F is good then F is a holomorphism (i.e. a complex ana-
lytic isomorphism) from U to the interior of the region bounded by F (R∪∞).

We will prove this in several steps.

Lemma 4.2 If F is good then F (U) is contained in the interior of the region
bounded by F (R ∪∞).

Proof: Let R be the region bounded by F (R∪∞). (R is the shaded region
shown in Figure 1.) If F (U) is not contained in R, then the closed and
bounded set

K = F (U ∪ R ∪∞)

contains some points which do not belong to R. In particular, there is a
point q = F (p) ∈ ∂K which does not belong to R. But F ′(p) 6= 0. But
then F maps a neighborhood of p to a neighborhood of q by the IFT. Hence
q 6∈ ∂B. This contradiction shows that F (U) ⊂ R. The same argument as
we just gave shows that F cannot map an interior point of U onto a point of
∂R = F (R ∪∞). ♠
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Lemma 4.3 F is one to one on U ∪ R ∪∞.

Proof: Let B ⊂ U ∪ R ∪ ∞ denote the set of points where F is not one
to one. In other words, if z ∈ B then there is some other point z′ such that
F (z) = F (z′). We want to show that B is empty. We will suppose that B is
nonempty and derive a contradiction.

Let
S = U ∪ R − x1 − ... − xn.

Then S is a connected subset of C.
We claim that B is an open subset of S. Suppose that z ∈ B and

F (z′) = F (z). Note that F is one to one on R ∪∞. By the previous result,
no point in R ∪ ∞ can be in B. Hence z ∈ U and z′ ∈ U . But F ′(z)
and F ′(z′) are nonzero. So, by the IFT, F maps little neighborhoods of z
and z′ onto little neighborhoods of F (z) = F (z′). Hence B contains a little
neighborhood of z (and a little neighborhood of z′.) This shows that B is
open.

We claim that B is closed subset of S. Suppose that {zn} is a sequence
in B, converging to a point z∞ ∈ ∂B. Consider the corresponding sequence
{z′n}. By taking a subsequence we can assume that {z′n} converges to some
point z′

∞
. By continuity we have F (z∞) = F (z′

∞
). It suffices to show that

z∞ 6= z′
∞

. Note that F is complex analytic in a neighborhood of S and
F ′(z) 6= 0 for z ∈ S. In particular F ′(z∞) 6= 0. But then F is one to one in a
neighborhood of z∞, by the IFT. Hence z′

∞
6= z∞. This shows that z∞ ∈ B.

Hence B is closed in S.
Since B is nonempty, and open and closed in S, we must have B = S.

Otherwise S would be disconnected. But B is disjoint from R−x1 − ...−xn .
Hence B 6= S. This contradiction shows that B is empty. ♠

Now we know that F−1 exists on all of R. But F ′(z) 6= 0 on U . Hence
F−1 is complex analytic by the IFT. This proves our theorem.

To restate the main result so far: If we fix e1, ..., en subject to the condi-
tions above, and choose x1, ..., xn in such a way that F (R ∪∞) is a simple
closed curve. Then F is a holomorphism from the upper half plane U onto
the interior of the region R bounded by F (R ∪∞).
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5 A Special Case: Rectangles

Now consider the special case where n = 4. We can set things up so that

(x1, x2, x3, x4) = (−1, 0, r, 1),

with r ∈ (0, 1). For each choice of r we get a S-C transformation Fr and a
rectangular region Rr. We define the first side of Rr to be F ([−1, 0]). We
define the height of Rr to be the length of its first side. We define the width
of R to be the length of the sides adjacent to the first side.

Let Ar denote the ratio of length to width of Rr. Then Ar measures the
shape of Rr.

Lemma 5.1 Ar = As if and only if r = s.

Proof: If Ar = As then there is a map G of the form G(z) = Mz + N such
that Fr and G ◦ Fs have the same image. But then

H = (G ◦ Fs)
−1 ◦ Fr

is a holomorphism from U to itself. But by the Disk Rigidity Theorem from
the previous handout (also known as the Schwarz lemma) we know that H
is a linear fractional transformation. But H fixes each of −1, 0, 1. A linear
fractional transformation is determined by what it does to 3 distinct points.
Hence H is the identity. In particular, H(r) = r. But s = H(r). ♠

Exercise 6: Show that the function r → Ar is continuous.

Exercise 7: Now we know that the map f(r) = Ar is an injective and
continuous map from (0, 1) to (0,∞). Prove that f is onto. In other words,
you can find a holomorphism from U to any rectangle.

6 Generalizations

In the above discussion we always took ej = ±1/2, but we did this just
for simplicity. The value of ej controlled the way that F (R ∪ ∞) turned
at F (ej). Here are some exercises which will take you through some other
constructions, and which point the way towards the general construction.
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Exercise 8: Find a holomorphism between U and the open region bounded
by the triangle with angles α1, α2 and α3. (Hint take ej = αj/π − 1)

Exercise 9: (Challenge) Prove that there is a holomorphism between
U and the interior of the region bounded by a regular pentagon. (Hint: Try
first to get a general pentagon whose angles are all 3π/5 and then use an
intermediate value type argument to show that you can get the sides of the
image to be all the same.

Exercise 10: (Challenge!) Let P be a region bounded by a simple closed
polygon. Prove, using a combination of the SC transformation and a topolog-
ical fixed point theorem, that there is a holomorphism from U to the interior
of the region bounded by P . Once you have this result, you can get the
Riemann mapping theory by polygonal approximation.
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