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The purpose of this handout is define the Veech group of a translation
surface, and connect it to some hyperbolic geometry. A lot of this mate-
rial can be found in various surveys of rational billiards e.g. Dynamics and

Rational Billiards , by Howie Masur and Sergei Tabachnikov.

1 Translation Surfaces

Recall that a Euclidean cone surface is a compact surface, such that every
point has a neighborhood isometric to a Euclidean cone, and only finitely
many of these cones have cone angle which is not 2π. A translation surface

is a Euclidean cone surface such that all the cone angles are multiples of 2π.
We always assume these surfaces are connected.

Exercise 1: Consider the regular Euclidean octagon X. Form a surface
by gluing opposite sides of X together, in “the usual way”. Let Q be the
quotient. One can define the distance between two points on Q to be the inf
of the Euclidean lengths of paths joining the two points. Prove that Q, with
this metric, is a translation surface with one nontrivial cone point having
cone angle 6π.

Exercise 2: Let Σ be any surface having genus at least 1. Prove that
there is a translation surface homeomorphic to Σ. In other words, you can
get any compact oriented surface (except the sphere) as a translation surface.

Theorem 1.1 Let Σ be a translation surface. Let C denote the finite set of

nontrivial cone points of Σ. Then Σ−C admits a continuous vector field in

1



which the trajectories are all locally straight paths.

Proof: Choose some basepoint x ∈ Σ − C. Let v(x) be some unit vector
tangent to x. Our goal is to define a unit vector v(y) for each point y ∈ Σ−C.
Here is the construction. Let γ be any smooth curve which joins x to y and
stays in Σ − C. Say that a vectorfield along γ is parallel if, in the local
coordinates, the vectors are all translates of each other. Since every point of
γ has a neighborhood which is isometric to a disk in R

2, there is a unique
parallel vectorfield along γ which agrees with v(x) at x. We define v(y) to be
the vector of this parallel vector field at y. If this is really well defined, then
in small neighborhoods, our vectorfield consists entirely of parallel vectors.
Hence, the trajectories are all locally straight lines.

To finish our proof, we need to see that this definition is independent of the
path γ. If γ1 and γ2 are paths connecting x to y, and homotopic relative their
endpoints, then we can produce a finite sequence of paths γ1 = β1, ..., βn = γ2

such that βi and βi+1 agree except in a region which is contained in a single
Euclidean disk. (You get the β curves just by doing the homotopy a little
bit at a time.) Within the Euclidean disk, you can see that the vectorfield
along βi must be parallel to the vectorfield along βi+1, because both vector
fields just consist of a bunch of parallel vectors, and the two vector fields
agree at some point in the disk. Since this is true for all i, the two methods
for defining v(y) agree.

The fundamental group π1(Σ−C) is generated by loops which travel from
x into a small neighborhood of one of the cone points, wind around the cone
point, and then come back. If γ1 and γ2 are arbitrary paths joining x to y
then γ1 is homotopic relative to the endpoints to δ1 ∗ ... ∗ δk ∗ γ2, where each
δi is one of the special loops just mentioned. Each loop δi starts and ends at
x. We just have to see that the parallel vectorfield along δi agrees with v(x)
at both ends. Everything boils down to what happens in a neighborhood of
the cone point. You can take the portion of δi which loops around the cone
point to be a perfect circle; and in this case you can see that the parallel
vectorfield along the circle comes back exactly to itself, because the cone
angle is a multiple of 2π. ♠

Exercise 3: Prove that there is no vectorfield, like the one constructed
above, on the surface of the cube.
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2 Affine Automorphisms

Recall that an affine map of R
2 is a map of the form x → Ax + B, where

A is a 2 × 2 invertible and orientation preserving matrix and B is another
vector. If B = 0 then the map is linear. Note that the set of affine maps of
R

2 forms a group under composition.
Suppose that Σ is a translation surface. An affine automorphism of Σ is

a homeomorphism φ : Σ → Σ such that

• φ permutes the nontrivial cone points of Σ.

• Every ordinary point of Σ has a neighborhood in which φ is an affine
map.

The second condition needs a bit more explanation. Let p ∈ Σ be an ordinary
point. This is to say that there is a small disk ∆p about p and an isometry
Ip from ∆p to a small disk in R

2. The same goes for the point q = φ(p). The
map Iq ◦ φ ◦ I−1

p is defined on the open set U = Ip(∆p) ⊂ R
2 and the second

condition says that this map is the restriction of an affine map to U .
We denote the set of all affine automorphisms of Σ as A(Σ). It is easy to

see that the composition of two affine automorphisms of Σ is again an affine
automorphism. Likewise, the inverse of an affine automorphism of Σ is an
affine automorphism of Σ. In short, A(Σ) is a group.

Exercise 4: Let A be a 2 × 2 matrix with integer entries and determi-
nant 1. Let B any vector. Let Σ be the square torus. You can think of Σ
as (R/Z)2. Let φ be the map φ([x]) = [Ax + B]. Prove that φ is an affine
automorphism of Σ. Thus, the square torus has a huge affine automorphism
group.

Exercise 5: Give an example of a translation surface which has no non-
trivial affine automorphisms.

Exercise 6: The affine automorphisms group of the square torus is un-
countable since it contains any translation. However, prove that the affine
automorphism group of a surface with at least one cone point is countable.
(Hin: One way to see this is that the linear differential of the affine automor-
phism determines the map, once its behavior on a single point is specified.)
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3 The Diffential Representation

Let SL2(R) denote the group of determinant-one 2 × 2 matrices with real
entries. Given a group A, a representation of A into SL2(R) is a homomor-
phism ρ : A → SL2(R). Here is one explanation for this terminology: The
elements of A might be somehow abstract, but a representation is a way of,
well, representing these elements concretely as matrices. A representation
doesn’t have to be one-to-one or onto, but of course representations with
these additional properties are especially nice.

Here we explain a canonical representation ρ : A(Σ) → SL2(R). The
first thing to recall about Σ is that it has this decomposition into straight
lines. Let p and q be two regular points of Σ. There is a canonical map φqp

from the tangent plane Tq(Σ) to the tangent plane Tp(Σ). This map can be
specified by the following properties:

• φqp maps the unit vector tangent to the special line through q to the
unit vector tangent to the special line through p.

• φqp is linear.

• φqp is an isometry, measured in the natural Riemannian metric on Σ.

The third point needs some explanation. Neighborhoods of p and q are
isometric to little disks in the plane, and we simply use the Riemannian
metric−i.e. the standard inner product−to put a Riemannian metric on the
tangent spaces at p and q. Put another way, a curve through p has unit
speed if and only if the image of the curve in R

2 has unit speed. Likewise,
the angle between two curves through p is the angle between the images of
these curves in R

2. The same remarks go for q.
Now, given an element f ∈ A(Σ) we choose and ordinary point p ∈ Σ

and let q = f(p). Let dfp be the differential of f at p. This means that dfp

is a linear map from Tp(Σ) to Tq(Σ). Note that the composition

M(f, p) = φqp ◦ dfp

is a linear isomorphism from Tp(Σ) to itself. Using the isometry Ip we can
identify Tp(Σ) with, say the tangent plane to R

2 at the origin. We let ρ(f)
be the linear transformation of R

2 which corresponds to M(f, p) under the
identification.
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We claim that ρ(f) is independent of the choice of point p. To see this,
we note that the map ρ(f) has the following alternate description. Using the
coordinate charts Ip and Iq discussed above, the map ρ(f) is just the linear
part of

dIq ◦ dfp ◦ dI−1

p .

The linear part of an affine map does not depend on the point. Hence ρ(f)
has the same definition if independent of which point we use inside our local
coordinate chart. But the surface is connected, so ρ(f) does not dependent
on the choice of point at all.

The determinant of ρ(f) measures the factor by which f increases area in
a neighborhood of any point. Since the whole surface has finite area and ρ(f)
is an automorphism, ρ(f) must have determinant 1. Hence we can interpret
ρ(f) as an element of SL2(R). The map f → ρ(f) is a homomorphism
because of the chain rule: The linear differential of a composition of maps
is just the composition of the linear differential of the invididual maps; and
composition of linear maps is the same thing as matrix multiplication in
SL2(R).

We have now constructed the representation ρ : A(Σ) → SL2(R). We
let V (Σ) = ρ(A(Σ)). The matrix group V (Σ) is sometimes called the Veech

group.

4 Hyperbolic Group Actions

Recall that H
2 is the hyperbolic plane. Every element of SL2(R) acts on

H
2 as an isometry. If we identify H

2 with the upper half plane in C, then
the action is given by

z →
az + b

cz + d
;

[
a b
c d

]
∈ SL2(R).

Let V = V (Σ) be as above. The orbit of a point x ∈ H
2 is defined to be the

set
{g(x)| g ∈ V }.

We define an equivalence relation on points in H
2 by saying that two points

are equivalent iff they lie in the same orbit.
V is said to act properly discontinuously on H

2 for every metric ball
B ⊂ H

2 the set
{g ∈ V | g(B) ∩ B 6= ∅}

5



is a finite set. In other words, all but finitely elements of V have such a
drastic action on H

2 that they move the ball B completely off itself.

Exercise 7: Prove that SL2(Z), the group of 2 × 2 integer determinant-
one matrices, acts properly discontinuously on H

2.

Before we establish the main result in this section we give one more defini-
tion. Two groups G1, G2 ∈ SL2(R) are conjugate if there is some g ∈ SL2(R)
such that G2 = gG1g

−1.

Exercise 8: Suppose that G1 and G2 are conjugate. Prove that G1 acts
properly discontinuously on H

2 if and only if G2 does.

Theorem 4.1 If V is the Veech group of a surface then V acts properly

discontinuously on H
2.

We will sketch the proof of Theorem 4.1 in the next section.
Whether or not V acts properly discontinuously, we can form the quotient

H
2/V as follows. We define two points x, y ∈ H

2 to be equivalent if there
is some g ∈ V such that g(x) = y. Then H

2/V is defined to be the set
of equivalence classes of points. In case V acts properly discontinuously the
quotient is particularly nice:

Theorem 4.2 If V acts properly discontinuously on H
2 then we can remove

a countable discrete set of points T from H
2 such that the quotient (H2 −

T )/V is a hyperbolic surface.

Proof: Before we start we note that all the elements of V act so as to
preserve orientation, so that there are no reflections in V . (For the orientation
reversing case, the statement of the result is slightly different.)

Let T be the set of points x ∈ H
2 such that g(x) = x for some nontrivial

g ∈ V . The set T must be discrete in the sense that there is some ǫ > 0
such that any ball of radius ǫ contains at most one point of T . Otherwise we
could find some ball B which contained infinitely many points of T and we
would contradict the proper discontinuity. Note that T is invariant under V :
If x ∈ T is fixed by g then y = h(x) is fixed by hgh−1. Thus, the quotient
(H2 − T )/V makes sense. Every x ∈ H

2 − T has a neighborhood ∆x such
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that g(∆x) ∩ ∆x = ∅ for any nontrivial g. To see this, let dg denote the
hyperbolic distance between g(x) and x. Since x 6∈ T , the number dg is
positive. The proper discontinuity prevents there being a sequence {gi} with
{dgi

} converging to 0. Hence there is some positive lower bound to dg, which
is what we need.

Now we know that each x ∈ H
2 − T has a little neighborhood which is

moved completely off itself by all of G (except the identity.) This little neigh-
borhood therefore maps injectively into the quotient (H2 − T ) and serves as
a coordinate chart about x. ♠

Note that the quotient H
2/V still makes sense, and actually it is obtained

from (H2 − T )/V just by adding finitely many points. We define the co-

volume of V to be the volume of (H2 − T )/V . The group V is said to be
a lattice if V has finite co-volume. Σ is said to be a Veech surface if V is a
lattice. For instance, SL2(Z) is a lattice.

5 Proof of Theorem 4.1

Before we begin, we need one piece of terminology. Let p ∈ Σ be a cone
point and let γ be a path on Σ which does not contain any other cone points.
Then γ is essentially straight if γ − p is a locally straight path in Σ − p.

Lemma 5.1 Let f be an affine automorphism of Σ and suppose that f(γ) =
γ for some essentially straight path. Then f is the identity on γ. If γ has a

self-intersection, then f is in the kernel of the differential representation ρ.

Proof: The restriction of an affine map to a straight line is just a dilation.
Hence, the restriction of f to γ is just a dilation. Since f(γ) = γ, the dilation
factor must be one: The total length is preserved. So f is an isometry on γ.
Since f(p) = p we see that actually ρ(f) is the identity on γ.

For the second half, suppose x is a self-intersection point of γ. Then
f(x) = x and f is the identity on two distinct paths emanating from x.
Hence df is the identity on a basis of Tx(Σ). Hence df is the identity at x.
But this means that ρ(f) is the identity. ♠

Now we turn to the proof of Theorem 4.1. There are three cases.

• Σ has no cone points.
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• Σ has one cone point.

• Σ has more than one cone point.

5.1 No Cone Points

Σ must be a flat torus, built from some parallelogram P . There is an affine
map g such that g(P ) is a square and hence g(Σ) is the square torus. g conju-
gates A(Σ) to the affine automorphism group of the square torus, which (after
factoring out translations) we know to be SL2(Z). Hence V = gSL2(Z)g−1.
Exercises 7 and 8 finish the proof.

5.2 One Cone Point

We suppose that there is some ball B and an infinite collection {gi} ∈ V
such that gi(B) ∩ B 6= ∅. It is a general principle of compactness that there
must be elements of our set which are arbitrarily close to each other. Hence,
we can find an infinite list of distinct elements of V whose action on H

2

converges to the action of the identity element.
What this means in terms of Σ is that we can find an infinite sequence

{fj} of affine automorphisms such that ρ(fi) is not the identity but ρ(fi)
converges to the identity as i → ∞.

Consider the fundamental group π1 := π1(Σ, p). Certainly we can find
elements of π1 which cannot be represented by any simple loops. Let [γ] be
such an element. Two essentially straight representatives of [γ] must coincide
if they are sufficiently close. To see this, just roll these two paths out into
the plane. They would have to be the two sides of a very narrow strip, and
hence would be parallel forever. But then they don’t both converge to p.

So, [γ] has only finitely many essentially straight representatives. Call
them γ1, ..., γk. If i is large then fi(γj) is an essentially straight path which
is quite close to γj. But then these paths are homotopic by a fairly obvious
homotopy. Hence fi permutes the curves γ1, ..., γk for i large. There is some
fairly small power f = f r

i such that f(γ1) = γ1. But then ρ(f) is the identity
by Lemma 5.1. Here r only depends on k. If ρ(fi) is very close to the
identity and ρ(f r

i ) is the identity then ρ(fi) is also the identity. This is a
contradiction.
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5.3 More than one Cone Point

Here we can play the same game, considering almost straight representatives
of self-intersecting paths connecting possibly different cone points on Σ. We
omit the details.

6 Triangle Groups

Recall that a geodesic hyperbolic triangle is a triangle in H
2 whose sides are

either geodesic segments, geodesic rays, or geodesics. The case of interest to
us is the (8,∞,∞) triangle. This is a geodesic triangle, two of whose sides
are geodesic rays and whose remaining side is a geodesic. Two of the vertices
of this triangle are on the ideal boundary of H

2 and the remaining vertex
v ∈ H

2 is the common endpoint of the two rays. The two rays make an
angle of 2π/8 at v.

Lemma 6.1 Let γ be any geodesic in H
2. Then there is an order 2 hyper-

bolic isometry which fixes γ.

Proof: Thinking of H
2 as the upper halfplane, the map z → −z fixes

the imaginary axis, which is a geodesic. We’ve already seen that any two
geodesics are isometric to each other. If g is an isometry taking the geodesic
γ1 to the geodesic γ2, and I is an order 2 isometry fixing γ1 then gIg−1 is the
desired order 2 isometry fixing γ2. Thus, we can start with the one reflection
desribed above and construct all the others by conjugation. ♠

The order 2 hyperbolic isometry fixing γ is called a hyperbolic reflection

in γ. Given any geodesic triangle ∆ we can form the group G(∆) ⊂ SL2(R)
as follows. We let I1, I2, I3 be hyperbolic reflections fixing the 3 sides of ∆
and then we let G(∆) be the group generated by words of even length in
I1, I2, I3. For instance, I1I2 and I1I2I1I3 all belong to G but I1I2I3 does not.
All the elements in G are orientation preserving and it turns out that we can
find matrices in SL2(R) for the three elements IiIj. This is enough to show
that G actually comes from a subgroup of SL2(R).
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7 Behold, The Octagon!

We’ve already seen that one can make a genus 2 hyperbolic surface by gluing
the correctly sized regular hyperbolic octagon together. Here will discuss
another connection between the regular octagon and hyperbolic geometry.
This connection was discovered essentially by Veech. Veech’s result works
for general n-gons, but its easier just to discuss it for one of them.

Let Σ be the genus 3 translation surface constructed by the following
procedure. Take two copies O1 and O2 of the regular unit octagon. Glue
each side of Oj to the opposite side of O3−j. This produces a surface with
two cone points of cone angle 6π which double covers the usual surface made
by gluing together a single octagon.

Theorem 7.1 V (Σ) is the same group as G(∆) where ∆ is the (8,∞,∞)
hyperbolic triangle group.

We will sketch a proof of this result. 1 To make things work well, we
define an anti-affine automorphism to be a homeomorphism of Σ which is
locally anti-affine, meaning that the map locally has the form x → Ax + B
where A is an orientation reversing linear map. We let Â(Σ) be the group
of these maps and we let V̂ = ρ(Â). We will show that V̂ coincides with the
group Ĝ generated by the reflections in the sides of the (8,∞,∞) triangle.

Think of O as being made from two octagons placed side to side, as in
Figure 1 below. Simultaneous reflection in the vertical lines of symmetry of
the two octagons is an anti-affine automorphism. Call it f1. The lines through
the centers of the octagons, which make an angle of π/8 with the vertical,
are also lines of bilateral symmetry. Let f2 be the anti-affine automorphism
defined by simultaneous reflections in these two lines. The elements ρ(f1)
and ρ(f2) are two of the three generators of Ĝ. The axes of f1 and f2 are
drawn thickly on the right hand side of Figure 1.

The third element is the non-trivial one. Consider the decomposition of
Σ into cylinders, as indicated by Figure 1.

1I learned this proof from Pat Hooper, and Pat has a great paper on his website which

gives an argument like this for a new Veech surface he discovered.

10



x

B
A

C

CD

D

B

A

x

y

y

Figure 1

Let g be the affine automorphism characterized by the following proper-
ties:

• g does the same thing to both octagons.

• g maps the points labelled x to the points labelled y, in the manner
suggested by the arrows. These points are at the midpoints of the edges
they lie on.

• Figure 1 shows a decomposition of Σ into 4 cylinders, A, B, C, D. Every
point on the boundary of any of these cylinders is fixed by g. That is,
g is a Dehn twist of each cylinder.

• f2gf2 = g−1. (Actually, this is a consequence of symmetry and the
other properties.)

• The differential dg is as close to the identity as possible. By this we
mean, informally, that g is the “shear” of minimal ”strength” which
has the other properties.

The arrows on the left sort of indicate the action of g in the vicinity of the
axis of symmetry. Let

f3 = f2g.

Exercise 9: Show that f3 fixes the axes of both f1 and f2. On the right
octagon, these axes are the thick lines.
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Note that f3 has order 2 because

f 2

3 = f2gf2g = g−1g = Id.

The fact that f3 has order 2 and fixes the axes of both f1 and f2 forces ρ(f3)
to be the reflection in the third side of our (8,∞,∞) triangle. Thus we see
that V̂ contains the three generators of Ĝ. Hence Ĝ ⊂ V̂ .

Exercise 10: Suppose that Γ is a group acting properly discontinuously
on H

2 and Ĝ ⊂ Γ. Then either Γ = Ĝ or else Γ is the group generated by
the reflections in the sides of the geodesic triangle obtained by bisecting ∆
in half. (Hint: Consider all the geodesics fixed by reflections of elements of
Γ. These lines decompose H

2 into regions which must be permuted by Γ. In
particular, these regions partition ∆ in some way. The only possibility that
leads to a properly discontinuous group is the bisection of ∆ into two equal
halves.)

If V̂ does not equal Ĝ then Σ has an extra isometric symmetry which
fixes the centers of the octagons. (This corresponds to the extra element,
reflection in the bisector of ∆.) But the octagons do not have any line of
symmetry between the two drawn in figure 1. Hence V̂ = Ĝ.
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