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The purpose of these notes is to sketch the theorem that I will prove in
class on Tuesday. One reason I want to give you these notes now is because
it may help with the homework. The other reason is that these notes are
sort of a high-level description of the main ideas in the big theorem. If you
read them in advance of class, the lecture will probably make more sense.

1 The Universal Cover

Let X be a topological space. Let X̃ be a covering space. This means that
there is a surjective continuous map φ : X̃ → X such that each point in x
has an open neighborhood U such that φ−1(U) consists of a disjoint union of
sets {Uα} where φ : Uα → U is a homeomorphism for each Uα.

The space X̃ is called a universal covering space if π1(X) is the trivial
group. This is often expressed by saying that X̃ is simply connected . Most
of the examples I have shown in class are universal covers. When X̃ is a
covering space, the deck group is the group of homeomorphisms h : X̃ → X̃
such that φ ◦ h = φ. In other words, these homeomorphisms commute with
the covering map.

Why is this called the deck group. I think that this name comes from the
idea that X̃ is a deck of cards and X is just a single card. The map φ in this
case is just projection. The deck group is just the group that effects shuffles
of the cards. I don’t really like this example because X̃ is pretty boring: It
is a disconnected space. The connected covering spaces are more fun for our
purposes.

Here are some examples.
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1. X̃ = R and X = S1 and φ(x) = exp(ix). In this case the deck group
is Z. The homeos all have the form h(x) = x + n for n ∈ Z. So, the
deck group is isomorphic to Z. Coincidentally, π1(S

1) = Z as well.

2. X̃ is the infinite 4-valent tree and X is the figure-8, The map φ a bit
hard to explain with a formula, but basically it is a map that maps la-
belled edges in X̃ to one or the other loop in X, depending on the label.
The deck group is the group of all label-preserving automorphisms of
the tree. This is the free group on 2 generators. Coincidentally, π1(X)
is also the gree group on 2 generators.

3. X̃ = S2 and X is the projective plane, P 2. The map φ is the quotient
by the antipodal map. The deck group is Z/2. The generator is the
antipodal map A(x) = −x. The other element is the identity map.
Coincidentally, π1(P

2) = Z/2 as well.

1.1 The Main Result

You might have noticed a coincidence going on: π1(X) is isomorphic to the
deck group in these examples. This turns out to always be the case.

Theorem 1.1 Suppose that X̃ is a universal covering space of a path con-
nected space X. Then the deck group of (X̃,X, p) isomorphic to the funda-
mental group of X.

The proof is essentially the same as what we did in class for S1. Here
is a sketch of the proof. We choose a basepoint p ∈ X and also a point
p̃ ∈ X̃ such that φ(p̃) = p. We represent each element of π1(X, p) by a map
γ : [0, 1]→ X such that γ(0) = γ(1) = p. We then give essentially the same
argument as in class to show that there exists a unique lift γ̃ of γ such that
that γ̃(0) = p̃. Our homomorphism sents [γ] to the deck transformation that
maps p̃ = γ̃(0) to γ̃(1). That’s the construction. Call the map Ψ. Here are
the main details:

1. Why is there is always a deck transformation that takes p̃ to γ̃(1)? In
other words, why does Ψ even have a target to map into? The proof that
this works is going to be a variant of the path lifting property. We can
start building a homeo in the following way. Near p̃ we compose φ with
the correct branch of φ−1. This defines our homeo in a neighborhood of
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p̃. We then use a kind of “continuation” property related to the path
lifting to define the homeo everywhere.

2. Why is Ψ well defined? This is going to work about the same way as
it did for the circle: Homotopies lift as well.

3. Why is Ψ a homomorphism? This is because concatenation interacts
the right way with the deck group. Suppose that we have a path
γ1 ∗ γ2. Then the lifted concatenation is the concatenation of the lifts:
The lift γ̃1 starts at p̃ and ends at Ψ(γ1)(p̃). The continuation of the
lift is the image of γ̃2 under the map Ψ(γ1). So, it starts at Ψ(γ1)(p̃)
and ands at Ψ(γ1)(Ψ(γ2(p̃)). The whole concatenation connects p̃ to
Ψ(γ1) ◦ Ψ(γ2)(p̃). It turns out that an element of the deck group is
determined by where it sends p̃. Hence Ψ(γ1γ2) = Ψ(γ1)Ψ(γ2).

4. Why is Ψ surjective? Because you can draw a path from p̃ to any other
point in the orbit of the deck group and then project to X. This gives
you the loop you want to lift to get to the point of interest to you.

5. Why is Ψ injective? Well, if Ψ(γ) is the identity map then γ̃ is a closed
loop in X̃ that starts and stops at p̃. But since π1(X̃) is trivial, there is
a homotopy H̃ from γ̃ to the trivial loop. We push down the homotopy
and use it to show that γ is the trivial element as well.

The main point of Tuesday’s lecture will be to prove this theorem and
work out the above details.
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