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The purpose of this handout is to summarize the material on Riemann
surfaces and the Poincare Uniformization Theorem I discussed in class. Un-
like previous handouts, this one doesn’t have exercises. For a complete proof
of the Uniformization Theorem, see Alan Beardon’s book, A Primer of Rie-

mann Surfaces. (L.M.S. Lecture Series 78)

1 Riemann Surfaces

Let S be a surface. Recall that a smooth structure on S is a maximal collec-
tion of coordinate charts which have the property that the overlap functions
are all smooth. A Riemann surface is defined in a similar way, with the word
complex analytic replacing the word smooth. That is, a Riemann surface
structure on a surface is a maximal collection of coordinate charts such that
the overlap functions are all smooth. Here are some examples:

Open Subsets of C Any open subset of C is a Riemann surface. We
can take the coordinate chart maps to be the identity.

The Riemann Sphere: We can think of S2 as C ∪ ∞. Then U1 = C

is a neighborhood of {0} and U2 = C ∪ ∞ − {0} is a neighborhood of ∞.
The identity map is a homeomorphism from U1 to C and the map f(z) = 1/z
is a homeomorphism from U2 to C. The overlap U1 ∩U2 is C −{0} and the
overlap function is just f(z) = 1/z, a complex analytic function. We already
have a collection of (two) coordinate charts which cover S2 and we can com-
plete this collection to a maximal collection. This makes S2 into a Riemann
surface. This surface is known as the Riemann sphere.
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Flat Tori: Let P be a parallelogram. If we glue the opposite sides of P
together by translations then we produce a closed surface. Just as in class
we can find a covering of S by coordinate charts whose overlap functions
are translations−i.e. maps of the form z → z + C for various choices of the
constant C. Such maps are complex analytic and so we can make these flat
tori into Riemann surfaces in a natural way.

Hyperbolic Surfaces: Recall that a hyperbolic structure on a surface is
a maximal collection of coordinate charts into H

2 such that the overlap
functions are all restrictions of hyperbolic isometries. If we only use orienta-
tion preserving hyperbolic isometries then these maps are all linear fractional
transformations. Linear fractional transformations are complex analytic, and
so a hyperbolic structure on a surface is always a Riemann surface structure.

Covering Surfaces of Riemann Surfaces Let S be a Riemann surface
and let S̃ be a covering of S. This means that there is a map E : S̃ → S such
that each point p ∈ S has a neighborhood Up with the following property:
The restriction of E to each component of E−1(Up) is a homeomorphism.
We can define coordinate charts on S̃ as follows. Let p̃ ∈ S̃ be a point.
Let p = E(p̃). Let Up be as above. Then there is some component Ũp of
E−1(Up) which contains p̃. If φ : Up → C is a coordinate chart then we can
use φ ◦ E : Ũp → C as a coordinate chart. We then complete this collection
of coordinate charts to a maximal one. This makes S̃ into a Riemann surface.

Complex Varieties: Suppose f : C
2 → C is a map which is complex

analytic in each coordinate. We can take the complex gradient

∇f = (∂f/∂z1, ∂f/∂z2).

If ∇f does not vanish anywhere on the set f−1(0) then a version of the
Implicit Function Theorem shows that f−1(0) is a Riemann surface. To
make this really work well, one usually works in CP

2 rather than C
2. Here

CP
2 is the space of complex lines through the origin in C

3 in the same way
that the projective plane RP

2 is the space of real line through the origin
in R

3. In natural way we have C
2 ⊂ CP

2 just as we have R
2 ⊂ RP

2

in a natural way. Namely, the point (z, w) corresponds to the complex line
consisting of points (uz, uw, u), with u ∈ C.
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2 Maps between Riemann Surfaces

Suppose that S1 and S2 are two Riemann surfaces. A map f : S1 → S2 is
complex analytic in a neighborhood of p1 ∈ S1 if there are neighboroods U1 of
p1 and U2 of p2 = f(p1) , together with coordinate charts fj : Uj → C such
that the map f2 ◦ f ◦ f−1

1 is complex analytic. f is complex analytic on S1 if
f is complex analytic in a sufficiently small neighborhood of every point. We
can use some of the machinery from handout 10 to prove nontrivial results
about maps between Riemann surfaces. This handout contains a sampler of
these kinds of results.

Theorem 2.1 There is no nontrivial complex analytic map from a compact

Riemann surface into C.

Proof: Suppose f : S → C is complex analytic. Since S is compact f
achieves its maximum at some point p ∈ S. Let U be a coordinate chart
about p and let g : U → C be a coordinate chart. Then h = f ◦ g−1 is a
complex analytic map from the open set g(U) into C. Moreover, h takes its
maximum value at an interior point of g(U). But a non-constant complex
analytic map cannot have an interior maximum. ♠

On the other hand, there are plenty of complex analytic maps from the
Riemann sphere to itself. For instance, any rational function R(z) = P (z)

Q(z)
is

a complex analytic map from the Riemann sphere to itself. Here P and Q
are polynomials. The set R−1(∞) is contained in the set of zeros of Q.

Theorem 2.2 There is no nonconstant complex analytic map from C into

a hyperbolic surface.

Proof: Let f : C → S be a complex analytic map from C to S. Let
E : H

2 → S be the universal covering map. Using the lifting property for
maps we can find a lifting f̃ : C → H

2 such that E ◦ f̃ = f . (We produce
f̃ by partitioning C into an infinite grid of squares, and applying the lifting
theorem one square at a time.) By construction f̃ is complex analytic. The
point is that on small neighborhoods E−1 is defined and complex analytic;
and f̃ = f ◦ E−1 on these small neighborhoods. However we can take H

2

as the open unit disk. So, f̃ is a bounded complex analytic function on C.
However, all such maps are constant. Since f̃ is constant, so is f . ♠
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Theorem 2.3 Suppose that f : C → C is a holomorphism. Then f is a

linear map. That is f(z) = Az + B.

Proof: Step 1: Subtracting off a constant we can assume that f(0) = 0.
We claim that f ′(0) 6= 0. Otherwise there is some n > 1 such that

f(z) = Czn + higher.order.terms.

But then f maps a little circle around 0 to a curve which winds n > 1 times
around 0. Such a curve cannot be embedded, as it must be if f is one to
one. This contradiction shows that f ′(0) 6= 0. Hence f(z)/z converges to
a nonzero constant as z → 0. But then z/f(z) also converges to a nonzero
constant as z → 0.

Step 2: Since f−1 is continuous there is some N such that |z| < 1 implies
that |f−1(z)| < N . Put another way, there is some N such that |f(z)| > 1
provided that |z| > N . Consider the map

g(z) = 1/f(1/z).

Then g is complex analytic in C−{0} and |g(z)| < 1 provided that |z| < 1/N .
Hence g is bounded on the disk of radius 1/N about 0. Hence g extends to
a complex analytic function of all of C.

Step 3 Recall from Step 1 that z/f(z) is bounded in a neighborhood of
0. Using this fact, we see that g(z)/z is bounded in a neighborhood of ∞.
Now we know that g is complex analytic in all of C and |g(z)| < C|z| as
long as z is sufficiently laege. We have the Cauchy integral formula for the
second derivative:

g′′(A) = C
∫

γ

g(z)dz

(z − A)3
,

for some constant C I’m too lazy to write down. We can take γ to be a circle
of radius R about A. If R is large then we can use the fact that |g(z)| < CR
to see that the integral on the right is comparable to 1/R. Letting R → ∞ we
get that g′′(A) = 0. But A is arbitrary. Hence g′′ is identically 0. But then g
is linear. But then f is a linear fractional transformation. Since f(C) = C

we must have f = Az + B. ♠

4



Corollary 2.4 Suppose that S is a Riemann surface which has a non-abelian

fundamental group. Then there is no complex analytic covering map of the

form E : C → S.

Proof: Suppose that E : C → S exists. Let G be the fundamental group
of S. Then G acts on C as the deck group. Hence each g ∈ G must act
as a linear map on C. Also, g does not fix and points of C because a deck
transformation is the identity if it fixes one point. The only linear maps with
this property are the translation. In short g is a translations. But any two
translations commute and hence G is abelian. This contradiction shows that
E does not exist. ♠

3 The Uniformization Theorem

The Uniformization Theorem can be viewed as an extension of the classical
Riemann mapping theorem. The classical Riemann theorem is this:

Theorem 3.1 Let A be a simply connected open subset of C. Then there is

a holomorphism between A and the open unit disk.

Proof: (Sketch) Say that a rectilinear region is an open subset of C bounded
by a polygon whose sides are parallel to the coordinate axes. In the previ-
ous handout I showed how to use the Schwarz-Christoffel transform to get
holomorphisms between the unit disk and many rectilinear regions. Once
the sequence of left and right turns of the region is fixed, the side lengths are
determined by the placement of the special points on the boundary of the
upper half plane. Using the Brouwer fixed point theorem (a higher dimen-
sional analog of the intermediate value theorem) we can prescribe the side
lengths arbitrarily. In other words, we can find a holomorphism between the
unit disk and any rectilinear region. Finally, any simply connected region can
be approximated by a sequence of rfectilinear regions, and the associated se-
quence of maps, if suitably normalized, converges to the desired final map. ♠

Here is a version of the Uniformization Theorem, sometimes also called
the Riemann mapping theorem:
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Theorem 3.2 Let A be and simply connected Riemann surface. Then one

of three things is true:

• A is compact, and there is a holomorphism between A and the Riemann

sphere.

• A is non-compact and there is a holomorphism between A and C.

• A is non-compact and there is a holomorphism between A and the open

unit disk.

Combining the Uniformization Theorem with the Corollary above, we
get:

Lemma 3.3 There is a complex analytic covering map from the open unit

disk to C − 0 − 1, the twice punctured plane.

Proof: The universal cover X of C − 0 − 1 is a simply connected Riemann
surface. Let E : X → C − 0 − 1 be the covering map. If X is compact then
E(X) is also compact, since the image of a compact set under a continuous
map is conpact. But E(X) = C − 0 − 1, which is noncompact. So, X is
noncompact. If there is a holomorphism between X and C then we have a
complex analytic cover C → C − 0− 1. However, the fundamental group of
C − 0− 1 is non-abelian. This is a contradiction. We have only one alterna-
tive left in the Uniformization Theorem,, and so there is a holomorphism h
between X and the open unit disk. But then E ◦ h−1 is the desired complex
analytic covering map between the open unit disk and C − 0 − 1. ♠

Now we have all the machinery to prove the famous Picard Theorem:

Theorem 3.4 Let f : C → C be a non-constant analytic map. Then either

f is onto or f omits exactly one value.

Proof: We will suppose that f omits at least two values and show that f
is constant. We can scale f so that two of the omitted values are 0 and 1.
Then f : C → C − 0 − 1. We have our holomorphic covering from the open
unit disk ∆ to C − 0 − 1. But then we can find a lift f̃ : C → ∆. This
map is a bounded complex analytic function, and hence constant. Hence f
is constant as well. ♠
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4 Implications for Compact Surfaces

The Uniformization Theorem is stated above in terms of simply connected
Riemann surfaces, but it has nice implications for general surfaces. To get a
clean statement, I’ll stick to the case of compact oriented surfaces.

Theorem 4.1 Let S be a compact and oriented Riemann surface. This is

to say that S is homeomorphic to either the sphere, the torus, or a higher

genus surface. Then the following is true about S.

• If S is homeomorphic to a sphere, then there is a holomorphism between

S and the Riemann sphere.

• If S is homeomorphic to the torus, then there is a holomorphism be-

tween S and a flat torus.

• If S is homeomorphic to a higher genus surface, then there is a holo-

morphism between S and some hyperbolic surface.

Proof: If S is homeomorphic to the sphere then the Uniformization Theorem
immediately says that there is a holomorphism from S to the Riemann sphere.

Suppose that S is not homeomorphic to a torus. Then the fundamental
group of S is nonabelian. By the Uniformization Theorem and the corollary
above, we have a complex analytic covering ∆ → S where ∆ is the unit disk.
Let G be the fundamental group of S. Then G acts on ∆ as the deck group.
Each element g ∈ G is a holomorphism of ∆. In handout 10 we proved
that such maps are hyperbolic isometries. Hence G acts on ∆ as a group
of hyperbolic isometries. S is precisely the quotient of the hyperbolic plane
by the orbit equivalence relation: Two points are equivalent iff there is some
element of G which maps one to the other. Small neighborhoods of points
in ∆ contain unique members of equivalence classes, and so these little disks
map injectively into S. The inverse maps give local coordinate charts into
∆, such that the overlap functions are restrictions of hyperbolic isometries.
In short, S inherits its hyperbolic structure from ∆.

Suppose that S is homeomorphic to a torus. If there is a holomorphic
covering ∆ → S then the same argument as just given shows that S is a
hyperbolic surface and the fundamental group Z

2 acts on ∆ by hyperbolic
isometries. This is only possible if all the elements of Z

2 fix a common point
on the unit circle. Such maps have the following property: For any ǫ > 0

7



there is some point x ∈ ∆ which is moved less than ǫ (as measured in the hy-
perbolic metric.) But then S would have closed and homotopically nontrivial
loop of length less than ǫ. This contradicts the fact that all sufficiently short
loops on S are homotopically trivial. The contradiction shows that there is
no holomorphic cover from ∆ to S. Only one alternative for the Uniformiza-
tion Theorem holds and so there is a holomorphic cover C → S. But now
the deck transformations are all Euclidean translations and S inherits a Eu-
clidean structure from C just as in the previous case. ♠

The above theorem in much more generality. For instance, suppose that
C ⊂ C is a finite set of N > 2 points. Then there is a holomorphism between
C − C and a hyperbolic surface. The same result holds if C is a countably
infinite set of points, or the middle-third Cantor set. It’s hard to picture the
universal cover of the complement of the middle-third Cantor set, but the
Uniformization Theorem says that it is just the hyperbolic plane in disguise.
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