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The purpose of these notes is to explain the “tadpole” construction better,
and then to sketch the proof that H1 is the abelianization of π1. This proof
is written out more fully and carefully in Hatcher’s book, but I hope that
the notes make the main ideas more clear.

1 The Tadpole Result

Here is the input for the construction:

• X is a path connected space and p ∈ X.

• Σ is a compact surface with boundary.

• K ⊂ Σ is some proper compact subset.

• p∗ ∈ Σ− k is some point.

• f : Σ→ X is a continuous map.

The output is a new continuous map g : Σ → X such that g = f on K and
g(p∗) = p. In the application from class, K is the boundary of Σ and p∗ is
the basepoint for π1(Σ, p

∗) and p is the basepoint for π1(X, p).

Step 1: Choose small closed disks ∆ ⊂ ∆′, disjoint from K and centered
at p∗. Now choose a homeomorphism h from Σ −∆ to Σ − p∗ which is the
identity outside ∆′. The basic idea is that you first make a homeomorphism
from the annulus ∆′ −∆ to the punctured disk ∆′ − p∗ by widening all the
radial segments emanating from p∗. Then you extend the map to be the
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identity outside of ∆′.

Step 2: Consider the new map f2 : Σ − ∆ → X defined by f2 = f ◦ h.
Here f2 maps all of the boundary ∂∆ to a single point, say q ∈ X. Now
extend f2 so that it maps all of ∆ to q. The final map f2 agrees with f on
K and maps all of ∆ to q.

Step 3: Let γ : [0, 1] → X be a path which connects q to p with γ(0) = p
and γ(1) = q. Let ∆(t) be the family of concentric circles in ∆ interpolating
between q∗ and ∂∆. Here ∆(0) (by a slight abuse of terminology) is just p∗

and ∆(t) = ∂∆. Define g so that g = f 2 outside ∆ and f(∆(t)) = γ(t). By
construction g is continous and g(p∗) = p and g = f on K. That’s the end
of the construction.

2 Abelianization of the Fundamental Group

Here is a sketch of the proof that H1(X) is the abelianization of π1(X, p)
when X is a path connected space.

Step 1: Construct a map Ψ : π1(P, p) → H1(p). Given any [f ] ∈ π1(P, p)
we just treat f as a singular chain. After all, f is a map from the simplex
[0, 1] to X.

Step 2: Show that Ψ([f ]) is independent of the representative. If f and
g are homotopic, then you can divide the square into 2 triangles A and B
and consider the chain F |A + F |B. The boundary of this chain is f − g.

Step 3: Say that a bigon is the image of a triangle which maps one edge to
some path γ and the other two edges respectively to paths γ1 and γ2 whose
concatenation is the reverse of γ. Bigons are boundaries. If we compare
Ψ(fg) with Ψ(f) + Ψ(g) we see that it is really just a bigon: We do f , to g,
then return along (fg)−1. This shows that Ψ(fg) and Ψ(f) + Ψ(g) differ by
a boundary. Hence Ψ is a homomorphism.

Step 4: If α ∈ Z1 is some cycle, then we first write α as a finite sum of
elementary cycles . An elementary cycle is one where all the coefficients are
1. Geometrically an elementary cycle is just a loop with all the individual
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edges “labelled” by 1s. Since the image of Ψ is a group, it suffices to prove
that an elementary cycle lies in the image of Ψ. So, suppose α is an elemen-
tary cycle. We modify α by adding bigons connecting some vertex v of α
to the base point p. We then interpret the resulting lasso. As a path, it is
γαγ−1 where γ is a path connecting p to v. as the image of some element of
the fundamental group. Hence Ψ is surjective.

One fine point of this construction is that our lasso path is an elementary
cycle involving perhaps many individual edges. Iteratively using the same
trick as in Step 2, you replace the lasso by one that is made from a single
edge. The new lasso is literally in the image of

Step 5: Since H1(X) is abelian, we see that the commutator of π1(X, p)
lies in the kernel.

Step 6: Pick some element α ∈ π1(X, p) that is in the kernel of Ψ. We
want to see that α lies in the commutator subgroup.

There is some 2-chain
∑
niσi whose boundary is α. If we allow the same

simplex to be listed multiple times we can assume all the ni are ±1. Given
fj : ∆j → X for j = 1, 2 and edges σj ∈ ∆j we glue σ1 to σ2 if and only if
f1|σ1 = f2|σ2 . Given that the boundary of our chain is just α, the result of
all our gluings is a surface Σ with boundary and a map f : Σ→ X such that
f(∂Σ) = γ. That is the main idea of the proof.

Choose a basepoint p∗ ∈ Σ− ∂Σ. Using the tadpole construction we can
assume that f(p∗) = p. We also know that f maps at least one point v ∈ ∂Σ
to p because, after all, f(∂Σ) = α is an element of π1(X, p). Choose a path
β ∈ Σ which joins p∗ to v. By construction, β(∂Σ)β−1 is a loop on Σ, based
at p∗, and f(β) ∈ π1(X, p).

Since Σ is an oriented surface with boundary, we can represent Σ with a
standard gluing diagram – a polygon whose edge labels are

a, b, a−1b−1c, d, c−1d−1, ...

The loop β(∂Σ)β∗ is homotopic to [a, b][c, d]... the product of commutators,
via a homotopy which preserves p∗. But then

f(β(∂Σ)β−1) = f(β)αf(β)−1 = [f(a), f(b)][f(c), f(d)]...

Hence α is conjugate to a product of commutators. This places α in the
commutator subgroup.
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