Math 20 Midterm 1. 12 Oct 2010

Instructions. The problems are worth 25 points each. Show all your work.

1. Consider the curve $r(t) = (t, t^2, t^3)$.

a. (10 pts) Find $\sin^2(\theta)$, where θ is the angle that the tangent vector to the curve makes with the *x*-axis at time t = 1.

b. (15 pts) Determine whether the tangent lines at t = 1 and t = 2 are parallel, intersecting, or skew. Explain your answer.

2. Give an example of a differentiable function f(x, y) such that...

a. (15 pts) the gradient of f vanishes at (0,0) but f does not have a local max or min at (0,0).

b. (10 pts) f has a minimum at (0,0) but f fails the second derivative test at (0,0)

Explain your answer in both cases.

3. Consider the function $f(x, y, z) = xy + y^2 + z^3$. Let r(t) = (x(t), y(t), z(t)) be a curve such that goes through the point (1, 1, 1) at t = 0. What is the slowest possible speed r could have at time t = 0 so that

$$\frac{d}{dt}f(r(t)) = 1?$$

4. Find the point on the parabola $y = x^2$ that is closest to the line y = x - 1. Hints: First of all, draw a good picture. It is possible to do this problem with hardly any calculation, but if you find the algebra getting messy, you might want to set the problem up as a Lagrange multipliers problem.