Math 20 Midterm 1. 5 Mar 2008

Instructions. Show all your work.

1. Consider the function

$$f(x, y, z) = x^2 z - 3y^2 + 4xz^2 - 2.$$

Note that f(1,1,1) = 0. Write the equation for the plane tangent to the level surface f = 0 at the point (1,1,1).

- **2.** Let $f(x, y, z) = \frac{1}{3}x^3 + xyz$. Let $D_v f$ stand for the directional derivative of f in the direction of v. Let p = (1, 2, 2).
- **a.** Find a unit vector v such that $D_v f(p) = 5$.
- **b.** Find a unit vector v such that $D_v(f)(p) = 0$ and $v \cdot (0, -1, 1) = 0$.
- c. Explain why there is no unit vector v such that $D_v f(p) = 6$.
- **d.** Explain why there are infinitely many unit vectors v such that $D_v f(p) = 4$.

3. Consider the function f(x, y) = xy + x defined on the disk *D* given by $x^2 + y^2 \leq 3$. Find and classify all the critical points of *f* on *D*, and also find the values where *f* attains its minimum and its maximum.

4. The functions $r_1(t)$ and $r_2(t)$ describe the positions of two particles in the plane. The first particle moves along the x-axis at speed 2 in such a way that $r_1(0) = (1,0)$. The second particle moves in such a way that $r_2(0) = (2,3)$ and $r'_2(0) = (1,1)$. Let E(t) denote the square of the distance between $r_1(t)$ and $r_2(t)$. For instance

$$E(0) = (2-1)^2 + (3-0)^2 = 10.$$

Use the chain rule to compute

$$\frac{dE}{dt}(0).$$

(Note, even though this problem involves particles in the plane, the function E is a function of more than 2 variables, because it depends on the coordinates of both points.)