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The purpose of these notes is to give a swifter, lighter proof of the Excision
Theorem. The proof follows what is in Hatcher’s book up to a point (Steps
1 and 2) but then departs. What makes Hatcher’s proof complicated is that
he wants a canonically defined chain homotopy between the relevant objects.
This requires a lot of algebraic sophistication. If we abandon the goal of
getting a chain homotopy and just argue for a homology isomorphism, we
can dispense with some of the algebraic complexity. In the last section of the
notes I’ll ruminate on the differences between the two proofs.

1 The Goal

Let X be a space. Let Ao be the interior of a subset A ⊂ X. Suppose we
have sets A,B ⊂ X such that such that X = Ao ∪ Bo. The version of the
Excision Theorem I will prove is

Theorem 1.1 Hn(A,A ∩B) ∼= Hn(X,B) for all n.

As usual, Hn denotes the nth singular homology group. This version is
readily convertible to the other version treated in the book.

2 The First Isomorphism

Let Cn(A+B) = Cn(A)⊕Cn(B). In other words, Cn(A+B) consists of those
formal sums of singular simplices such that each image is either contained
in A or in B. Note that the boundary operator ∂ maps Cn(A + B) into
Cn−1(A+B) and respects chains in A and chains in B. This means that we
can make the homology groups we need to make.
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Define
Cn(A+B,B) = Cn(A+B)/Cn(B).

This group is just the set of formal sums of simplices which lie in A but not
in B. Also define

Cn(A,A ∩B) = Cn(A)/Cn(A ∩B).

This group is also the set of formal sums of simplices which lie in A but not
in B. Thus there is a canonical bijection

Cn(A+B,B)↔ Cn(A,A ∩B).

This bijection commutes with ∂. Therefore, when we form the relative ho-
mology groups based on these chain complexes, we get

Hn(A+B,B) ∼= Hn(A,A ∩B). (1)

Really, these are the same sets.
There is an inclusion map

ι : Cn(A+B,B)→ Cn(X,B). (2)

This map commutes with ∂ and so induces a map of homology:

ι# : Hn(A+B,B)→ Hn(X,B). (3)

In view of Equation 1 it suffices to prove that ι# is an isomorphism. This is
what we will do.

3 Barycentric Subdivision

3.1 Diameter

The diameter of a simplex σ is defined to be the maximal distance between a
pair of points in σ. This is realized by a pair of vertices. To see this, suppose
that (v, w) ∈ σ maximize diameter. Take a huge sphere centered at v and
start shrinking it. The first point it touches σ is at a vertex, by convexity.
Hence d(v, w) = d(v, w′) where w′ is the vertex. Here d(·) denotes distance.
The same argument shows that d(v, w′) = d(v′, w′) where v′ is the first vertex
hit by a shrinking sphere centered at w′.
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3.2 Geometric View

The barycenter of a simplex is the average of its vertices. The barycentric
subdivision of a point is just that point. The barycentric subdivision of an
interval is the union of the two intervals obtained by cutting it in half. In
general, the barycentric subdivision of a simplex σ is define to be the cone
over the barycentric subdivision of its boundary.

One nice property of barycentric subdivision is that it is natural under
affine transformations. To get the barycentric subdivision of some simplex
A(σ) we can subdivide σ and then apply A. This gives the same answer as
just subdividing A(σ) directly. The reason for this invariance: The barycen-
ter itself, being an average of the vertices, is affinely natural.

Lemma 3.1 Let d be the diameter of the n-simplex σ. The maximum diam-
eter of a simplex in the barycentric subdivision of σ is at most n

n+1
× d.

Proof: Let σ′ be a simplex in the subdivision which maximizes the diameter
d′. Let d′ be its diameter. This diameter is realized by a pair of vertices v, w.
If one of these vertices is not the barycenter of σ then both vertices lie in a
face of ∂σ. In this case, the result follows from induction on n. So, we may
assume that v is the barycenter of σ. That is d′ = d(v, w).

Consider the line ` containing v and w. This line hits ∂σ in some third
point x. The points go w, v, x in order on `. The diameter of σ is at least
d(w, x). So, it suffices to prove that

d(v, w)

d(w, x)
≤ n

n+ 1
.

But affine transformations preserve ratios of distances and so it suffices to
establish this result when σ is the regular simplex. In this case an explicit
calculation gives the result. ♠

Corollary 3.2 (Shrinking) Let σ be any simplex and let ε > 0 be given.
Then there is some N such that all simplices in the N th barycentric subdivi-
sion of σ all have diameter less than ε.

Proof: The point is that we can make (n/(n + 1))N as small as we like by
choosing N large. ♠
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3.3 Algebraic View

We fix some high dimensional Euclidean space whose dimension is larger
than the dimensions of the groups we care about at any given time. Let Ln
denote the set of formal sums of linear maps of the n-simplex into RN . Each
linear simplex is described by its vertices.

Given any point b ∈ RN and any linear simplex σ we let bσ denote the
linear simplex obtained by coning σ off to b. In other words, if a0, ..., an are
the vertices of σ, then b, a0, ..., an are the vertices of bσ. We extend linearly
to get a map from Ln into Ln+1.

Lemma 3.3 b∂ + ∂b = I, the identity.

Proof: It suffices to prove this for some simplex σ = a0, ..., an. We have

b(∂σ) =
n∑
i=0

(−1)nba0, ...âi...an.

∂(bσ) = a0...an +
n∑
i=0

(−1)i+1ba0...âi...an.

Add these up and you just get a0...an ♠

It is convenient to set L−1 = Z and to let ∂(
∑
aiσi) =

∑
ai be the

augmentation map from L0 to L−1. The algebraic version of barycentric
subdivision is a map S : Ln → Ln defined inductively. S is the identity on
L−1 and L0. In general, define

S(λ) = bλS(∂λ). (4)

Here bλ is the barycenter of λ.

Lemma 3.4 S∂ = ∂S.

Proof: This works for n = 0 because S is the identity on L−1 and L0. In
general:

∂(Sλ) = ∂bλS(∂λ) = (I − bλ∂)S(∂λ) = S(∂λ) + bλ∂S∂λ.

Hence
∂Sλ+ S∂λ = bλ∂S∂λ =∗ bλ(S∂∂λ) = 0.

The starred equality comes from the fact (by induction) that S∂ = ∂S on
Ln−1. ♠

4



3.4 The Homotopy

We are going to define a map T : Ln → Ln+1. We define T = 0 on L−1. We
then inductively define

T (λ) = bλ(λ− T (S(λ)). (5)

To make the next proof work we formally define ∂ = 0 on L−1. This next
lemma is in Hatcher’s book as well. Actually, I think that Hatcher’s deriva-
tion is a bit shorter.

Lemma 3.5 T∂ + ∂T = I − S.

Proof: For n = −1 we have T = 0 and S = I. So, this works for n = −1.
In general let λ be a linear n-simplex and let b = bλ.

∂Tλ = ∂b(λ− T (∂λ)) =0

(I − b∂)(λ− T (∂λ)) =

λ− T∂λ− b∂λ+ b∂T (∂λ) =1

λ− T∂λ− b∂λ+ b((I − S)− T∂)∂λ =

λ− T∂λ− b∂λ+ b∂λ− bS∂λ− bT∂∂λ =

λ− T∂λ− bS∂λ =2 .

λ− T∂λ− Sλ.

Equality 0 comes from b∂ + ∂b = I. Equality 1 is induction. Equality 2
comes from the definition of S. The other equalities just amount to expand-
ing things out. ♠

4 The Final Argument

The operator S induces a map from Cn(X,B) to Cn(X,B). We just push
forward the operation using the maps involved in a given chain. That is, if
we have a chain

∑
aifj we just apply S to the original n-simplex and then

sum over the restrictions of fj to this simplex. Likewise T defines a map
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from Cn(X,B) to Cn+1(X,B). The same relations established above hold,
namely

S∂ = ∂S, T∂ + ∂T = I − S.
What is more, these same maps preserve the chain complex C(A+B,B). We
can either think of S and T as being maps on C(X,B) or on C(A+B,B).

4.1 Surjectivity

Lemma 4.1 If c ∈ Cn(X,B) is a cycle and m is a positive integer, then
Sm(c) is a cycle in Cn(X,B) and [c] = [Sm(c)] in Hn(X,B).

Proof: By iteration, it suffices to prove this for m = 1. Again we note that
we have ∂S(c) = S(∂c). But ∂c ∈ B and S maps chains in A to chains in
B. Hence S(∂c) = 0 in Cn(X,B). This proves that S(c) is a cycle. Next, we
have

c− S(c) = T (∂c) + ∂T (c).

But ∂c ∈ B and so T (∂c) ∈ B as well. Hence c−S(c) differs by a boundary.
Hence [c] = [S(c)] in Hn(X,B). ♠

Corollary 4.2 ι# is a surjective map from Hn(A+B,B) to Hn(X,B).

Proof: Let c be a cycle in Cn(X,B). By compactness and the Shrinking
Corollary, we can choose m so that Sm(c) is a sum of simplices such that each
one either has its image in A or in B. This uses the fact that the interiors of
A and B make a covering of X. But [c] = [Sm(c)] and Sm(c) is in the image
of ι#. ♠

4.2 Injectivity

Lemma 4.3 If c ∈ Cn(A+B,B) is a cycle then Sm(c) is a cycle in Cn(A+
B,B) and [x] = [Sm(c)] in Hn(A+B,B).

Proof: This has exactly the same proof as Lemma 4.1, because both S and
T act on C(A+B,B). ♠

6



Corollary 4.4 ι# is an injective map from Hn(A+B,B) to Hn(X,B).

Proof: By linearity it suffices to show that the kernel of the map is trivial.
Suppose that c = ι#(c′) is 0 in Hn(X,B). This means that c = ∂d where
d ∈ Cn+1(X,B). In terms of chains, this means that

∂d = c′ + β,

where β ∈ Cn(B). The point is that c and c′ are the same chain, just
considered in different groups.

By compactness we can find some integer m such that

Sm(d) ∈ Cn+1(A+B,B).

This means that Sm(d) = ι#(d′). But then

∂(d′) = ∂Sm(d) = Sm∂d = Smc′ + Smβ.

This shows that [Sm(c′)] = 0 in Hn(A + B,B). Lemma 4.3 now says that
[c′] = [Sm(c′)] = 0 in Hn(A+B,B). ♠

The proof is done.

5 Discussion

The proof above avoids a lot of the algebraic complexity in Hatcher’s proof.
Why is this possible. Well, Hatcher wants a single chain homotopy that
works for all n at the same time and for all chains at the same time. We are
working with individual chains and so for each one we can pick some integer
m which works. In Hatcher’s case, the integer m varies with the simplex.

The varying m poses problems. To understand this, suppose that we
have a chain involving 2 simplices. Maybe we need to take m = 3 on the
first one and m = 7 on the second one. If we do this, then the faces common
to both simplices no longer cancel out. The way to fix this problem would
be to add “buffers” between unequally subdivided boundaries. The buffer
would essentially be some finite sum of the operations S and T applied to the
boundaries. I believe that this is exactly what Hatcher’s final map ρ does.
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