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The purpose of this handout is to define hyperbolic surfaces and to present
a general method of constructing them out of convex geodesic polygons.

1 Definition

Let Σ be a surface. This to say that Σ is a metric space, and every point of
Σ has a neighborhood which is homeomorphic to R

2. Actually, it is a little
bit annoying to always have to map the neighborhoods of Σ to all of R

2. So,
we define a disklike subset of R

2 to be a subset which is homeomorphic to
R

2. For instance, an open disk is disklike. So is an open (solid) square. So,
we can equally well say that a surface is a metric space such that every point
has a neighborhood which is homeomorphic to a disklike subset of R

2. If a
disklike set is contained in the upper half plane, we call it a disklike subset
of H

2.
Let U and V be two open subset of H

2. Say that a map f : U → V is
a local hyperbolic isometry if the restriction of f to each open component of
U agrees with the restriction of a hyperbolic isometry. The easiest case to
think about is when U and V are both connected. Then f : U → V is a local
isometry iff f is the restriction of a hyperbolic isometry to U .

Definition: A hyperbolic structure on Σ is an atlas of coordinate charts
on Σ such that

• The image of every coordinate chart is a disklike subset of H
2.

• The overlap functions are local hyperbolic isometries.

• The atlas is maximal.
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There are several auxilliary definitions which go along with this. A hyper-
bolic surface is complete if every Cauchy sequence converges. A hyperbolic
surface is compact if every covering by open subsets has a finite subcovering.
The notions of completeness and compactness are defined in any first year
book on Real Analysis. All the examples constructed in this handout are
compact.

2 The Associated Riemannian Structure

Here we show that a hyperbolic surface, as defined above, can automatically
be considered as a smooth Riemannian surface.

Exercise 1: Prove that a local hyperbolic isometry is a smooth map.

In light of Exercise 1, a hyperbolic structure automatically gives an atlas
of smooth coordinate charts. This atlas is not maximal, but then we can
complete it to a maximal atlas using Zorn’s lemma. Thus, every hyperbolic
surface automatically is a smooth surface.

We can define a Riemannian metric on a hyperbolic surface Σ as follows.
Let p ∈ Σ be a point. Let (U, f) be a coordinate chart about p. This means
that U is an open neighborhood of p and f : U → H

2 is a homeomorphism
onto a disklike set. Let V, W ∈ Tp(Σ) be two tangent vectors. This is to
say V = [α] and W = [β] where α, β : (−ǫ, ǫ) → Σ are smooth curves with
α(0) = β(0) = p. We define

Hp(V, W ) = Gf(p)((f ◦ α)′(0), (f ◦ β)′(0)).

Here G is the Riemannian metric on the hyperbolic plane. In other words,
we have just used the coordinate chart to transfer the metric on H

2 to the
tangent space TpΣ of Σ at p.

The fact that the overlap functions are all hyperbolic isometries implies
that the above definition of the metric is independent of which coordinate
chart is used.

3 Gluing Recipes

We would like a way to build lots of hyperbolic surfaces. Recall that a
convex geodesic polygon is a convex subset of H

2 whose boundary consists of
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a simple closed path of geodesic segments. I discussed these objects in detail
at the end of Handout 7. Again, the convexity condition means that any two
points in the polygon can be joined by a convex set which is contained in the
set.

Let P be a geodesic polygon. Let e ∈ P be an edge. Say a decoration of
e is a labelling of e by both a number and an arrow. Say that a decoration

of P is a decoration of every edge of P . Whenever we have built surfaces
by gluing the sides of a polygon together−e.g. in the Asteroids example−we
are always basing the construction on a decoration of the polygon.

We say that a gluing recipe for a hyperbolic surface is a finite list P1, ..., Pn

of decorated polygons. There are some conditions we want to force:

• If some number appears as a label, then it appears as the label for
exactly two edges. This condition guarantees that we will glue the
edges together in pairs.

• If two edges have the same numerical label, then they have the same
hyperbolic length. This allows us to make our gluing using (the restric-
tion of) a hyperbolic isometry.

• Any complete circuit of angles adds up to 2π. This condition guarantees
that a neighborhood of each vertex is locally isometric to H

2.

The third condition requires some explanation. A complete circuit is a
collection of edges

e1, e
′

1, e2, e
′

2, e3, e
′

3, ..., e
′

k, e1.

with the property, for all j, that ej and e′j have the same numerical label and
e′j and ej+1 are consecutive edges of the same polygon. (Here we are taking
the indices cyclically, so that k + 1 is set equal to 1.)

There is one subtle condition which we need also to require. Let vj be
the vertex incident to e′j and ej+1. Then the arrow along ej+1 points to vj

iff the arrow along e′j+1 points to v′

j+1. If you draw a few examples you will
see the point of this last requirement. The point is that we want the edges
in our chain to emanate from a single vertex in the quotient space.

The edges ej and e′j+1 subtend an angle αj and we want α1+ ...+αk = 2π.
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4 The Basic Result

Here we will sketch the proof of

Theorem 4.1 Any gluing recipe gives rise to a hyperbolic surface in a nat-

ural way.

The proof comes in 4 steps.

4.1 Step 1

Given a gluing recipe we can form a surface Σ as follows: First of all, we
start out with the metric space X which is the disjoint union of P1, ..., Pn.
We can do this by declaring d(p, q) = 1 if p ∈ Pi and q ∈ Pj with j 6= i. For
p, q ∈ Pj (the same polygon) we just the hyperbolic metric. So, you should
picture X approximately as a stack of polygons hovering in the air.

Now we define an equivalence relation on X using the rule that p ∼ p′ iff p
and p′ are corresponding points on like numbered edges. Here corresponding

should be pretty obvious. Suppose e and e′ are two like numbered edges,
both having length λ. Then there is some t such that p is t units along e
measured in the direction of the arrow. Likewise there is some t′ such that
p′ is t′ units along e′. Then p and p′ are corresponding points iff t = t′.

The surface is defined as Σ = X/∼.

4.2 Step 2

We would like to show that Σ is indeed a surface, so we have to construct an
atlas of coordinate charts. Here is a general recipe for doing this. First of all,
we’re going to define some sets on a single polygon. We get our coordinate
charts by suitably piecing these sets together.

Choose some very small ǫ1 and let U(P ) ⊂ P be the set of points which
are at least ǫ1 from the boundary of P .

Exercise 2: Show that U(P ) is a disklike set if ǫ1 is chosen small enough.
Hint: Try to show that there is a point p ∈ P such that the radial geodesics
emanating from p only intersect the boundary of U in a single point. Then
use the fairly obvious “polar coordinate map” to the disk.
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Choose some small ǫ2 and let e be an edge of P . Let U(e) be the set of
points x ∈ P such that

• x is within ǫ2 of e.

• x is at least ǫ from any vertex of P .

Finally, choose some ǫ3. For any vertex v of P let U(v) denote the set of
points in P which are within ǫ3 of v.

Exercise 3: Prove that the constants ǫ1, ǫ2, ǫ3 can be chosen so small that

• For any edge e the set U(e) only intersects U(P ) and U(v1) and U(v2),
where v1 and v2 are the two vertices incident to e.

• For any vertex v the set U(v) only intersects U(P ) and U(e1) and U(e2),
where e1 and e2 are the edges incident to v.

In fact, show that things work out if ǫ is sufficiently small and ǫj = ǫj for
j = 1, 2, 3. I mean the powers of a single constant. (Hint: draw a good
schematic picture of all this.)

From now on we choose our constants to be ǫ1, ǫ2, ǫ3. If we have a finite
list of polygons we fix a single ǫ which works for all of them (in the sense of
Exercise 3) and then we make the above constructions.

4.3 Step 3

This step breaks into 3 substeps.

4.3.1 Step 3A: Near the middle

We want to define coordinate charts from Σ into H
2. First, we can use

the identity map on each set U(Pj). This makes sense because each Pj is
a subset of H

2. Clearly these coordinate charts are homeomorphisms from
open subsets of Σ to disklike sets.
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4.3.2 Step 3B: Near the Edges

If e and e′ are two edges which have the same numerical label, then we can
define h : U(e) → H

2 and h(U(e′) → H
2 in such a way that

• The map h is the identity map composed with a hyperbolic isometry.

• The map h′ is the identity map composed with a hyperbolic isometry.

• h(e ∩ U(e)) = h′(e′ ∩ U(e′)) and the arrows go the right way.

• h(U(e)) and h′(U(e′) lie on opposite sides of H(e) = H(e′).

This is pretty obvious. We can first define h and h′ as the identity maps, and
then compose one of our maps with a suitable isometry to adjust things. The
main point here is that U(e) ∩ e and U(e′) ∩ e′ are open geodesic segments
of the same length.

Exercise 4: Draw a picture of h(U(e)) ∪ h′(U ′(e)). Show that this set a
disklike set if ǫ is chosen small enough.

Note that U(e) and U(e′) piece together on Σ to give an open neighbor-
hood of any point of the form [x] where x ∈ U(e) ∩ e or x ∈ U(e′) ∩ e′. It
is not hard to show that h and h′ together define a homeomorphism from
(U(e) ∩ U(e′)/∼ onto h(U(e)) ∪ h′(U(e′)).

4.3.3 Step 3C: Near the Vertices

Let B denote the open ball of radius ǫ3 about, the point i =
√
−1 ∈ H

2. Let
[v] be any vertex of Σ, and let v1, ..., vk be the complete list of the members of
the equivalence class of v. The sets U(v1), ..., U(vk) are little “pizza slices”.
All that remains is to analyze how these pizza slices fit together.

Exercise 5: Prove that we can find isometric maps hi : U(vi) → H
2 such

that

• hj(vj) = j for all j.

• hj(U(vj)) ∩ hj+1(U(vj+1)) is a half-open geodesic segment emanating
from

√
−1.
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Under these circumstances, prove that
⋃

hj(U(vj)) = B. (Hint: Picture
these open sets as fitting around i like the slices of pizza. The 2π condition
makes things work.

The pieces U(v1), ..., U(vk) fit together to make a neighborhood of v in Σ
and it is not hard to show that the maps h1, ..., hk piece together to give a
homeomorphism from

U(v1) ∪ ... ∪ U(vk)/∼
to B.

4.4 Step 4

From the way we have defined things, the overlap functions are all local
hyperbolic isometries, so we have found an atlas on Σ whose overlap functions
are local hyperbolic isometries. We can complete this to a maximal atlas, if
we like, using Zorn’s lemma.

5 Some Examples

Exercise 6: Prove that there is a regular convex 4n gon, with angles π/2n,
provided that n ≥ 2. Call this polygon P4n. Decorate P4n by giving the
opposite sides and making the arrows point in the same direction. Prove
that P4n, as decorated, is a gluing diagram for a hyperbolic surface.

Exercise 7: Prove that there exists a right angled regular hexagon. Con-
struct a decoration of 2n such hexagons in such a way that it is the gluing
diagram for a hyperbolic surface. Here n ≥ 2 should be even.

exercise 8: (Challenge) If you take n = 2 in Exercises 6 and 7 you get
homeomorphic surfaces. Prove that they are not isometric.

6 A Glimpse at Moduli Space

We can fix a homeomorphism type of surface, for example the surface of
genus g = 2. Let Mg denote the set of all different hyperbolic surfaces which
are homeomorphic to our fixed surface. Two such surfaces are considered
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“the same” if there is an isometry between them.

Exercise 9 (Challenge): Prove that Mg has uncountably many points
for any given genus g. Hint: Modify the construction in Exercise 7, using
hexagons which have 3-fold rather than 6-fold symmetry.

We would like to make Mg into a metric space! Let Σ1 and Σ2 be two
hyperbolic surfaces. Let d(Σ1, Σ2) be log(K), where K is the infimal number
such that there is a homeomorphism h : Σ1 → Σ2 which is K-bilipschitz.
This means that

1

K
d(x, y) ≤ d(h(x), h(y)) ≤ Kd(x, y); ∀x, y ∈ Σ1.

Exercise 10: Prove that Mg is a metric space, when it is equipped with d.
The only hard part of this exercise is showing that d > 0 when Σ1 and Σ2

are not isometric.
In the past 50 years there has been intense interest in the spaces Mg,

when it is given various metrics and auxilliary structures. These notes are
just meant to give you a little glimpse of it.
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