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The purpose of this handout is to give you a bare bones introduction to
hyperbolic geometry. The material in this handout can be found in a variery
of sources, for example:

• Alan Beardon’s book, the Geometry of Discrete Groups.

• Svetlana Katok’s book, Fuchsian Groups.

• William Thurston’s book, The Geometry and Topology of 3-Manifolds .

1 The Upper Half Plane Model

Let U ⊂ C be the upper halfplane, consisting of points z with Im(z) > 0.
As in Exercise 3 of Handout 6, we define a Riemannian metric on U by the
formula

Gz(v, w) =
v · w

y2
; y = Im(z).

When U is equipped with this metric, we denote it by H
2 and call it the

hyperbolic plane.
This Riemannian metric has more symmetries than you might think. We

will now explore this. Suppose that

A =
[

a b
c d

]

is a real 2×2 matrix with determinant 1. The set of these matrices is denoted
by SL2(R). In fact, this set forms a group under matrix multiplication.
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The matrix A defines a real linear fractional transformation

TA(z) =
az + b

cz + d
.

Note that the denominator of TA(z) is nonzero as long as z 6∈ R. Thus TA(z)
is defined and finite as long as z 6∈ R.

Exercise 1: Prove that z 6∈ R implies that TA(z) 6∈ R. Prove also that
TA maps H

2 into itself. (Hint: show that this is true for a single choice of
A, then show/use the fact that SL2(R) is path connected.)

Exercise 2: Establish the general formula

TAB = TA ◦ TB,

where A, B ∈ SL2(R).

In light of Exercise 2, we can take B = A−1. Then TA and TB are inverses
of each other. Also TA and TB are clearly continuous. Hence, TA is a home-
omorphism which maps H

2 to itself (and TB is the inverse homeomorphism.)

Exercise 3: Say that a real linear fractional transformation is basic if it
has one of three forms:

• T (z) = z + 1.

• T (z) = rz.

• T (z) = −1/z.

Prove that any real linear fractional transformation is the composition of
basic ones.

Here is an argument that the map T (z) = rz is a Riemannian isometry.
Let (x, y) ∈ H

2 be a point and let v, w be two vectors. Then T (p) = (rx, ry)
and dT (v) = rv and dT (w) = rw. But then

Grp(rv, rw) =
rv · rw

r2y2
=

v · w

y2
= Gp(v, w).
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This proves it. A similar argument works for the map T (z) = z + 1.

Exercise 4: Prove that the map T (z) = −1/z is a Riemannian isometry
of H

2.

Combining Exercises 3 and 4, we see that any real linear fractional trans-
formation is a Riemannian isometry of H

2.. Recall that we proved SL2(R) is
a 3 dimensional manifold. So, H

2 has a 3-dimensional group of symmetries!

2 Symmetries and Circles

Say that a generalized circular arc is either an arc of a circle or a segment
of a straight line, or an infinite ray. The point of this definition is that an
unboundedly large sequence of circular arcs can converge to a subset of a line,
so we want a definition of “circular arc” which is closed under taking limits.
Also, our definition interacts well with the linear fractional transformations
and hyperbolic geometry.

Say that a map T from H
2 to itself is circle preserving it maps generalized

circular arcs to generalized circular arcs. That is, if A is a generalized circular
arc contained in H

2 then T (A) is also a generalized circular arc contained
in H

2.
The maps T (z) = z + 1 and T (z) = rz are obviously circle preserving.

Lemma 2.1 The map T (z) = −1/z is circle preserving.

Proof: By continuity, it suffices to prove this result for a dense set of gen-
eralized circular arcs A. In particular, it suffices to consider the case when
A is not contained in a straight line. In this case all the points z ∈ A satisfy
an equation of the form

|z − c|2 = r2.

The center of the circle is c and the radius is r. We can write the above
equation as

|z|2 − c(z + z) + d = 0.

Here we have set d = c2 − r2. Any collection of points which satisfies an
equation like this lies on the circle.
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All the points w on T (A) satisfy the equation

|1/w − b|2 = s2.

Here we have set b = 1/a and s = 1/r. Expanding this out and rearranging,
we find that

1 − b(w + w) + b2|w|2

|w|2
= s2.

This can be rearranged into

1 − b(w + w) + (b2 − s2)|w|2 = 0.

For a dense set of choices of A we have b2 − s2 6= 0 and so we can divide
through to obtain

|w|2 +
b

b2 − s2
(w + w) +

1

b2 − s2
= 0.

Setting

c′ =
b

b2 − s2
; d′ =

1

b2 − s2

we see that
|w|2 − c′(w + w) + d′ = 0.

This is the equation for a circle. Hence T (A) is a circular arc. ♠

There are some nice geometric proofs of the above lemma. See David
Hilbert’s book, geometry and the imagination. The basic geometric reason
that the above lemma works is that stereographic projection maps circular
arcs on the sphere to generalized circular arcs in the plane. (Try to prove
this.)

Using Exercise 3, we see that every real linear fractional transformation
is circle preserving.

Exercise 5: Prove that a real linear fractional transformation T has the
following property: If a and b are two smooth curves in H

2 which intersect
at a point x and make an angle of θ then T (a) and T (b) make the same
angle θ at the point T (x). Hint: If you don’t feel like grinding out the
calculation you can assume the result is false and then deduce that the dif-
ferential dT fails to map circle to circles. In any case, the result is obvious
for all the basic maps except z → −1/z and so it suffices to consider this one.
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3 Geodesics

Say that a geodesic in H
2 is either a ray which is perpendicular to the x-axis,

or else a semicircular arc which meets the x-axis at right angles. If A is a
geodesic then T (A) is a generalized circular arc. Since T preserves intersec-
tion angles, T (A) also meets the x-axis at right angles. Hence T (A) is also a
geodesic. In other words the real linear fractional transformations permute
the geodesics in the same way that isometries of Euclidean space permute
the straight line segments.

Exercise 6: Suppose that A1 and A2 are two geodesics. Prove that there
is a real linear fractional transformation T such that T (A1) = T (A2). Hint:
work with the basic transformations first.

Lemma 3.1 Let A be the geodesic which is the positive y axis. Let p and q
be two points on A. Then the portion of A connecting p to q is the unique

shortest curve in H
2 which connects these two points.

Proof: Consider the map F defined by the equation F (x, y) = (0, y). Look-
ing at the definition of the hyperbolic metric, we see that F is hyperbolic
speed non-increasing. That is, if γ is a curve in H

2 then the hyperbolic speed
of F (γ) at any point is at most the hyperbolic speed of γ at the correspond-
ing point. Moreover, if the velocity of γ has any x-component at all then
F (γ) is slower at the corresponding point. The idea here is that F does not
change the y-component of the hyperbolic speed, but kills the x-component.
The total hyperbolic length of γ is the integral of its hyperbolic speed. Thus
the hyperbolic length of F (γ) is less than the hyperbolic length of γ, unless γ
travels vertically the whole time. Our result follows immediately from this. ♠

Corollary 3.2 Let A be any geodesic in H
2. Let p and q be two points on

A. Then the portion of A connecting p to q is the unique shortest curve in

H
2 which connects these two points.

Proof: We can apply a Riemannian isometry T such that T (A) is as in the
previous lemma. Then we can apply the previous lemma. ♠

A geodesic segment is defined to be the portion of a geodesic which joins
two points on that geodesic. Summarizing what we know so far:
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• Every real linear fractional transformation is a hyperbolic isometry.

• Every real linear fractional transformation maps geodesics to geodesics.

• Every geodesic segment is the unique shortest curve connecting its end-
points.

The geoedesics and geodesic segments play the role, in hyperbolic geom-
etry, that lines and line segments play in Euclidean geometry.

4 The Disk Model

Let ∆ be the open unit disk. There is a nice map M : H
2 → ∆ given by

M(z) =
z − i

z + i
.

This map does the right thing because z ∈ H
2 is always closer to i than to

−i and so |M(z)| < 1.

Exercise 7: Prove that M maps geodesics in H
2 to generalized circular

arcs which meet the unit circle at right angles.

There is a unique Riemannian metric H on ∆ which makes M into an isome-
try. By symmetry, this Riemannian metric must be a multiple of the ordinary
dot product at the point 0 ∈ C. A calculation shows that

Hz(v, w) =
4v · w

(1 − |z|)2
.

The factor of 4 comes from the fact that |M ′(i)| = 1/2. Equipped with this
Riemannian metric, ∆ is also called the hyperbolic plane. The geodesics in
∆ are the generalized circular arcs which meet the unit circle at right angles.

Exercise 8: Draw a nice picture of 10 different geodesics in the disk model
of H

2.

Note that M is also a linear fractional transformation, through not a real
linear transformation. When T is a real linear fractional transformation, the
map M ◦T ◦M−1 is an isometry of ∆. It is useful to have both models of the
hyperbolic plane available. In the next section we’ll see that certain results
about polygons are easy in the disk model.
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5 Geodesic Polygons

Say that a geodesic polygon in H
2 is a simple closed path made from geodesic

segments. Simple means that the path does not intersect itself. Say that a
solid geodesic polygon is the region in H

2 bounded by a geodesic polygon.
Just as in Euclidean geometry, we can measure the angles between the sides
of a geodesic polygon. This works out because the hyperbolic isometries
preserve angles of intersection. Here is a classical result in non-Euclidean
geometry:

Lemma 5.1 Let T be a geodesic triangle in the hyperbolic plane. Then the

sum of the angles of T is less than π.

Proof: We can work in the disk model. There are enough isometries of H
2

to move any point to any other point. In particular, we can move a point in
the interior of (the solid version of) T so that it is 0. But then the sides or
T are circular arcs which bend inwards towards 0. (Draw a picture and you
will see what I’m talking about.) ♠

A solid geodesic polygon P is convex if it has the following propery: If
p, q ∈ P are two points then the geodesic segment joining p and q is also
contained in P . It is easy to prove, inductively, that any convex geodesic
polygon can be decomposed into geodesic triangles.

Corollary 5.2 The sum of the interior angles in a convex geodesic N gon

is at most (N − 2)π.

Proof: Just decompose into triangles and then apply the previous lemma
multiple times. ♠

Exercise 9: (Challenge) Suppose that θ1, θ2, θ3 are three numbers whose
sum is less than π. Prove that there is a hyperbolic geodesic triangle with
angles θ1, θ2, θ3. (Hint: the intermediate value theorem.)

Exercise 10: (Challenge) Say that a geodesic triangle is δ-thin if every
point in the interior of the (solid version of) triangle is within δ of a point
on the boundary. Note that there is no universal δ so that all Euclidean
triangles are δ thin. Prove that all hyperbolic geodesic triangles are 10-thin.
(The value δ = 10 is far from optimal.)
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