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The purpose of this handout is to define the fundamental group. Next
week we will compute examples of the fundamental group. The fundamental
group is a basic tool in topology and can be used to study surfaces. The
structure of the handout is kind of funny. First, I’ll talk about groups in
general; then groups will disappear from the discussion for a while; then
they’ll come back in a really surprising way.

1 A Primer on Groups

It sounds like you guys have a pretty good grounding in groups, so I’ll keep
this section brief. If you haven’t had any group theory, you can find a great
treatment in e.g. Herstein’s Topics in Algebra, vol 2.

A group is a set G, together with an “operation” ∗, which satisfies the
following axioms.

• g1 ∗ g2 is defined and belongs to G for all g1, g2 ∈ G.

• g1 ∗ (g2 ∗ g2) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3.

• There exists a (unique) element e ∈ G such that e ∗ g = g ∗ e = g for
all g ∈ G.

• For each g ∈ G there is a (unique) element h such that g∗h = h∗g = e.
This element is called “g inverse” and is usually written as h = g−1.

The group G is called abelian if, additionally, g1 ∗ g2 and g2 ∗ g1 are always
equal. A subgroup of a group is a subset H ⊂ G which is closed under the
group law. So, if h ∈ H then h−1 ∈ H and if h1, h2 ∈ H then h1 ∗ h2 ∈ H .

Here are some examples of groups:
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• Z, with the + operation, forms an abelian group.

• If G1 and G2 are groups then G1 × G2 can be made a group using the
law (g1, g2) ∗ (h1, h2) = (g1 ∗ h1, g2 ∗ h2).

• The set SLn(Z) of n × n integer matrices with determinant 1 forms a
non-abelian group.

• Let A be a collection of n things, for instance A = {1, ..., n}. Say that
a permutation is a bijection f : A → A. There are n! different permu-
tations, and they form a finite group. The ∗ operation is composition
of maps. This group is called Sn.

Let G1 and G2 be groups. A map f : G1 → G2 is a homomorphism if

f(a ∗ b) = f(a) ∗ f(b)

for all a, b ∈ G1. Here the ∗ on the left is the rule for G1 and the ∗ on
the right is the one for G2. The map f is called an isomorphism if f is a
bijection and also a homomorphism. Here is a nice example. Let G be a finite
group and let n be the number of elements in G. We’re going to produce a
homomorphism from G into Sn, the permutation group on n things. We’re
going to take the n things to be the elements of G. So, given an element
g ∈ G how do we permute the elements of G? We define the map fg : G → G
using the rule fg(h) = gh. It turns out that f is a bijection, and fg1

= fg2

only if g1 = g2. The map g → fg is a one-to-one homomorphism from G into
Sn. This is Cayley’s theorem: every finite group is isomorphic to a subgroup
of a permutation group.

2 Homotopy Equivalence

Now we go back to metric spaces and manifolds. Let X and Y be metric
spaces. Let I = [0, 1] be the unit interval. Two maps f0, f1 : X → Y are
said to be homotopic if there is a continuous map F : X × I → Y such that

• F (x, 0) = f0(x) for all x ∈ X.

• F (x, 1) = f1(x) for all x ∈ X.
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To explain the intuitive idea, it is useful to define ft : X → Y by the formula
ft(x) = F (x, t). Then the map ft interpolates between f0 and f1, with ft

being very close to f0 when t is near 0 and ft being very close to f1 when t
is near 1. The map F is called a homotopy from f0 to f1.

If is useful to write f0 ∼ f1 if these maps are homotopic. Let C(X, Y )
denote the set of all continuous maps from X to Y . One can think of ∼ as
a relation on the set C(X, Y ).

Exercise 1: Prove that ∼ is an equivalence relation on C(X, Y ).

Exercise 2: Prove that every two elements of C(X, Rn) are homotopic.
Hint: Prove that any map f : X → R

n is homotopic to the zero-map f0

defined by the property f0(x) = 0 for all x. Then, use the fact that ∼ is an
equivalence relation.

Exercise 3 (Challenge): Let P be a polynomial

P (x) = xn + an−1x
n−1 + ... + a0.

Let Q be the polynomial Q(x) = xn. So, P and Q have the same leading
term. We can think of P as a map from the complex numbers C to the
complex numbers. For any R we can let X ⊂ C be the circle of radius R
centered at 0. That is

X = {z ∈ C| |z| = R}.

First of all, prove that 0 6∈ P (X) if R is sufficiently large. This means
that we can think of P and Q as maps from X to Y = C − {0}. Prove
that P, Q : X → Y are homotopic if R is sufficiently large. This contrived-
sounding problem is actually really important, as I’ll explain in class.

3 The Fundamental Group

From now on we are going to take X = I, the unit interval, and we are going
to study the space Y by looking at the maps from I into Y . For this entire
discussion we choose a basepoint y0 ∈ Y . This is just a special point we use
throughout the construction. It turns out, in the end, that the final answers
we get don’t depend much on the choice of y0.
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Say that a loop in Y is a continuous map f : I → Y such that

f(0) = f(1) = y0.

The reason for the terminology should be pretty clear. Say that two loops
f0 and f1 are loop homotopic if there is a homotopy F from f0 to f1 such
that ft is a loop for all t ∈ [0, 1]. This is to say that F (0, t) = F (1, t) = y0

for all t. We write f0 ∼ f1 in this case. Just as in Exercise 1, this relation
is an equivalence relation. Note that the equivalence relation here is slightly
different than the one in the previous section, because of the added constraint
that F (0, t) = F (1, t) = y0 for all t.

As a set, π1(Y, y0) is the set of equivalence classes of loops. The really
interesting thing is that we can make π1(Y, y0) into a group. Here’s the
construction. Suppose that we have two elements [f ] and [g] of π1(Y, y0).
We can let f and g be representatives of the equivalence classes [f ] and [g]
respectively. That is, f : [0, 1] → Y is a loop and g[0, 1] → Y are both loops.
We define the new loop h = f ∗ g by the following rule:

• If x ∈ [0, 1/2] we define h(x) = f(2x). That is, the first half of h traces
out all of f , but twice as fast.

• If x ∈ [1/2, 1] we let x′ = x − 1/2 and then we define h(x) = g(2x′).
That is, the second half of h traces out g, but twice as fast.

We write h = f ∗ g.

Exercise 4: Suppose that ̂f and ĝ are different representatives for [f ] and
[g]. That is f and ̂f are equivalent loops and g and ĝ are equivalent loops.
Let ̂h = ̂f ∗ ĝ. Prove that [̂h] = [h]. In other words, prove that h and ̂h are
equivalent loops. This exercise is pretty easy, but quite tedious.

Given Exercise 4, we can define

[f ] ∗ [g] = [f ∗ g]. (1)

and this definition is independent of the equivalence class representatives we
used to make the definition. This construction should remind you a bit about
how one defines the group law on quotient groups. One needs to take coset
representatives to make the definition, but then shows that the definition is
independent of the choices.
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Exercise 5: Show, for any three loops, f, g, h, that (f ∗ g) ∗ h is equiva-
lent to f ∗ (g ∗ h). This means that ([f ] ∗ [g]) ∗ [h] = [f ] ∗ ([g] ∗ [h]). This is
the associative law for groups.

Exercise 6: Let e be the loop defined by the rule e(x) = y0 for all x ∈ I.
Show that [e] ∗ [g] = [g] ∗ [e] = [g] for all loops g. This means that [e] plays
the role of the identity element in π1(Y, y0).

Exercise 7: Let g be any loop. Define the loop g∗ by the formula g∗(x) =
g(1−x). In other words, g∗ traces out the same loop as g, but in the opposite
direction. Prove the following result: If g1 and g2 are equivalent then g∗

1
and

g∗

2
are equivalent. Finally, prove that [g] ∗ [g∗] = [e] and [g∗] ∗ [g] = [e]. In

other words, the inverse of [g] is given by [g∗].

Combining exercises 5, 6, and 7, we see that π1(Y, y0) is a group. So, to
each space Y we can pick a basepoint y0 and then define the group π1(Y, y0).
This group is known as the fundamental group of Y . (We’ll see below that
the group you get doesn’t really depend on the base point.)

4 Changing the Basepoint

Say that two points y0, y1 are connected by a path if there is a continuous
map f : I → Y such that f(0) = y0 and f(1) = y1. Say that Y is path
connected if every two points in Y can be connected by a path. For instance
R

n is path connected whereas Z is not.

Lemma 4.1 Suppose that y0, y1 ∈ Y are connected by a path. Then π1(Y, y0)
and π1(Y, y1) are isomorphic groups. In particular, if Y is path connected
then the (isomorphism type of the) group π1(Y, y) is independent of the choice
of basepoint y and we can just write π1(Y ).

Proof: (Sketch) Let d be a path which joins y0 to y1. Let d∗ be the reverse
path, which connects y1 to y0. We want to use d and d∗ to define a map from
π1(Y, y0) to π1(Y, y1). Given any y0-loop f0 : I → X with f0(0) = f0(1) = y0

we can form a y1-loop by the formula

f1 = d ∗ f ∗ d∗.
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In other words, the first part of f1 travels backwards along d from y1 to y0;
the second part travels around f0; and the third part travels back to y1. You
should picture a lasso in your mind.

Using arguments similar to the ones for the exercises above, you can show
the following result: If f0 and ̂f0 are equivalent, then f1 and ̂f1 are equivalent.
In other words, the map H , which sends [f0] ∈ π1(Y, y0) to [f1] ∈ π1(Y, y1) is
well defined independent of the equivalence class representative used to define
it. So, now we have a well defined map H : π1(Y, y0) → π1(Y, y1). After this,
one shows that H is a homomorphism. That is, H([f ]∗ [g]) = H([f ])∗H([g]).
This is not hard to do, once you draw a picture of what is going on.

Rather than show that H is one-to-one and onto directly. One can define
a map H∗ : π1(Y, y1) → π1(Y, y0) just by reversing the roles of the two points.
In other words, the loop f1 is mapped to

f ∗

0
= d∗ ∗ f1 ∗ d.

Note that f ∗

0
and f0 are not precisely the same loop. If you draw pictures

you will see that there is some extra “slack” in f ∗

0
. However, it turns out

that [f ∗

0
] = [f0]. In other words, the two loops are loop homotopic. Thus H

and H∗ are inverses of each other. Hence H is an isomorphism (and so is
H∗.) ♠

5 Functorality

The word functoriality refers to a situation where you are assigning one kind
of an object to another in a way which respects the “natural” transformations
between the two kinds of objects. This notion is defined precisely in any
book on category theory. In our case, we are assigning a group π1(Y, y0) to
a pointed space (Y, y0). (By pointed space we mean a space with a chosen
basepoint.) The natural transformations of pointed spaces are basepoint
preserving continuous maps and the natural transformations between groups
are homomorphisms.

We would like to see that our transformation (or functor) from spaces to
groups respects these transformations. Here is Part I of the basic result:

Lemma 5.1 Let (Y, y0) and (Z, z0) be two pointed spaces and let f : Y → Z
be a continuous map such that f(y0) = z0. Then there is a homomorphism
f∗ : π1(Y, y0) → π1(Z, z0).
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Proof: Let [a] ∈ π1(Y, y0) be an equivalence class of loops, with represen-
tative a. So, a : I → Y is a loop. The composition f ◦ a is loop in Z. We
define f∗[a] = [f ◦a]. If [a0] = [a1] then there is a homotopy H from a0 to a1.
But then f ◦H is a loop homotopy from f ◦a0 to f ◦a1. So, [f ◦a0] = [f ◦a1]
and our map is well defined. Note that f ◦ (a ∗ b) = (f ◦ a) ∗ (f ◦ b). Hence
f ∗ ([a] ∗ [b]) = (f∗([a])) ∗ (f∗([b])). Hence f∗ is a homomorphism. ♠

Suppose that f : Y → Z is a continuous map and g : Z → W is a
continuous map. Let’s arrange so that f(y0) = z0 and f(z0) = w0. Then
g ◦ f is a map from Y to W and (g ◦ f)∗ is a homomorphism from π1(Y, y0)
to π1(W, w0). Here is Part II of the basic result:

Lemma 5.2 (g ◦ f)∗ = g∗ ◦ f∗.

Proof: Let [a] ∈ π1(Y, y0). Then

(g ◦ f)∗[a] = [(g ◦ f) ◦ a] = [g ◦ (f ◦ a)] = g∗[f ◦ a] = g∗f∗[a].

That is it. ♠

If f : Y → Y is the identity map then f∗ is the identity map on π1(Y, y0).
Also, if h : Y → Z is a homeomorphism then we have the inverse homeo-
morphism h−1. But h ◦ h−1 is the identity. Hence h∗ ◦ h−1

∗
is the identity

homomorphism. Likewise h−1 ◦ h∗ is the identity homomorphism. In short
h∗ (and also h−1

∗
) is a group isomorphism. So

Theorem 5.3 If π1(Y, y0) and π1(Z, z0) are not isomorphic groups then there
is no homeomorphism from Y to Z which maps y0 to z0.

The above is slightly contrived because we don’t really care about these
basepoints. Recall that π1(Y, y0) doesn’t depend on the basepoint if Y is
path connected. So

Theorem 5.4 Suppose Y and Z are path connected spaces. If π1(Y ) and
π1(Z) are not isomorphic then Y and Z are not homeomorphic.

What’s really great about this result is that we can use it to tell the
difference between spaces just by looking at these groups. Of course, the
question remains: How do we actually compute these groups. The next
handout will go into a lot more detail on this.
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6 Some First Steps

Here we’ll just take some first steps in the computation of fundamental
groups. Once we have more theory, these computations will be easy. So,
what fundamental groups can we compute? It is easy to see (compare Exer-
cise 2) that any two loops in R

n (based at 0) are equivalent. Hence π1(R
n, 0)

is the trivial group.

Exercise 8A (Challenge): Prove that there is a loop in S2 (the two sphere)
whose image is all of S2. Hint: If you know about the Hilbert plane-filling
curve from real analysis you’re in good shape for this problem.

Exercise 8B (Challenge) Prove that π1(S
2, p) is the trivial group. Here

p ∈ S2 is any point. Hint: The intuitive idea is this: if the loop misses some
point q 6= p, you can just “slide” the loop “down to p” by pushing it away
from the missed point. However, you have to deal with the loops which come
from Exercise 8A.

Exercise 9: If (Y, y0) and (Z, z0) are two pointed spaces then the prod-
uct (Y × Z, (y0, z0) is again a pointed space. Prove that

π1(Y × Z, (y0, z0)) = π1(Y, y0) × π1(Z, z0).

Exercise 10: (Challenge) Prove that π1(S
1, p) is nontrivial. Hint, think

of S1 as the unit circle in R
2 and consider the loop

f(t) = (cos(2πt), sin(2πt)).

Show that this loop is inequivalent to the identity loop.

Let T = S1 ×S1. Here T 2 is the torus. From Exercises 9 and 10 we know
that π1(T

2) is nontrivial. (We don’t worry about the basepoint because T
is obviously path connected.) On the other hand, by Exercise 8, π1(S

2) is
trivial. Hence S2 and T 2 are not homeomorphic!
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