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The purpose of these notes is to shed light on Van Kampen’s Theorem.
For each of exposition I will mostly just consider the case involving 2 spaces.
At the end I will explain the general case briefly. The general case has almost
the same proof. My notes will take an indirect approach. I will first explain
the construction that lies at the heart of the proof and then I will plug this
in to the main argument.

1 Free Products

Let G and H be groups. The free product G ∗ H is defined, as a set, to be
the the union of the empty word and all words of the form a1a2a3, ... with
these alternately being nontrivial elements in G and H. The group law is
concatenation, followed by all cancellation needed to return to a reduced
word. The cancellation process is unique, because we start in the middle,
so to speak, and then work our way outward. What happens is that we see
aa−1 in the middle. We cancel this off and then we have b1b2. If this element
is nontrivial we replace b1b2 by b and stop. Otherwise we cancel off b1b2 and
repeat.

I can’t really improve on Hatcher’s proof that G∗H is a group, but let me
say it somewhat differently, highlighting the main ideas. Inverses are easy:
Just reverse the word and replace each element by its inverse. The nontrivial
part is showing that the group law is associative.

Let W be the set of reduced words, including the empty word. Let P (W )
denote the group of permutations of the set W . The main idea is to give an
injective map L : W → P (W ) such that L(ab) = L(a)L(b). Since P (W ) is a
group, it is associative. But then L((ab)c) = L(a(bc)). Since L is injective,
(ab)c = a(bc). Hence the group law is associative.
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Now I give the construction of L. For each element g ∈ A the map Lg

is defined to be left multiplication: Lg(a1a2...) = ga1a2... If g, a1 are in the
same group, G or H, we replace ga1 with the product. If the product is
nontrivial we leave it there. Otherwise we remove it. If g, a1 are not in the
same group we leave ga1 as is. Since Lg−1 = L−1

g we see that Lg really is a
permutation.

If a1...an is a reduced word, we define L(a1...an) = La1 ...Lan , with the
product on the right being composition. This defines the map L. Consider
L(ab). This differs from L(a)L(b) by cancelling off a finite number of terms
of the form LgLg−1 , each of which is the trivial permutation. Hence L(ab) =
L(a)L(b). Note that L(a1...an) is nontrivial because this permutation maps
the empty string to a1...an. So, it is a nontrivial permutation. Hence L is
injective.

2 Normal Subgroups of Free Products

Here is the situation we have in Van Kampen’s Theorem. We have three
groups G,H,K and maps φ : K → G and ψ : K → H. These maps need
not be injective. We let N be the normal subgroup generated by all words
of the form

φ(k)ψ(k)−1 (1)

for k ∈ K. Note that N is not just the union of these elements. We can
also take products as well. Also, conjugation must preserve N , because N is
normal. So, N is really the group of finite products of elements conjugate to
the kind in Equation 1.

The group we will be interested in is (G ∗H)/N . How is this related to
topology? The setup is that A and B are path connected topological spaces
such that A ∩ B is path connected and furthermore A and B are each open
in A ∪B. We fix some basepoint p ∈ A ∩B. We have

G = π1(A, p), H = π1(B, p), K = π1(A ∩B, p).

The maps φ and ψ are the maps from K to G and from K to H induced
by the inclusion from A ∩ B respectively to A and to B. Van Kampen’s
Theorem says that

π1(A ∪B, p) = (G ∗H)/N. (2)
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3 Decorated Homotopies

Let A,B, p be as above. Suppose that F : [0, 1]2 → A∪B is a continous map
having the property that F (0, y) = F (1, y) = p for all y. In other words, F
maps the left and right edges to P .

Lemma 3.1 We can divide [0, 1]2 into a grid of squares such that F maps
each square into either A or into B.

Proof: This is compactness. Each point of [0, 1]2 has a neighborhood which
is mapped into either A or B. By compactness we can cover [0, 1]2 by finitely
many neighborhoods, each of which is mapped into either A or B. Again
by compactness, we can divide [0, 1] into a sufficiently fine grid so that each
square in the grid is contained in one of these special open sets. ♠

We fix this square grid and then we label each square according as to
whether F maps the square into A or into B. If F maps a square into A∩B
we just pick randomly. Thus, we have labeled all the squares in the grid by
the letters A and B. For the concreteness I will always draw the grid with 9
squares, as in Figure 1, and I will number the squares as indicated.

Figure 1: The grid with its face labels.

Each vertex has type AA or BB or AB according as it is surrounded by
all A squares, all B squares or both kinds of squares. Likewise each edge
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has type AA or BB or AB according as it includes in only A-squares, only
B-squares, or both.

To each vertex v in the picture we assign a path α(v) that connects v to
the basepoint p. If v has type AA the path stays in A. If v has type BB
the path stays in B. if v has type AB the path stays in AB. We can do this
because A and B and A ∩B are all path connected.

We orient the edges in the picture as indicated. They always point right
or up. Let e be an edge and let v1, v2 be the endpoints of e, chosen so that
e points from v1 to v2. We consider the path

β(e) = α(v1) ∗ F |e ∗ α(v2). (3)

In other words we first trace α(v1) backwards from p to F (v1), then we do F
along e, then we trace α(v2) from F (v2) to p. This is closed loop and hence
defines an element [β(e)] ∈ π1(A ∪B, p).

Now for the first key idea:

• If e has type AA we interpret [β(e)] as an element of π1(A, p).

• If e has type BB we interpret [β(e)] as an element of π1(B, p).

• If e has type AB we interpret [β(e)] both as an element of π1(A, p). and
as an element of π1(B, p). That is, we associate two group elements to
e in this case. Notice that these two elements correspond to the same
element of π1(A ∩B, e). They are just defined by the same path. Call
such elements equivalent . These are the kinds of elements that arise in
Equation 1 when we have the setup for Van Kampen’s Theorem.

We label each edge by one or two fundamental group elements, according to
the scheme above. Each edge gets one or two labels according to its type.

All this structure is what we mean by a decorated homotopy .

4 Edge Paths

Suppose now we have a path γ which starts on the left or right edge of [0, 1]2

follows finitely many edges, then returns to the left of right edge. To γ we
associate a certain finite list of elements in the free product π1(A, p)∗π1(B, p).
We simply choose one of our edge labels for each edge and write down these
labels (or their inverses) in the order we encounter them. If we go forwards
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along the edge we use this edge label. If we go backwards along the edge
we use its inverse. We then do the cancellation to get a reduced word. All
the edges along the left and right sides are labeled by the trivial element, so
it doesn’t matter how much we move up and down along the left and right
sides of [0, 1]2.

If our path encounters k edges of type AB then we can associate any of
2k elements in the free product.

Lemma 4.1 Any two free product elements associated to the same path give
the same element in (π1(A, p) ∗ π1(B, p))/N where N is the normal subgroup
generated by elements of the form gh−1 where g and h are equivalent labels.

Proof: It suffices to show this for two elements which just differ by one
label. Thus we want to compare U = XgY and V = XhY where X, Y are
concatenations of labels we don’t care about. We have

UV −1XgY (XhY )−1 = XgY Y −1h−1X−1 = X(gh−1)X−1.

So UV −1 is conjugate to gh−1 and therefore in N . ♠

Now we define 2 kinds of paths:

1. A lasso path is one which starts at (0, 0), follows a path to a small
square, goes around it, then follows the same path back.

2. The separator path σk is the one that separates squares 1, ..., k from
squares k + 1, ..., n2 in the grid. There are n2 of these, where n2 is the
number of grid squares.

Figure 2 illustrates these kinds of paths. The red path on the right is the
separator path σ4. The paths σ0 and σn2 are the paths which go along the
top and along the bottom. Here n = 3 in our picture.
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Figure 2: lasso, and separator paths

Lemma 4.2 Let g be an element in the free product associated to a lasso
path. Then g ∈ N , the subgroup from Lemma 4.1.

Proof: Let’s call the lasso loop γλγ−1 where λ is the loop that goes around
the little square. Without loss of generality assume that this square is labeled
A. There are potentially many free product labels associated to our lasso,
but let us use the one which uses an A-label as much as possible. By Lemma
4.1 our result is true for one of these words if and only if it is true for any
other one. So, we might as well prove our result for the maximally-A word.

Since N is a normal subgroup it suffices to prove that λ ∈ N . But the
word associated to λ is just the product of 4 elements of π1(A, p) correspond-
ing to the boundary of the square. Since F maps the entire square into A,
the restriction F |A induces a homotopy from the word associated to λ and
the trivial word. Hence our maximally-A word is in fact the trivial word.
The trivial word certainly lies in N . ♠

We suppose that our grid is an n× n grid. Let m = n2.

Lemma 4.3 Let g0 and gm be the free product words associated to σ0 and
σm respectively. Then g0g

−1
m belongs to the normal subgroup N from Lemma

4.1.

6



Proof: We have

g0g
−1
m = (g0g

−1
1 )(g1g

−1
2 )...(gm−1g

−1
m ).

Here gj is one of the free product words associated to the separator σj. Note
that gj−1g

−1
j is just a free product word associated to a lasso that goes around

square j. Hence this word belongs to N . Since g0g
−1
m is the product of words

that lie in N , it also lies in N . ♠

5 Proof of Van Kampen’s Theorem

We have done most of the hard work. Now I’ll state the result and its proof.
The hypotheses on A and B are as above. Let i#A : π1(A ∩ B, p) → π1(A, p)
be the map on fundamental groups induced by inclusion. Likewise define i#b .

Theorem 5.1 (Van Kampen) π1(A∪B) = (π1(A, p) ∗ π1(B, p))/N . Here
N is the normal subgroup generated by elements of the form gh−1 where
g = i#A(k) and h = i#B(k).

Proof: We construct a map from π1(A, p) ∗ π1(B, p) to π1(A ∪B, p). Given
some free product element a1b2a3... we represent each ai by a loop in A
based at p and each bi by a loop in B based at p. We then concatenate
these loops and take the homotopy equivalence class. The same construction
works for words starting with b. This map respects concatenation so it is a
homomorphism. Call it Ψ.

We just need to check 3 things:

• Ψ is surjective.

• The kernal of Ψ contains N .

• The kernal of Ψ is contained in N .

These three things together show that Ψ induces an isomorphism from the
group (π1(A, p) ∗ π1(B, p))/N to the group π1(A ∪B, p).

To see that Ψ is surjective we suppose we are given some loop f : [0, 1]→
A ∪ B which maps the endpoints to p. By compactness, we can partition
[0, 1] into finitely many intervals such that f0 maps each interval into either
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A or B. This gives us a 1-dimensional version of the grid considered above.
We join the vertices of the grid to p as above. This gives us a labeling of
the edges of the grid by elements in π1(A, p) and π1(B, p) as above. The
product of these words is homotopic to f because the auxilliary paths and
their inverses cancel each other out in pairs.

To see that the kernel of Ψ contains N it suffices to show that the gen-
erators of N lie in the kernel. That is, we have to show that Ψ(g) = Ψ(h)
whenever g = i#A(k) and h = i#B(k). But both Ψ(g) and Ψ(h) are represented
by the same loop, the one that represents k in A ∩B.

Now we come to the interesting step. To see that the kernel of Ψ is con-
tained in N suppose that Ψ(g) is trivial. This means that there is a map
F : [0, 1]2 → A ∪ B giving a homotopy between the loop representing g and
the constant loop. We can create the decorated homotopy as in the previous
sections. Once we do this, one of the free product words associated to the
bottom path σ0 is exactly g. The free product word associated to the top
path is the identity. By Lemma 4.3, we have g ∈ N . ♠

6 The General Case

The general case involves the spaces A1, ..., An. The hypotheses are that

1. Each Ai is open in the union.

2. All double and triple intersections are path connected.

In this case, Van Kampen’s Theorem says that

π1(A1 ∪ ... ∪ An, p) = (π1(A1, p) ∗ ... ∗ π1(An, p))/N (4)

Where N is the normal subgroup generated by all the same elements as
above, with respect to every possible pair Ai, Aj.

The proof is the essentially the same. First, we perturb the grid so that
at most 3 squares meet at a vertex. Now when we associate paths to the
vertices we can keep them inside the relevant triple intersections. Second, we
label each square by some Ai rather than an A or a B. Now we just do the
same thing and we get the result.
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