Math 20 Midterm 1 Solutions

1a. The velocity at t = 1 is (1, 2, 3). The angle θ satisfies

$$\cos(\theta) = \frac{(1,0,0) \cdot (1,2,3)}{\|(1,0,0)\| \| (1,2,3)\|} = \frac{1}{\sqrt{14}}$$

So $\sin^2(\theta) = 1 - 1/14 = 13/14$.

1b. The two lines are given by

$$(1, 1, 1) + t(1, 2, 3);$$
 $(1, 2, 8) + t(1, 4, 12);$

The lines are not parallel because the directions are not parallel. So, we just have to check if the lines intersect. The common normal to the two lines is

$$n = (1, 2, 3) \times (1, 4, 12) = (12, -9, 2).$$

A vector pointing from one line to the other is given by the difference V = (1, 2, 8) - (1, 1, 1) = (0, 1, 7). If the lines intersect, then V is perpendicular to n, but $V \cdot n = 5$, which is nonzero. So, the lines are skew.

2a. The function f(x, y) = xy works because f > 0 when x and y have the sign and f < 0 when x and y have opposite signs. The function $f(x, y) = x^2 - y^2$ is another good example.

2b. The cheapest example if f(x, y) = 0, the zero function. Obviously the second derivative gives no information. A better example is something like $f(x, y) = x^4 + y^4$. For this second example, (0, 0) is the absolute minimum, and all second partials of f are 0 at (0, 0).

3. The chain rule gives

$$\frac{d}{dt}f(r(t))|_{t=0} = r'(0) \cdot \nabla(0) = r'(0) \cdot 1, 3, 3) = \sqrt{19} \ v \cos(\theta).$$

Here $\sqrt{19}$ is the norm of $\nabla f(0)$ and θ is the angle between the velocity r'(0) and $\nabla f(0)$. We want to make v as small as possible and have $\sqrt{19} v \cos(\theta) = 1$. Since $|\cos(\theta)| \leq 1$, the best we can do is make the curve go in the direction of $\nabla f(0)$, which means setting $\theta = 0$, and then taking $v = 1/\sqrt{19}$. So, the answer is $1/\sqrt{19}$.

4. Here is the cheapest solution. Let L be the line y = x - 1. Let $p = (x, x^2)$ be the point closest to the line y = x - 1. The tangent line to the parabola at p must be parallel to L, and hence have slope 1. But the slope of the tangent line is 2x. Setting 2x = 1 gives x = 1/2. So, the point must be (1/2, 1/4).

Here is another solution. The parabola lines on one side of L and the function F(x, y) = x - y is proportional to the function that measures distance to L. The Lagrange multiplier equation $\nabla F = \lambda \nabla g$ gives

$$(1,1) = \lambda \ (1,2x),$$

from which you again get x = 1/2.

Here is another solution. Parametrize the parabola by (x, x^2) and parametrize the line by (y, y - 1). Then you want to minimize the function

$$F(x,y) = ((x-y)^2 + (x^2 - y + 1)^2).$$

Use the first derivative test:

$$F_x = 2(x - y) + 4x(x^2 - y + 1) = 0.$$

$$F_y = -2(x - y) - 2(x^2 - y + 1) = 0.$$

Add the two equations together, to get

$$(4x-2)(x^2 - y + 1) = 0.$$

One solution is clearly x = 1/2. The other possibility is $x^2 - y + 1 = 0$, or $y = x^2 + 1$. But in this case, $F_x = 0$ then leads to x = y. So, here, $x = x^2 + 1$. This has no real solutions. So, only x = 1/2 works. This is probably the hardest way to to the problem.