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The purpose of this handout is to compute the fundamental group for
some familiar objects:

• the circle;

• the torus;

• the 2-sphere;

• the projective plane.

• lens spaces the Poincare sphere.

I’ll work out the first three in detail and then somewhat guide you through
the computation for the others. The last section is too advanced for an
undergraduate course but I couldn’t resist.

1 The Circle

1.1 A Special Map

Let S1 be the circle. We think of S1 as the group of unit complex numbers
in C. Let R denote the real numbers. There is a natural map E : R → S1

given by
E(t) = exp(2πit) = cos(2πt) + i sin(2πt).

This map is certainly onto and continuous, but it has some other special
properties. Say that an open special arc in S1 is a set of the form

C(z) = {w ∈ S1| d(z, w) < 1/100}.
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Here d(z, w) = |z −w|, the usual Euclidean distance. The choice of 1/100 is
convenient but fairly arbitrary. The point is just that open special arcs are
much smaller than semicircles.

Exercise 1: Let C be an open special arc. Prove that E−1(C) consists
of a countably infinite number of disjoint open intervals and that the restric-
tion of E to any of these intervals is a homeomorphism from the interval onto
C.

Based on this exercise we’re going to establish two results which are part
of a general theorem. We’ll get to the general result later on in the course.

Lemma 1.1 Let [a, b] ⊂ R be a closed interval. Suppose that g : [a, b] → S1

is a map such that g([a, b]) is contained in a special arc. Suppose also that

there is a map g̃ : {a} → R such that E ◦ g̃(a) = g(a). Then we can define

g̃ : [a, b] → R such that E ◦ g̃ = g on all of [a, b]. This extension of g̃ is

unique.

Proof: If E had an inverse we could define g̃ = E−1 ◦ g. Also, we would
be forced to make this definition and so the extension of g̃ to [a, b] would be
unique. Unfortunately, E is not invertible. Fortunately, we have Exercise 1,
which shows that E is “invertible” in some sense. Let C be the special arc
which exists by hypothesis. Let ˜C ⊂ E−1(C) be the unique interval from
Exercise 1 which contains g̃(a). By Exercise 1, the map E : ˜C → C is a
homeomorphism. Let F : C → ˜C be the inverse of (the restricted version of)
E. Since g[a, b] ⊂ C we can (and must) define ˜G = F ◦ g. ♠

Let 1 = E(Z) be the basepoint of S1. Let I = [0, 1]. Recall that an
element of π1(S

1, 1) is a map g : I → S1 such that g(0) = g(1) = 1.

Exercise 2: Given the map g, prove that there exists some N with the
following property. If x, y ∈ [0, 1] and |x − y| < 1/N then the set g([x, y]) is
contained in a special arc. Hint: You might want to use the fact that every
infinite sequence in [0, 1] has a convergent subsequence. This is basically the
Bolzano–Weierstrass theorem
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1.2 The Winding Number

Here is an improved version of Lemma 1.1.

Lemma 1.2 Let g : [0, 1] → S1 be a loop. Then there is a unique map

g̃ : [0, 1] → R such that g̃(0) = 0 and E ◦ ˜G = G on all of [0, 1].

Proof: From Exercise 2 we can find some N such that the points ti = i/N
have the following property: The image g([ti, ti+1]) is contained in a special
arc for i = 0, ..., N − 1. Now we go by induction. First of all, by Lemma 1.1
we can define g̃ uniquely on [t0, t1]. But then by Lemma 1.1 again we can
define g̃ uniquely on [t1, t2]. And so on. ♠

Note that the above definition doesn’t depend on N . If we chose some
larger N ′ and redid the definition, the uniqueness over small intervals would
tell us that the two g̃ maps would agree everywhere.

We define the winding number of g to be the value of g̃(1) ∈ Z. We write
this as w(g). Note that g̃(1) ∈ Z because g(1) = E(g̃(1)) = 0.

1.3 Invariance Properties

Now suppose that [g0] = [g1] ∈ π1(S
1, 1). This means that g0 and g1 are

loop homotopic to each other. We want to prove that w(g0) = w(g1). Let
gt(x) = G(x, t). We would like to say that w(gt) is a continuous and integer
valued map, hence constant.

The same argument as in Exercise 2 proves the following result: There
is some N with the following property: If s, t ∈ [0, 1] are any points such
that |s − t| < 1/N and x ∈ [0, 1] is fixed then |G(x, s) − G(x, t)| < 1/100.
Using the other notation, d(gs(x), gt(x)) < 1/100. But then d(g̃s(x), g̃t(x))
is either less than 1/100 or greater than 1/2. By continuity, the alternative
can’t change. Also

d(g̃s(0), g̃t(0)) = d(0, 0) = 0 < 1/100.

This shows that the first alternative always holds and g̃s(x) and g̃t(x) are
always within 1/100 of each other. But then w(gs) = w(gt), because both
are integers within 1/100 of each other. From here it is easy to see that
w(g0) = w(g1).
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Now we can define
w([g]) = w(g).

In other words, the winding number of an element of π1(S
1, 1) is well defined.

This gives us a map w : S1 → Z.

Execise 3: Prove that w is an onto homomorphism.

1.4 Injectivity

To show that w is an isomorphism we need to show that the kernel of w is
trivial. That is, if [g] ∈ π1(S

1, 1) is such that w([g]) = 0 then [g] = 0. In
other words, if w(g) = 0 then g is loop homotopic to the constant loop. If
w(g) = 0 then g̃ : [0, 1] → R is a loop. But π1(R, 0) = 0. Hence there is a
loop homotopy ˜G from g̃ to the constant loop g̃0 : S1 → R. But then E ◦ ˜G
is a loop homotopy from g to the constant loop in S1. This shows that w is
an isomorphism.

Hence π1(S
1, 1) = Z.

1.5 An Abstract Framework

Notice that the main property we used about the circle was the existence and
special properties of the map E : R → S1. We also used the property that
π1(R, 0) = 0. It turns out that this will be a general method for us when we
compute the fundamental groups. All the special properties we established
are summarized by the statement that R is the universal cover of S1 and E
is the universal covering map. In the next handout I’ll develop these ideas
in great generality. We’ll see these ideas again below.

2 The Torus

It was a previous (easy) exercise to show that

π1((Y, y) × (Z, z)) = π1(Y, y) × π1(Z, z).

The torus T 2 is homeomorphic to S1 × S1 and also path connected. Hence
π1(T

2) = Z × Z. Iterating, we get π1(T
n) = Z

n.
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3 The 2-Sphere

Let I = [0, 1] as above. Let x ∈ S2 be some basepoint. Say that a loop
g : I → S2 (anchored at x) is bad if g(I) = S2 and otherwise good. We have
already seen in class that any good loop is loop homotopic to the constant
loop. In this section we’ll show that any bad loop is loop homotopic to a
good loop. Hence π1(S

1, x) = 0.

Exercise 4: Let [a, b] be an interval and let ∆ be the open unit disk in
R

2. Let f : [a, b] → ∆ be a continuous map. Prove that there is homotopy
F : [a, b] × [0, 1] → ∆ such that

• F (a, t) and F (b, t) are independent of t.

• F (x, 0) = f(x) for all x.

• f1 : [a, b] → ∆ is a linear map. Here f1(x) = F (x, 1).

Intuitively, F straightens out f([a, b]). You should think of a rubber band tor-
tured into a complicated position and then (except for the endpoints) relased.

Exercise 5: Let H be an open hemisphere of S2. Prove that there is a
homeomorphism from ∆ to H which maps straight lines to circular arcs.

Combining the last two exercises we get the following result: Let [a, b]
be an interval and let H be a hemisphere in R

2. Let f : [a, b] → H be a
continuous map. Then there is homotopy F : [a, b] × [0, 1] → H such that

• F (a, t) and F (b, t) are independent of t.

• F (x, 0) = f(x) for all x.

• f1[a, b] is contained in a circular arc.

Exercise 6: Prove that any loop f : I → S2 is loop homotopic to a loop
which is contained in a finite union of circles. Hint: combine something like
Exercise 2 with the straightening procedure.

A finite union of circles cannot cover S2 and so any loop, including a bad
one, is loop homotopic to a good loop. Hence π1(S

2, x) = 0.
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4 The Projective Plane

Think of P
2, the projective plane, as the quotient S2/ ∼, where x ∈ S2

is equivalent to itself and to the antipodal point −x. There is a nice map
E : S2 → P

2 given by E(x) = [x]. (Remember E from above? Here is a
reincarnation.)

Let x+ = (0, 0, 1) and let x− = (0, 0,−1). Note that E(x+) = E(x−).

Exercise 7: Suppose that g : [0, 1] → P
2 is a loop based at x+. Prove

that there is a unique map g̃ : [0, 1] → S2 such that g̃(0) = x+ and E ◦ g̃ = g
Hint: Just imitate what was done for the circle.

Note that either g̃(1) = x+ or g̃(1) = x−. We define w(g) = +1 if g̃(1) = x+

and w(g) = −1 if g̃(1) = x−.

Exercise 8: Prove that w([g]) is well defined independent of the loop ho-
motopy equivalence class of g. Prove also that w gives an isomorphism from
π1(P

2) to Z/2.

In general we have P
n = Sn/ ∼, where x ∼ −x. Thus there is always

this two-to-one map from Sn to P
n. An argument similar to the one given

above shows that π1(P
n) = Z/2. Here P

n is called projective n-space.

5 Some 3 Dimensional Examples

5.1 A Lens Space

Let’s think of S3 as the set of the form

{(z, w)| |z|2 + |w|2 = 1} ⊂ C
2 = R

4.

This is an exotic way of expressing the fact that S3, the 3-sphere, is the
unit sphere in R

4. The equality C
2 = R

4 probably needs some explanation,
because these spaces are technically not equal. However, there is an obvious
real linear isomorphism between them:

(x1 + iy1, x2 + iy2) → (x1, y1, x2, y2),

and this map is preserving of the two relevant metrics.
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Here is a nice equivalence relation on S3. Let’s define

(z, w) ∼ (uz, u2w)

if and only if u is some 5th root of unity. Each equivalence class on S3/∼
has 5 points. Let’s call this space L(2, 5). The 2 comes from the u2 term and
the 5 comes from the fact that we are taking 5th roots of unity. Obviously,
you could make this construction for other choices.

Exercise 9: Prove that L(2, 5) is a good quotient and also a manifold.

There is an obvious map E : S3 → L(2, 5). Using E we can show that
π1(L(2, 5)) = Z/5. Generalizing this construction in an obvious way, we see
that we can produce a 3 manifold whose fundamental group is Z/n. These
spaces L(m, n) are called Lens spaces .

5.2 The Poincare Manifold

Let SO(3) denote the group of orientation preserving (i.e. physically pos-
sible) rotations of S2. It turns out that there is an amazing map from S3

to SO(3) which is really the map from S3 to P
3 in disguise. So, given an

element q ∈ S3 we need to produce a rotation Rq of S2.
Here’s the construction. Let’s think of S3 as the unit quaternions. That

is, a point in S3 can be thought of as a symbol of the form

a + bi + cj + dk; a, b, c, d ∈ R; a2 + b2 + c2 + d2 = 1.

The symbols i, j, k satisfy the following rules

• i2 = j2 = k2 = −1.

• ij = k and jk = i and ki = j.

Given these rules you can multiply quaternions together in a way which is
similar to how you multiply complex numbers together.

Given any q ∈ S3 as above, we define

q−1 = a − bi − cj − dk.

Then you can check that qq−1 = q−1q = 1. In other words, the unit quater-
nions form a group under multiplication!
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We can identify R
3 with the pure quaternions, namely those of the form

0 + bi + cj + dj. The isomorphism to R
3 is just given by

0 + ai + bj + ck → (a, b, c).

Thus our special R
3 has the usual Euclidean metric on it, coming from the

identification with the usual R
3.

Given p ∈ R
3 we define

Rq(p) = qpq−1.

Exercise 10 (Challenge) Show that Rq preserves R
3 (the pure quater-

nions) and is an orientation preserving rotation.

Multiplication turns out to be associative and so we have

Rq1
◦ Rq2

(p) = q1(q2pq
−1

2 )q−1

1 = Rq1
◦ Rq2

(p).

This works for any p. Hence the map q → Rq is a homomorphism. As you
might expect, we define

E(q) = Rq.

Note that E(−q) = E(q). It turns out that the kernel of E is precisely
{1,−1}. So, E is both a continuous surjection (with good local inverse
properties) and a two-to-one homomorphism from S3 to SO(3).

Now the fun starts. If G ⊂ SO(3) is a finite subgroup then ˜G = E−1(G)
is a subgroup with twice the number of elements. Now we can define an
equivalence on S3 by the rule q1 ∼ q2 iff there exists some g ∈ ˜G such that
gq1 = q2. If G has N elements then ˜G has 2N elements and each equivalance
class of S3/∼ has 2N elements. It turns out the quotient space is a manifold
with fundamental group ˜G.

As a special case, let G be the orientation preserving symmetries of the
icosahedron, the most interesting finite subgroup of SO(3). Then ˜G is an
order 120 group known as the binary icosahedral group.. The quotient in this
case is called the Poincare manifold and its fundamental group is ˜G.

This is one of the great examples in geometry.
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