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The purpose of these notes is to sketch the proof of the following result.

Theorem 0.1 Every finitely presented group is the fundamental group of a
smooth compact 4-manifold.

My proof will skimp on some of the fine points, but I hope that the main
ideas are made clear. Also, in defense of this sketchy approach, let me say
this: Some of the general technical results, like Lemma 4.1 and 5.1, are hard
to prove in full generality , but for the concrete constructions needed for the
main result, you can do things in such a controlled way that you can just see
that the technical points work out. Of course, these notes will be easier for
you to read if you already know about smooth manifolds.

1 Manifolds

A compact topological n-manifold is a compact Hausdorff space having the
property that every point has an open neighborhood that is homeomorphic
to Rn. Here are some classic examples:

• The sphere Sn is a compact topological n-manifold.

• The torus T n = Rn/Zn is a compact topological n-manifold.

• The product of a compact topological n-manifold and a compact topo-
logical n-manifold is a compact topological (n+m)-manifold.
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Suppose we have a compact topological manifold. Our various coordinate
charts, giving homeomorphisms from neighborhoods of M into Rn, some-
times overlap. If U and V are open sets in M such that U ∩V is non-empty,
then the two homeomorphisms hU : U → Rn and hV : V → Rn define a new
function

hUh
−1
V : hV (U ∩ V )→ hU(U ∩ V ).

The manifold is called smooth if these maps are always smooth. That is,
they are infinitely differentiable. All the examples mentioned above can be
made smooth easily.

It is better to work with smooth manifolds than with topological man-
ifolds because it easier to control the process of taking neighborhoods of
subsets. If S ⊂M is some subset we say that an open neighborhood N of S
is thin if N is homotopy equivalent to S via a homotopy which is the identity
on S. Technically this is expressed as saying that N deformation retracts
to S. When this happens N and S have the same fundamental group. If S
is some reasonable set, like a smooth sub-manifold, it is easy to construct a
thin neighborhood.

2 Manifolds with Boundary

If is better to give examples of manifolds with boundary before giving the
formal definition, which is a bit complicated. A solid ball is the prototypical
example. The sphere is the boundary and the open ball is the interior part.
Cylinders and Moebius bands also give examples.

Here is the formal definition. A compact topological n-manifold with
boundary is a compact Hausdorff space M which can be written as the dis-
joint union M o ∪ ∂M with the following properties:

1. Every point in M o has an open neighborhood homeomorphic to Rn.

2. Every point in ∂M has an open neighborhood U and a homeomorphism
h : U → h(U) ⊂ Rn such that h(U ∩M o) is an open half-space and
h(U ∩ ∂M) is the hyperplane bounding this half space.

All the examples given above fit into this description.
A smooth manifold with boundary is defined in the same way that a

smooth manifold is defined. The overlap functions should all be smooth.
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Since the domain for these maps are subsets of half-spaces, the differentiabil-
ity is taken in a 1-sided sense for points on the boundary. (This is the kind
of fine point you shouldn’t worry about.)

3 The Gluing Construction

Here is the neat property of manifolds with boundary. Suppose that we
have 2 topological manifolds M and N of the same dimension. Suppose also
that we have a homeomorphism h from ∂M to ∂N . Then we may form the
quotient space

S = (M
∐
N)/h

obtained by attaching M to N using h. (The symbol in the equation means
“disjoint union”.) The space S is essentially obtained from M and N by
gluing them together along their boundaries.

Lemma 3.1 The space S is a compact topological manifold.

Proof: A point in M o still has a neighborhood homeomorphic to Rn. The
same goes for a point in N o. A point on the “seam” S−M o−N o has “half-
neighborhoods” on each side (one in M and one in N) which fit together to
make a neighborhood homeomorphic to Rn. Thus, every point of S has an
open neighborhood homeomorphic to Rn. ♠

The same constructions and result work in the case of smooth manifolds.
The main difference is that homeomorphism is replaced by diffeomorphism.
When we do things smoothly, the lemma above implies that we get a topolog-
ical manifold. The fact that the overlap functions are smooth is a bit tricky
but in the applications we have in mind the spaces are so concrete that it is
easy to arrange.

This gluing construction is the basis for various operations that generally
go under the heading of surgery . I won’t define what this means in general,
but I will give the two examples needed for the proof of the main result.

4 Connect Sum

The first operation is called connect sum. Given 2 compact manifolds M
and N , we first create manifolds-with-boundary M ′ and N ′ by deleting small
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open balls from M and N . The boundaries of M ′ and N ′ are both spheres
and so there is a homeomorphism mapping the one to the other. When we
do this the resulting space is called the connect sum of M and N and it is
written as M#N .

The construction just made involves many choices. We have to choose
which balls to cut out and then we have to choose a homeomorphism which
glues the newly created boundaries together. It turns out that all choices lead
to the same manifold, up to homeomorphism. You can play around with this
construction. For instance, try to convince yourself that the connect sum of
two tori is a surface of genus 2 no matter how you do it. You can also do
the construction for smooth manifolds, using diffeomorphisms rather than
homeomorphisms. Again, the spaces and operations needed for the main
result are so concrete that the fine points work out easily.

Fortunately for us, the main result does not depend on the fact that we
always get the same space when we do connect sum. Assuming we start
with connected manifolds, we can state our next result without mentioning
a basepoint because we only care about the groups up to isomorphism.

Lemma 4.1 Let n ≥ 3. If M and N are compact smooth n-manifolds of
dimension at least 3, then π1(M#N) = π1(M) ∗ π1(N).

Proof: Note first of all that M ′ is homotopy equivalent to M with one point
deleted. When M has dimension at least 3 deleting this point has no effect on
the fundamental group. That is, π1(M

′) = π1(M). Likewise π1(N
′) = π1(N).

Now we set up an application of Van Kampen. To get our space A we start
with M ′, considered as a subset of M#N , and we take a thin neighborhood
so that the result is open in M#N . So, basically A is just M ′ but with a
little bit of extra padding to accommodate the openness condition in Van
Kampen’s Theorem. Likewise the space B is a thin neighborhood of N ′. If
we do this in a sensible way then A ∩B is a thin neighborhood of a sphere.

We choose our basepoint p ∈ A ∩ B. The group π1(A ∩ B, p) is trivial
because π1(S

n) is trivial for n ≥ 2. Van Kampen’s Theorem now tells us
that π1(A ∪B, p) = π1(A, p) ∗ π1(B, p). But A ∪B = M#N . Hence

π1(M#N) = π1(A, p) ∗ π1(B, p) = π1(M
′) ∗ π1(N ′) = π1(N) ∗ π1(M).

This does it. ♠
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5 Dehn Surgery

Let Bn denote the ball of dimension n. The product Bn+1×Sm is a manifold
with boundary. The boundary is Sn × Sm, the product of 2 spheres. Here
is the neat fact: Both spaces Bn+1 × Sm and Sn × Bm+1 have the same
boundary up to homeomorphism, namely Sn × Sm.

Now let us tune these numbers. The two spaces B3 × S1 and B2 × S2

have the same boundary. The first space has fundamental group Z and the
second one has trivial fundamental group. This fact gives us a way to modify
the fundamental group of a compact 4-manifold.

The input is a smooth 4-manifold M and a smooth embedded loop L ⊂M
representing some element of the fundamental group. We choose a thin
neighborhood Λ of L which is homeomorphic to S1 × S3. Now we cut out
Λ. This gives a manifold whose boundary is S1 × S2. Next, we glue in a
copy of D2 × S2 along the boundary. We can do this because the space we
have cut out and the space we sew back in have the same boundary up to
diffeomorphism. Let M̂ be the new manifold.

Lemma 5.1 Let NL be the normal closure of the element of π1(M) repre-
sented by L. Then π1(M̂) = π1(M)/NL.

Proof: Two loops in a 4-dimensional manifold do not link each other, much
in the same way that a loop in 3-dimensional space does not link a point.
So any loop in π1(M) is homotopic to one in π1(M − Λ) and any homotopy
in M between loops in M − Λ can be modified so that it misses Λ. For this
reason, the inclusion of π1(M − Λ) into π1(M) is an isomorphism. In short,
π1(M) = π1(M − Λ).

We let A be a thin neighborhood of M − Λ in M̂ . Let B be a thin
neighborhood of D2 × S2 in M̂ . Then A ∩ B is a thin neighborhood of
S1×S2. This means that π1(A∩B) = Z. At the same time π1(A) = π1(M)
and π1(B) is trivial. The inclusion of Z = π1(A ∩ B) into π1(A) maps the
generator, 1, to the element represented by L. Therefore, this inclusion maps
Z to powers of the element in π1(A) represented by L. By Van Kampen,

π1(M̂) = π1(A ∪B) = (π1(A) ∗ π1(B))/N = π1(A)/N = π1(M)/N.

Here N is the normal closure of the set of elements of the form gh−1 where
g ∈ π1(A) is a power of the element represented by L and h ∈ π1(B) is just
trivial. In other words gh−1 = g and so N = NL. ♠
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6 Putting it Together

Suppose G is some finitely presented group. This means that G has a de-
scription of a gree group on k generators modulo the normal closure of some
list of ` words, the relators. That is

G = 〈a1, ..., ak|r1, ..., r`〉

We start with S4 and then connect sum it with S1×S3 a total of k times.
So, we have all these copies of S1 × S3 attached to a central hub. Call the
resulting 4-manifold M . Repeated applications of Lemma 4.1 tell us that
π1(M) is the free group on k generators. That is:

π1(M) = 〈a1, ..., ak| 〉

Now, we represent each relator rj by some smooth embedded loop Lj in
M . We can make all these loops disjoint from each other. For each loop Lj

we perform the Dehn surgery as described above. The first time we do it, we
get a manifold M ′ such that

π1(M
′) = π1(M)/NL1 = 〈a1, ..., ak|r1〉

by Lemma 5.1. The second time we do it, we get a manifold M ′′ such that

π1(M
′′) = π1(M

′)/NL2 = 〈a1, ..., ak|r1, r2〉.

Continuing in this way we finally arrive at a smooth compact 4-manifold
whose fundamental group is exactly G.
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