Math 2410 HW1

Due Thursday, Oct 6.

1: The definition of Antoine's necklace on (say) wikipedia is a bit vague. This exercise gives a concrete construction. Say that a round torus is a subset of \mathbf{R}^3 consisting of all points which are within some ϵ of a round circle C. Here ϵ needs to be less than half the radius of C. The curve C is called the *core* of the round torus. Prove that there exists a round torus T, an integer K, and a finite list $T'_1, \ldots, T'_K \subset T$ of round tori with the following properties:

- Each T'_i and T'_i are disjoint and isometric to each other.
- For all *i* there is a distance decreasing similarity f_i such that $T'_i = f_i(T)$. other words T'_i and T have the same shape.
- T'_i and T'_{i+1} are linked for all i, with indices taken cyclically. What this means is the the core circle of T'_i intersects once the disk spanning the core circle of T'_{i+1} and vice versa.
- T'_i and T'_i otherwise are unlinked.
- The set of centers (of mass) of $T'_1, ..., T'_K$ make a regular K-gon that lies in the same plane as the core of T and surrounds it. All this is to say that $T'_1 \cup ... \cup T'_K$ links T in the pattern that you would see if you looked up Antoine's necklace on wikipedia. (Please do!)

It is probably easiest to take K large. I'm not sure about the smallest K which would work.

2: Let T and $T'_1, ..., T'_K$ be as in Exercise 1. Let $T_0 = T$. Assuming that T_n has been defined, let T_{n+1} be obtained as follows: For each round torus $A \subset T_n$ let $f: T \to A$ be a similarity so that A = f(T). Replace A by $A' = f(T'_1 \cup ..., T'_K)$. You are supposed to do this for all such A. Now that all these sets have been defined inductively, The intersection $T_{\infty} = \bigcap T_n$ is called *Antoine's necklace*. Prove that T_{∞} is homeomorphic to the middle-third Cantor set. Hint: It would probably be easiest to first prove that T_{∞} is homeomorphic to the Cantor set you get by iteratively cutting an interval into K (rather than 3) pieces, and then showing that this Cantor set is homeo. to the middle-third Cantor set.

- **3:** Prove the following results:
 - Any two compact convex subsets of \mathbb{R}^3 , with non-empty interiors, are homeomorphic. (Examples are closed balls and solid cubes.)
 - The cylinder and the Moebius band are homotopy equivalent but not homeomorphic.
 - The figure 8 is homotopy equivalent to $\mathbf{R}^3 R_1 R_2 R_3$ where each R_i is a ray starting at the origin, and the three rays are distinct.
 - The Lie group SO(3) (or orientation preserving orthogonal matrices) is homeomorphic to \mathbf{RP}^3 .

4: This is essentially problem 1.1.9 in Hatcher, but specialised a bit to make it easier. Say that a *blob* is a finite union of solid closed cubes which homeomorphic to a cube. Suppose that A_1, A_2, A_3 is a collection of 3 blobs such that $A_1 \cup A_2 \cup A_3$ is also a blob. Use the Borsuk-Ulam Theorem to prove that there exists a plane which divides all 3 individual blobs (meaning A_1, A_2, A_3) into sets of equal volume. In fact this result works for any sets A_1, A_2, A_3 but taking everything in sight to be a blob means that we don't have to fool around with measure theory to understand what *volume* means. You can deduce the general case from the blob case by taking a sequence of blob approximations which converges in measure to the general sets.

4: These examples are called *Lens spaces*. Let $\omega = \exp(2\pi i/n)$, where $n \geq 3$ is some integer. Here ω is an *n*-th root of unity. Let S^3 denote the unit sphere in \mathbb{C}^2 . Define an equivalence relation on S^3 by the rule that $(z, y) \sim (\omega^k z, \omega^k w)$ for each choice n = 0, ..., n - 1. Let $L(n) = S^3 / \sim$ be the quotient space. Prove that $\pi_1(L(n))$ is isomorphic to \mathbb{Z}/n .

5: Let A, B, C all be copies of the projective plane. Let a, b, c respectively be points in A, B, C. Let X be the space obtained by gluing a, b, d together. So, X is a "wedge" of 3 projective planes. Prove that $\pi_1(X)$ contains the free group on 2 generators as a subgroup.

6: This is problem 2.1.17 in Hatcher. Show that $\pi_1(\mathbf{R}^2 - Q^2)$ is uncountable.