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The purpose of this handout is to talk about flat cone surfaces, the com-
binatorial Gauss-Bonnet Theorem, and polygonal billiards.

1 Sectors and Euclidean Cones

A sector in R
2 is the closure of one of the two components of R

2 − ρ1 − ρ2,
where ρ1 and ρ2 are two distinct rays emanating from the origin. For example
non-negative quadrant is a sector. The angle of the sector is defined as the
angle between ρ1 and ρ2 as measured from inside the cone. For instance, the
angle of the non-negative quadrant is π/2.

Two sectors in R
2 can be glued together isometrically along one of their

edges. A Euclidean cone is a space obtained by gluing together, in a cyclic
pattern, a finite number of sectors. The angle of the Euclidean cone is the
sum of the angles of the sectors. The cone point is the equivalence class
of the origin(s) under the gluing. The cone point is the only point which
potentially does not have a neighborhood locally isometric to R

2.
Note that two isometric Euclidean cones might have different descrip-

tions. For instance, R
2 can be broken into 4 quadrants or 8 sectors of angle

π/4.

Exercise 1: Prove that two Euclidean cones are isometric if and only if
they have the same angle.

Exercise 2: Define the unit circle in a Euclidean cone to be the set of
points which are 1 unit away from the cone point. On the cone of angle 4Π
find the shortest path between every pair of points on the unit circle. (This
breaks into finitely many cases.)
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2 Euclidean Cone Surfaces

Say that a compact surface Σ is a Euclidean cone surface if it has the following
two properties:

• Every point p ∈ Σ has a neighborhood which is isometric to a neigh-
borhood of the cone point in a Euclidean cone of angle θ(p).

• We have θ(p) = 2π for all but finitely many points.

The points p where θ(p) 6= π are called the cone points . The quantity

δ(p) = 2π − θ(p)

is called the angle deficit . So, there are only finitely many points with nonzero
angle deficit, and these deficits could be positive or negative.

Here are two examples:

• Let P be a convex polyhedron in R
3. Then ∂P is a Euclidean cone

surface. The metric on ∂P is the intrinsic one: The distance between
two points is the length of the shortest curve which remains on ∂P and
joins the points.

• Let P1, ..., Pn be a finite union of polygons. Suppose that these polygons
can be glued together, isometrically along their edges, so that the result
is a surface. Then the surface in question is a Euclidean cone surface
if it is given its intrinsic metric−i.e. the shortest path metric.

Amazingly, every example of type 2 is also an example of type 1 provided
that the underlying surface is a sphere and all the angle deficits are positive.
This result is known as the Alexandrov Theorem. (To make this strictly true
we have to allow for the possibility that P is contained in a plane in R

3.)
One interesting open problem is to determine the combinatorics of the con-
vex polyhedron you get, based on the intrinsic geometry of the cone surface.

Exercise 3: Prove Alexandrov’s theorem in case there are just 3 cone points
(and the underlying space is a sphere.)
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3 The Gauss-Bonnet Theorem

A Euclidean triangle on a Euclidean cone surface S is a region isometric to
(you guessed it) a Euclidean triangle. For instance, on the boundary of a
tetrahedron, there are 4 obvious Euclidean triangles. Two triangles on a
cone surface intersect normally if they are either disjoint, or share a vertex,
or share an edge. A triangulation of S is a decomposition of S into finitely
many triangles, such that each pair of triangles intersects normally.

Exercise 4: Prove that every Euclidean cone surface has a triangulation.
Hint: First draw lines between the cone points.

If S has been triangulated, then we define χ(S) = F + V − E, where F
is the number of triangles, E is the number of edges, and V is the number of
vertices. This famous formula is known as the Euler Characteristic. It turns
out that χ(S) only depends on S and not on the chosen triangulation. Here
is a combinatorial version of the Gauss-Bonnet Theorem:

Theorem 3.1 ∑

p

δ(p) = 4πχ(S).

Here the sum is taken over all angle deficits.

Proof: Let T1, ..., TF be the list of triangles in the triangulation. Each Ti

has associated to it three angles ai, bi, ci, with ai + bi + ci = π. The cone
points are all at vertices of the triangles, and so

∑

p

δ(p) = 2πV − (
F∑

i=1

ai +
F∑

i=1

bi +
F∑

i=1

ci).

In other words, we add up all the angles and see hows the total sum differs
from the expected 2πV . Given that ai + bi + ci = π we have

∑

p

δ(p) = 2πV − πF = 2π(V − F/2) =∗ 2π(V + F − E) = 2πχ(S).

The starred equality can be explained like this: Each triangle contributes 3/2
edges to the total number of edges. That is, E = 3F/2 = F + F/2. Hence
−F/2 = F − E. ♠
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4 Billiards and Translation Surfaces

Let P be a Euclidean polygon. A billiard path in P is the motion taken by an
infinitesimal frictionless ball as it rolls around inside P , bouncing off the walls
according to the laws of inelastic collisions: The angle of incidence equals the
angle of reflection. The billiard path is periodic if it eventually repeats itself.
Geometrically, a periodic billiard path corresponds to a polygonal path Q
with the following properties:

• Q ⊂ P (I mean the solid planar region.)

• The vertices of Q are contained in the interiors of the edges of P .

• A neighborhood of P ∪ Q in each vertex is isometric to a perfect K,
with the crooked part being a subset of P and the straight part being
a subset of Q.

Exercise 5: Find (with proof) all the examples of periodic billiard paths
in a square which do not have self intersections. So, the path Q has to be
embedded.

The polygon P is called rational if all its angles are rational multiples of
π. For instance, the equilateral triangle is a rational polygon. A Euclidean
cone surface is a translation surface if all the cone angles are integer multiples
of π. In this section I’ll explain how to associated a translation surface to a
rational polygon. This is a classical construction, attributed by some people
to Anatoly Katok. The geometry of the translation surface encodes a lot of
the features of billiards in the polygon.

For each edge e of P there is a reflection Re in the line through the origin
parallel to e. Like all reflections, Re has order 2. That is, Re ◦ Re is the
identity map. Let G be the group generated by the elements R1, ..., Rn. Here
Rj stands for Rej

and e1, ..., en is the complete list of edges. If ei and ej are
parallel then Ri = Rj . If P is a rational polygon then there is some N such
that ej is parallel to some Nth root of unity. But then G is a group of order
at most 2N . In particular, G is a finite group.

Let X = P × G. We think of X as a disjoint union of copies of P , one
per element of G. We isometrically glue the edge (ei, g) of (P, g) to the edge
(ei, h) of (P, h) if and only if g = Rih. Note that g = Rih if and only if
h = Rig, because Ri has order 2. We call the resulting space P̂ . Note that
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each edge of P ×G is glued to exactly one other edge, because G is a group.
Hence P̂ is a closed surface. By construction P̂ is a Euclidean cone surface.
The only potential cone points are at the (equivalence classes) of vertices of
X.

Lemma 4.1 P̂ is a translation surface.

Proof: To analyze the vertices of P̂ , let (v, g) be a vertex of (P, g). Then p
is incident to two consecutive edges of P , say e1 and e2. The polygon (P, g) is
glued along (e1, g) to the polygon (P, R1g), which is then glued along (e2, R1g)
to (P, R2R1g), which is then glued along (e1, R2R1g) to (P, R1R2R1g), and so
on. This process continues until we reach the smallest k such that (R1R2)

k

is the identity. If the angle at v is θ/2 then the element R1R2 is rotation by
θ. We have 2k copies glued together around v and so the total cone angle
around v is kθ. But then kθ is a multiple of 2π because (R1R2)

k is the iden-
tity rotation. ♠

A path γ ∈ P̂ is called straight if every point p ∈ γ has a neighborhood
U with the following property: Any isometry between U and a subset of
R

2 maps γ ∩ U to a straight line segment. (For concreteness we can always
take U to be a little Euclidean ball centered at p.) There is an obvious
map π : X → P . We just forget the group element involved. This forgetting
respects the way we have done the gluing and so π is a well defined continuous
map from P̂ to P . The map π is somewhat like a covering map, except that
it is not locally a homeomorphism around points on the edges or vertices.

Lemma 4.2 Suppose γ̂ is a straight path on P̂ which does not go through

any vertices of P̂ . Then γ = π(γ̂) is a billiard path on P .

Proof: By construction γ is a polygonal path whose only vertices are con-
tained in the interiors of edges of P . We just have to check the perfect K
condition at each vertex. You can see why this works by building a physical
model: Take a piece of paper and make a crease in it by folding it in half
(and then unfolding it.) Now draw a straight line on the paper which crosses
the crease. This straight line corresponds to a piece of γ̂ which crosses an
edge. When you fold the paper in half you see the straight line turn back at
the crease and form a perfect K. This folded path corresponds to γ. ♠

The converse is also true:
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Lemma 4.3 Suppose that γ is a billiard path on P . Then there is a straight

path γ̂ on P̂ such that π(γ̂) = γ.

Proof: We use the fact that the map π is almost a covering map. Think of
γ as a parameterized path γ : R → P , with γ(0) contained in the interior
of P . We define γ̂(0) to be the corresponding interior point of (P, g), where
g ∈ G is any initial element of G we like. We can define γ̂(t) until the first
value t1 > 0 such that γ(t1) lies on an edge, say e1, of P . But then we can
define γ̂ in a neighborhood of t1 in such a way that γ̂(t1 − s) ∈ (P, g) and
γ̂(t + s) ∈ (P, e1g) for s > 0 small. If you think about the folding construc-
tion described in the previous lemma, you will see that the straight path
γ(t1 − ǫ, t1 + ǫ) projects to γ̂(t1 − ǫ, t1 + ǫ). Here ǫ is some small value which
depends on the location of γ(t1). We can define γ̂ for t > t1 until we reach
the next time t2 such that γ(t2) lies in an edge of P . Then we repeat the
above construction for parameter values in a neighborhood of t2. And so on.
This process continues indefinitely, and defined γ̂ for all t ≥ 0. Now we go
in the other direction and define γ̂ for all t < 0. ♠

Note that γ̂ is a closed loop in P̂ if and only if γ is a periodic billiard
path. Thus, the closed straight loops in P̂ correspond, via π, to periodic
billiard paths in P .

Exercise 6: Suppose that P is the regular 7-gon. What is the genus of
P̂?

Exercise 7: The same construction can be made when P has some irra-
tional angles. What do you get if P is a right triangle with the two small
angles irrational multiples of π?

5 Area Preserving Maps

We would like to understand how straight lines move around on P . In order
to do this, we have to go a bit into some concepts from measure theory and
dynamics. A subset S ⊂ R

2 is called null if, for any ǫ > 0, one can find an
open subset U ⊂ R

n such that S ⊂ U and U has volume less than ǫ. For
instance, any countable set is null. In fact
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Exercise 8: Prove that the countable union of null sets is null.

We would like to define null sets on P̂ but one technical problem is that
P̂ isn’t a subset of Euclidean space. The easiest approach is to recall that
P̂ is the finite union of Euclidean polygons. Say that S ⊂ P̂ is null if its
intersection with each of the polygons is null.

A subset S ⊂ P̂ is called full if P̂ − S is null. A full map on P̂ is a
map f : S → P̂ , where both S and f(S) are full. We say that f is area pre-

serving if f(V ) has the same area as V provided that f is defined on all of V .

Remark: This definition presupposes that we have a well defined notion
of area on P . The easiest way to do this is to recall that P̂ is the finite
union of Euclidean polygons. We can take a set S ⊂ P̂ , intersect it with
each polygon, compute the area, and then add up the result.

If f is an area preserving full map then f(S) and f 2(S), etc. all are full.
Hence

⋂
fk(S), the countable intersection of full sets, is also full. (Here we

are using the complement of the result that the countable union of null sets
is null.) Thus f and all its iterates are defined on a full set. We say that f is
invertible if there is an area preserving full map g such that f ◦ g and g ◦ f
are the identity map on a full set.

Here is a toy version of the famous Poincare Recurrence Theorem:

Theorem 5.1 Let f be an area preserving full map on P̂ . Let p ∈ P̂ be any

point and let ǫ > 0 be arbitrary. Then there is some q ∈ p̂ and some n such

that d(p, q) < ǫ and d(p, fn(q)) < ǫ.

Proof: Let ∆ be the disk of radius ǫ about p. Let S be a full set on
which f and all its iterates are defined. The infinite union of (almost) disks
Di = fn(∆∩S) all have the same area and the total area of P̂ is finite. Hence
there are two disks, say Da and Db, which intersect. But then Da−1 = g(Da)
and Db−1 = g(Db) also intersect. But then D0 = ∆ ∩ S intersects some Dn.
Any q ∈ D0 ∩ Dn satisfies the conclusions of the lemma. ♠
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6 Existence of Periodic Billiard Paths

It is a theorem of Howie Masur that every rational polygon has a periodic
billiard path. In fact, Masur gives bounds on the number of such billiard
paths of length at most L. He proves that there are at least L2/C − C of
them, and at most CL + C of them, for some constant C which depends on
the polygon. In some cases, it is possible to get sharper results. For instance:

Exercise 9: Prove that there is a constant C such that

lim
L→∞

N(L)/L2 = C,

where N(L) is the number of periodic billiard paths of length less than L on
the unit square. What is C?

In this section, I’ll sketch an elementary proof, due to Boshernitsyn, that
every rational polygon has at least one periodic billiard path. You will see
that the proof actually gives the existence of many periodic billiard paths,
but no bounds like the ones mentioned above.

Choose a vector V on P which is perpendicular to one of the sides of
P . We are going to use V to put a vector field on P̂ (minus the vertices.)
Recall that P̂ is constructed from X = P × G by making some gluings. We
define our vectorfield on (P, g) so that it is everywhere parallel to g(V ). This
construction is such that the vectorfield patches together across the glued
polygons. Also, the trajectories of the vector field are straight paths.

We would like to define a map f : P̂ → P̂ as follows: Given a point
p ∈ P̂ we simple move 1 unit along the vector field. The problem with this
definition is that the paths we take might go through the vertices, where the
vectorfield is not defined. However, there is really just a countable set of bad
straight paths, and the union of these is null. Thus f is really a full map. If
we start with a little disk on P̂ and apply f to it, we are just translating this
disk by 1 unit, all in the same direction. Hence f is area preserving. Clearly
f is invertible: We can just flow one unit in the other direction.

Exercise 10: Prove that a countable union of straight paths on P̂ really
is null.

Let p ∈ P̂ be some point. We think of p as the lift of γ(0), where
γ : R → P is a billiard path which, at time 0, is travelling perpendicular to
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a side of P . That is, γ is travelling parallel to V at time 0. By the Poincare
Recurrence Theorem we can find some q very close to p and some n so that
qβ̂(0) and fn(q) = β̂(n) are very close together, and β̂(0) is very close to
γ̂(0). Here β̂(0) is a straight path in P̂ which goes through q at time 0.

If β̂(0) and γ̂(0) are sufficiently close then these two points are on the
same polygon of P̂ . Hence β and γ are travelling in the same direction at
time 0. Likewise β is travelling in the same direction at times 0 and n. In
short, β travels perpendicular to a side of P at time 0 and also at some much
later time n. This means that β hits the same side of P twice, and both times
at right angles. But then β is periodic. Each time it hits P perpendicularly,
β just reverses itself and retraces its path.

9


