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The purpose of this handout is to define the notions of covering space and
deck transformation group, and to relate them to the fundamental group.
The handout also contains a swift “review” of some real analysis.

1 The Bolzano-Weierstrass Theorem

Before we get started, we need to recall a bit of real analysis. You can find
this material in any book on the subject−e.g Steven R. Lay’s book, Analysis

with an Introduction to Proof .
A sequence of points {cj} in a metric space X is called Cauchy if, for

every ε > 0, there is some N such that i, j > N implies that d(ci, cj) < ε.
A convergent sequence is automatically Cauchy, and one can ask about the
converse. X is said to be complete if every Cauchy sequence in X converges
to a point in x.

Exercise 1: Prove that Q, the space of rationals, is not complete.

The basic axiom for R is that it is complete. You might ask how one
proves that R is complete. One way to do this is to deduce it from the fact
that every non-negative subset of R has an inf. (This is the greatest lower

bound property .) Then you can ask how to prove that R has the greatest
lower bound property. The usual approach is to construct R from Q in such
a way that the greatest lower bound property holds. Alternatively, you can
construct R from Q in such a way that it is complete. If you are interested
in the construction of R from Q (and you should be!) ask me about it.
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Exercise 2: Using the completeness of R as an axiom prove the follow-
ing result: Let Q1 ⊃ Q2 ⊃ Q3... be a nested sequence of cubes in Rn such
that the diameter of Qn tends to 0 with n. Then

⋂
Qn is one point. (Hint:

look at the sequence of centers.)

Theorem 1.1 (Bolzano-Weierstrass) A sequence {cn} contained in the

unit cube Q0 has a convergent subsequence.

Proof: Note that Q0 is the union of 2n cubes having half the size. One of
these subcubes Q1 must contain cj for infinitely many indices. But Q1 is
the union of 2n cubes having half the size. One of these subcubes Q2 must
contain cj for infinitely many indices. Any so on. The intersection

⋂
Qj , a

single point by Exercise 2, is the limit of some subsequence of {cj}. ♠

2 Covering Spaces

Let X̃ and X be path connected metric spaces. Let E : X̃ → X be a
continuous map. An open set U ∈ X is said to be evenly covered if the
preimage E−1(U) consists of a countable disjoint union of sets Ũ1, Ũ2, ... such
that the restriction E : Ũj → U is a homeomorphism. (This makes sense
because Ũj is a metric space in its own right.) It is customary to require that
U is path connected. The sets Ũj are called components of the preimage.

The map E is said to be a covering map if every point in X has a neigh-
borhood which is evenly covered. In this case X̃ is said to be a covering space

of X. Some examples:

• The mother of all examples is E : R → S1, where E(x) = exp(2πix).

• Exercise 3: Let S2 be the 2 sphere and let P 2 be the projective plane,
defined as the set of equivalence classes of antipodal points on S2. Show
that the obvious map S2 → P 2 is a covering map. (Note: in order to
do this problem you have to recall the metric on P 2.)

• Exercise 4: Let θ be the graph which is homeomorphic to the letter
θ. Let T3 be the 3-valent infinite tree. Exhibit a map E : T3 → θ which
is a covering map. (Note, θ is very similar to the figure 8 graph we
considered in class.)
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3 The Lifting Property

In this section E : X̃ → X is a covering map.
Let Q be a cube and let f : Q → X be a continuous map. We say that

a lift of f is a map f̃ : Q → X̃ such that E ◦ f̃ = f . This notion is just
the generalization of what we talked about in the previous handout. The
purpose of this section is to prove the formal version of the result we talked
about, for some examples, in the previous handout.

We begin with a technical result.

Lemma 3.1 There is some N with the following property. If Q′ ⊂ Q is a

sub-cube with side length less than 1/N then f(Q′) is contained in an evenly

covered neighborhood of X.

Proof: If this result is false then we can find a sequence of sub-cubes {Qj},
with the diameter tending to 0, such that f(Qj) is not contained in an evenly
covered neighborhood. Let cj be the center of Qj . Then the sequence {cj} has
a convergent subsequence. Tossing out everything but the cubes correspond-
ing to this subsequence we can assume that {cj} is a convergent sequence.
Let x be the limit point, guaranteed by the Bolzano-Weierstrass Theorem.
Then f(x) is contained in an evenly covered neighborhood U ⊂ X. But then
f(Qn) ⊂ U for n large, by continuity. This is a contradiction. ♠

Lemma 3.2 Let Q be a cube and let f : Q → X be a continuous map. Let

v be a vertex of Q and let x̃ ∈ X be a point such that E(x̃) = f(v). Suppose

that f(Q) is contained in an evenly covered neighborhood. Then there is a

unique lift f̃ : Q → X̃ such that f̃(v) = x̃.

Proof: Let U ⊂ X be the evenly covered neighborhood such that f(Q) ⊂ U .
Recall that E−1(U) is a disjoint union of sets Ũ1, Ũ2, ... such that the restric-
tion E : Ũj → U is a homeomorphism. Let Ũk be the component which
contains x̃. Let F be the inverse of the restriction E to Ũk. Then we can
and must define f̃ = F ◦ f . ♠

Just as we did in the previous handout we want to not remove the hy-
pothesis that f(Q) is contained in an evenly covered neighborhood.
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Theorem 3.3 Let Q be a cube and let f : Q → X be a continuous map. Let

v be a vertex of Q and let x̃ ∈ X be a point such that E(x̃) = f(v). Then

there is a unique lift f̃ : Q → X̃ such that f̃(v) = x̃.

Proof: By Lemma 3.1 we can find some N such that any subcube of Q of
diameter less than N is mapped into an evenly covered neighborhood by f .
Let’s partition Q into such cubes, say Q = Q1, ..., Qm. We can order these
cubes so that, for each k, the cube Qk shares a vertex vk with some Qj for
j = 1, ..., k − 1. Also we set things up to that the initial vertex v = v1 is a
vertex of Q1. We define f̃ on Q1 using Lemma 3.2. This tells us the value
of f̃ on v2 and lets us define f̃ on Q2. The uniqueness guarantees that the
definition on Q2 is compatible with the definition on Q1. And so on. When
we are done, we have defined f̃ in the only way possible on all of Q. ♠

We will only need this result for the case of the unit interval [0, 1] and
the unit square [0, 1]2, but is it nice to know in general.

4 The Deck Group

We’ve already associated one group to a (pointed) metric space, namely the
fundamental group. Now we are going to assign a group in a second way.
Let E : X̃ → X be a covering map as above. Say that a deck transformation

is a homeomorphism h : X̃ → X̃ such that E ◦ h = E.
An explanation of the name actually gives some insight into what these

things are. Suppose you have a deck of cards. There is a natural map E,
from your deck of cards, to a single card. (You can think of holding the deck
directly above the single card and then E is vertical projection.) Now, if
you shuffle the cards and re-do the map E there is no change. So, a deck
transformation in this case corresponds to shuffling the deck.

In general, you can think of X̃ as a kind of deck of cards and X as a
single card. The analogy isn’t perfect because X̃ is connected, but for an
evenly covered neighborhood U ⊂ X the set Ũ = E−1(U) really is like a
deck of cards. The deck transformation h somehow permutes the disjoint
components of Ũ like shuffling permutes the cards.

If h is a deck transformation, so is h−1. Likewise, if h1 and h2 are deck
transformations, so is h1 ◦ h2. Thus the set of deck transformations forms
a group under composition. This group is called the deck group of (X̃, X, E).
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Exercise 5: Let X be the figure 8 space and let X̃ be the infinite 4-valent
tree. Let E be the covering map discussed in class. Prove that the deck
group for (X̃, X, E) is isomorphic to the free group F2 on two letters.

In this example, the deck group turns out to be isomorphic to the funda-
mental group of the figure 8 space. This is not an accident.

5 Simply Connected Spaces

Let X be a path connected metric space. X is said to be simply connected if
π1(X) is trivial. This definition does not depend on the basepoint, because
the isomorphism type of the fundamental group is indepdendent of basepoint
in path connected spaces.

Suppose that f0, f1 : [0, 1] → X are two paths. Suppose also that

f0(0) = f1(0); f1(0) = f1(1).

In other words, the two paths have the same beginning and the same ending.
We say that f0 and f1 are path homotopic if there is a homotopy F from
f0 to f1 such that ft(0) = f0(0) and ft(1) = f0(1) for all t. Here, as usual,
ft(x) = F (x, t). In other words, all the paths ft start and end at the same
points as do the paths f0 and f1. Intuitively, a path homotopy slides f0 to
f1 without moving the endpoints.

In the case that f0(0) = f0(1) = f1(0) = f1(1) the notion of a path ho-
motopy coincides with the notation of a loop homotopy.

Exercise 6: Suppose that X is simply connected. Prove that any two paths,
which have the same endpoints as each other, are path homotopic. Outline:
Let x be the starting point of both loops. Consider the loop g formed by first
doing f0 and then doing f1. Then [g] ∈ π1(X, x). Hence g is loop homotopic
to the identity. Let G be this loop homotopy. Try to modify G slightly so
that G becomes a path homotopy from f0 to f1.

6 The Isomorphism Theorem

Here is the main theorem of this handout, and (in my opinion) one of the
best theorems in algebraic topology:
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Theorem 6.1 Suppose that

• E : X̃ → X is a covering map.

• X and X̃ are path connected.

• X̃ is simply connected.

Then π1(X) is isomorphic to the deck group for (X̃, X, E).

The rest of this handout is devoted to the proof.

6.1 Step 1: Define the Isomorphism

Since X is path connected π1(X, x) is independent of basepoint. Let x ∈ X
be a basepoint. Let G = π1(X, x). Let D be the deck transformation group.
Here we will define a map Φ : D → G. In later steps we will show that Φ is
an isomorphism.

Let x̃ ∈ X̃ be some point such that E(x̃) = x. We make this choice once
and for all. Suppose that h ∈ D is a deck transformation. Then ỹ = h(x̃) is
some other point. Note that

E(ỹ) = E(h(x̃)) = E(x̃) = x.

Since X̃ is path connected, there is some path f̃ : [0, 1] → X̃ such that
f̃(0) = x̃ and f̃(1) = ỹ. Let f = E ◦ f̃ . By construction f(0) = f(1) = x.
Hence f is a loop based at x. Define

Φ(h) = [f ] ∈ G.

To see that Φ is well defined. Suppose that f0 and f1 are two paths connecting
x̃ to ỹ. Since X̃ is simply connected, there is a path homotopy F̃ from f̃0 to
f̃1. But then F = E ◦ F̃ is a loop homotopy from f0 to f1. Hence [f0] = [f1]
and Φ is well defined.

6.2 Homomorphism

This step looks quite mysterious, but is fairly obvious if you draw pictures.
Let h1, h2 ∈ D be two deck transformations. We want to show that

Φ(h1 ◦ h2) = Φ(h1)Φ(h2).
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Let ỹj = hj(x̃) for j = 1, 2. Let fj be a path in X̃ joining x̃ to ỹj. Let

fj = E ◦ f̃j. Then Φ(hj) = [fj], as above.

Let z̃ = h1 ◦ h2(x̃1). Note that h1 ◦ f̃2 is a path joining

h1(x̃) = ỹ1

to
h1(ỹ2) = h1 ◦ h2(x̃) = z̃.

Therefore, the concatenated path f̃1 ∗ (h1 ◦ f̃2) joins x̃ to z̃. But then

Φ(h1 ◦ h2) = [E ◦ (f̃1 ∗ (h1 ◦ f̃2))] = [(E ◦ f̃1) ∗ (E ◦ h1 ◦ f̃2)] =∗

[(E ◦ f̃1) ∗ (E ◦ f̃2)] = [f1 ∗ f2] = [f1][f2] = Φ(h1)Φ(h2).

The starred equality comes from the fact that E ◦ h1 = E.

Exercise 7: Pick a nice example, e.g. X̃ = R2 and X = T 2, the torus,
and go through the above argument step by step, illustrating the proof with
pictures.

6.3 Injectivity

Since Φ is a homomorphism we can show that Φ is injective just by showing
that the kernel of Φ is trivial. So, suppose that Φ(h) is the trivial element in
π1(X, x).

Lemma 6.2 h(x̃) = x̃.

Proof: Let ỹ = h(x̃). We want to show that ỹ = x̃. Let f̃ be a path which
joins x̃ to ỹ. It suffices to show that f̃ is path homotopic to the constant
path. This is what we will do.

Let f = E◦ f̃ . Then Φ(h) = [f ]. By hypotheses, there is a loop homotopy
F from f to the trivial loop. Let Q be the unit square. By construction
F : Q → X is a continuous map such that f0 = f and f1 is the constant
map. From the lifting theorem there is a lift F̃ : Q → X̃ such that F̃ (0, 0) = x̃
and E ◦ F̃ = F . Here are some properties of F̃ :

• f̃0 is a lift of f0 = f . From the uniqueness of lifts, f̃0 = f̃ .

• f̃1 is the constant path since f1 is the constant path.
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• F (0, t) and F (1, t) are the basepoint in X, independent of t. Therefore
F̃ (0, t) and F̃ (1, t) are constant maps. In other words, the endpoints of
f̃t do not change with t. That is, F̃ is a path homotopy from our path
f̃ to the constant path.

The last item completes our proof. ♠

Lemma 6.3 If h(x̃) = x̃ then h is the identity map.

Proof: Let ỹ be some other point in X̃. We want to show that h(ỹ) = ỹ.
Let f̃ be a path joining x̃ to ỹ. Let x = E(x̃) and y = E(ỹ). Let f = E ◦ f̃ .
Then f : [0, 1] → X is a path which joins x to y.

The paths f̃ and h◦ f̃ are both lifts of f which agree at the point 0. That
is f̃(0) = x̃ and h ◦ f̃(0) = h(x̃) = x. By uniqueness of lifts, these two lifts
are the same. In particular ỹ = f̃(1) = h ◦ f̃(1) = h(ỹ). ♠

Combining these two results we see that an element in the kernel of Φ is
the identity deck transformation.

6.4 Surjectivity

Let [g] ∈ π1(X, x) be some element. We want to produce a deck transforma-
tion h such that Φ(h) = [g].

Let ỹ ∈ X̃ be any point. We need to define h(ỹ). So, let f̃ be a path
joining x̃ to ỹ. Let f = E ◦ f̃ . Then f is a path joining x to y = E(ỹ).
Consider the concatenated path γ = g ∗ f . From the lifting property we can
find a lifted path γ̃ which joins x̃ to some other point, which we define as h(ỹ).

Exercise 8: Illustrate the above construction with a series of careful pic-
tures on your favorite example.

Exercise 9: Show that the definition of h(ỹ) is independent of the choices
of f and g.

In case ỹ = x̃ we can take f̃ to be the trivial path. In this case γ̃ is a
path joining x̃ to h(x̃) and E ◦ γ̃ differs from g = E ◦ g̃ just by concatenat-
ing the constant loop. Assuming that h is a deck transformation, we have
Φ(h) = [γ] = [g].
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Lemma 6.4 E ◦ h = E.

Proof: Let’s compute E ◦ h(ỹ). We know that γ̃ connects x̃ to h(ỹ). Then
γ = E ◦ γ̃ connects x to y. Hence

E ◦ h(ỹ) = E ◦ γ̃(1) = E ◦ f̃(1) = f(1) = y.

On the other hand f̃ is a lift of f . Hence

E(ỹ) = E ◦ f̃(1) = f(1) = y.

This shows that E ◦ h(ỹ) = E(ỹ). Since ỹ is arbitrary, we are done. ♠

Lemma 6.5 h is continuous.

Proof: Let ỹ ∈ X̃ be a point. Let y = E(ỹ). There is an evenly covered
neighborhood U ⊂ X of y. Let Ũ1 be the component of h−1(U) which con-
tains ỹ. Let Ũ2 = h(Ũ1). Then Ũ2 is another component of h−1(U) because
E◦h = E. Let Fj be the inverse of the restriction of E to Ũj . Then h = F2◦E
on Ũ1. Being the composition of continuous maps, h is continuous. ♠

Were we to make the above construction for the element [g]−1 we would
produce the map h−1. Hence h is invertible. We know that h is contin-
uous and the same argument shows that h−1 is continuous. Hence h is a
homeomorphism. This completes our proof.

7 The Last Exercise

Exercise 10: Go through all the examples you know and verify the isomor-
phism theorem.
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