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INTRODUCTION

Let 3 be a smooth closed convex curve in the plane with positive cur-
vature and x be a point outside of it. There are two tangent lines to y
through x; choose one of them and reflect x in the point of tangency
{Fig. 1). We have defined a map 7T, which is called the dual billiard map,
and the curve y is called the dual billiard curve.

There are a number of question to ask about this map. Does it have
periodic points? Can its orbits have infinity or any points of ; as limit
points? For which curves is it integrable? What is the relation of the dual
billiard problem to the direct one, i.e., the motion of a point inside a curve
according to the laws of geometric optics (Fig. 2)? Can the dual billiard
map be defined in a higher dimensional setting? What can be said about
the case when y is a convex polygon rather than a smooth curve? This
article addresses some of these questions and contains some (partial)
answers to them.

To the best of my knowledge, the dual billiard map appeared for the first
time in [ D], where the existence of its periodic points was proved. Later,
Moser considered the dual billiard map as a crude model for planetary
motion [ M1, M27; he pointed out that KAM-theory implies that all of the
map’s orbits are bounded. The articles [ SV, K, GS] contain a sufficient
condition for a polygonal y to guarantee that all orbits of the dual billiard
map are bounded. It i1s weak enough to include regular polygons and
polygons whose vertices belong to a lattice.

The contents of this article are as follows. Section I is devoted to the dual
billiard problem with a smooth dual billiard curve 3. We start with the
observation that area plays a role in the dual billiard problem similar to
that of length in the direct one. Namely, periodic trajectories of a dual
billiard map are area extrema of circumscribed polygons about ; (as
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periodic trajectories of the billiard ball are length extrema). A Poincaré
Birkhoft-type result on the existence of periodic points of T with arbitrary
period 7 = 3 follows (this is Day’s proof [D]).

To explain this “length area duality,” we consider both problems on a
sphere. where they become projective-dual. The distance between points
equals (constant times) the angle between the dual lines. so the perimeter
of a polygon equals the sum of angles of the dual one. The latter sum is
related to the area of the polygon via the Gauss Bonnet theorem; hence,
periodic trajectories of the dual billiard map are extrema of arca. This
property holds as the radius of the sphere tends to infinity. though the
duality between the two problems breaks in the limit case.

A fundamental property of the dual billiard map is its area-preserving
[D, M1. M27: in view of higher dimensional generalizations we prefer to
say that 7 1s a symplectomorphism. We show that T is a small perturba-
tion of an integrable map near infinity (this is the idea of Moser) and near
> as well; 1t follows from KAM-thcory that it has invariant curves
arbitranly close to infinity and to y. Hence, each orbit is separated both
from 7 and infinity. In the proof we follow [L]. where the existence of
invariant curves (caustics) of the (direct) billiard map for a convex billiard
curve was established.

On the other hand. the dual billiard problem (as the direct one) is a
particular case of a general situation in symplectic geometry considered by

FiGure 2



ON THE DUAL BILLIARD PROBLEM 223

Melrose (the so-called hexagonal diagram [ Me., Arl. Ar2]). One of the
consequences Is the following result:

The asymptotics of areas bounded by simple n-periodic trajectories of T
is given, as n — o0, by

Y i Py
A, ~ap+a,/n"+as/n"+ - +a;in”+ -,

where a, 1s (of course) the area bounded by v, and

Y 3
al:ﬁ(’ K”ds>‘
0

where K(s) is the curvature of p. s i1s the length parameter, and L is the
length of ». (The above integral. being affine-invariant, 1s called the affine
length.) In the proof we follow [ MM ], where the asymptotics of the length
spectrum of the billiard map was discovered.

We also include the dual billiard map into a one-parameter family of
symplectomorphisms 7,, x€ [0, 7/2]. To construct the map T,, let x be a
point outside of y and consider a ray. emanating from x, which makes the
angle of x with y. Then T,(x) is the point of the ray. reflected in y (as if
» were a mirror), at the same distance from the point of reflection as x
(Fig. 3). T, is the identity and T, is the dual billiard

Section II pursues the analogy between the dual billiard problem and the
direct one to higher dimensions. A trajectory of a higher dimensional
billiard, which is close to the boundary hypersurface 7" '<=R", is
“almost” a geodesic line on it. Geodesic lines are characteristics of the
unit-impulse hypersurface of the cotangent space T*I. This suggests the
following generalization of the dual billiard map.

Ty (1)
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Let M '<R> be a smooth closed strictly convex hypersurface in a
linear symplectic space. At cach point 1re M the oriented characteristic line
1s defined to be the skew compliment of the tangent hyperplane 7 M. It
turns out that for each point x outside of I there exists a unique ve M
such that vx has the characteristic direction at y. Define the dual billiard
map as the reflection of v in v. This map possesses the same basic property:
1t 18 a symplectomorphism. Moreover, it is included into a one-parameter
family of symplectomorphisms 7,, ae[0,7/2], analogous to the one
constructed in the planar case.

We prove that if p is an odd prime, then T possesses periodic points
of pertod p. The proof makes use of the Morse theory and is close to
considerations in [G]. We conjecture that 7 has periodic orbits in an
arbitrary small neighborhood of M, which, as the period tends to infinity,
approximate closed characteristics of M {this might be an alternative
approach to a proof of the existence of closed characteristics). We also
construct the dual billiard map for convex polyhedra in R it consists of
reflections in its even-dimensional faces.

Section III is devoted to polygonal dual billiards in the plane. We start
with a simple observation that even-periodic points are stable in the sense
that they have polygonal open neighborhoods consisting of points with the
same dynamics {see also [ SV, GS1).

Then we discuss in detail the case of an affine-regular pentagon. We
show that the set of periodic points i1s dense and consists of open regular
decagons and pentagons. On the other hand, the set of points with infinite
orbits has a nice self-similar (“fractal”) structure. It consists of circular
“webs,” which have the Hausdorff dimension of 6;‘lnl\/§ +2)= 1.24. Each
infinite orbit 1s dense in the corresponding circular web (see the computer
picture—-Fig. I8).

The dynamics of points with infinite orbits inside the first circular web
1s the substitution dynamics corresponding to the sequence

0010100 0010100 000 0010100 000 0010100 0010100 -- .,
which 1s mmvariant under the substitutions
0— 0010100, 1+ 000.

This sequence 1s non-periodic. We find the pertods of (stable) periodic
points inside the first circular web: they form two sequences:

10, 70, 410, 2470, ... generic term = 1(8 - 6" +(— 1) ")/7;

stable neighborhood is a regular decagon:

10,50, 310, 1850, ...; generic term = 10(6" + (— 1) ")/7:

stable neighborhood is a regular pentagon.
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Computer experiments suggest that such a self-similarity holds for all
regular n-gons {except for n=3,4,6; see Fig. 19) and the Hausdorff
dimension of the set of non-periodic points is strictly between 1 and 2.

1. THE PLANAR DuAL BILLIARD PROBLEM: A SYMPLECTIC APPROACH

1. We start with the following simple observation [ FT]. Let « be
a convex plane curve. Fix a positive real ¢ and consider the one-parameter
family of chords of « which cut segments of areas equal to ¢ from x. Let
v be the envelope of this family.

LemMmA.  The point of tangency of each chord to y divides it into equal
halves.

Indeed. all triangles bounded by two infinitely close chords and the curve
a have equal areas (Fig. 4); hence, their sides are equal.

Suppose a smooth closed convex curve a 1s known to be invariant under
a dual billiard map. Is it possible to recover the dual billiard curve 3?

COROLLARY. There exists a one-parameter family of the desired curves 3,
namely, the envelopes of the above-considered families of chords of x.

Note that a 3 thus constructed may have double points and cusps, but
it still has a well-defined tangent line at each point (that is, is a front)
(Fig. 5). A similar method of recovering a billiard curve y by its caustic x
i1s known [Be]: if y is the set of points x such that the sum of tangent

o

S = const
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FIGURE 3

segments from x to x and the arc of x between the tangency points is fixed,
than a billiard trajectory tangent to x remains tangent to it after reflection
in 3 {Fig. 6. “the string construction™).

2. Let T be the dual bilhard map corresponding to a curve j.

TaroreM [ D], T has periodic orbits of all periods n = 3.

Proof.  Consider the set of convex circumscribed A-gons with & <. This
set 1s compact; therefore, the arca function possesses its minimum in it. The
vertices of this minimal polygon form a T-orbit. If it has less than »
vertices, one can decrease its area by cutting off a triangle.

One can also construct pertodic orbits of different winding numbers
(Fig. 7). The above consideration is absolutely parallel to Birkholf's well-
known proof that a convex billiard has periodic trajectories of all pertods
=2 (replace “circumscribed™ by “inscribed,” and “minimal area” by
“maximal length” {Bi]).

Fie, 6. xa b oab + hy —const.
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Since polygons, joining consecutive images of the dual billiard map, are
extrema of the area functional, and since the value of a function is constant
on its critical set, we obtain the following result.

COROLLARY. Suppose there s a one-parameter family of n-periodic
points. Then the corresponding polvgons have the same areas.

Compare with [ GM1] for the case of the bilhard map (replace “area” by
“length”).

It is well-known that caustics of elliptical billiards are confocal ellipses
[Be]. A similar property holds for dual billiards.

LemMMa.  Dual billiards corresponding to conics are completely integrable.
Invariant curves are concentric homotetical conics (in the case of a parabolu
this means parallel parabolas with the same axis).

We conjecture that ellipses are the only curves for which the dual billiard
map is integrable.

3. The previous considerations hint at a certain duality between
the dual billiard problem and the direct one. To explain it consider both
maps on the sphere, where points are projective-dual to oriented lines: to
4 pole corresponds its oriented equator.

LeMMA.  The dual and the direct billiard problems are projective-dual.

Proof. Let 7 be a billiard curve, and y* its dual curve, consisting of
points dual to tangent lines to y. The billard map acts on oriented lines
{rays): to a ray a corresponds the reflected ray b (Fig. 8). Let / be the line
tangent to y at the point C. where ¢ hits y. The dual configuration is seen
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in the right side of Fig. 8. Since the angles between / and «, and / and b.
are equal to the distances between 4 and L, and B and L, B is the image
of A under the dual billiard map corresponding to y*.

[t follows that since closed billiard trajectories are extrema of the length
functional on polygons inscribed into y, the dual polygons are extrema of
the “sum of the angles” functional on circumscribed polygons. By the
Gauss-Bonnet theorem, this sum equals, up to a constant, the area of the
polygon. However, the dual billiard problem fails to be projective-dual to
the direct one on the plane {for instance, it 1s affine-invariant. which is not
the case with the direct problem).

4. The most fruitful approach to the billiard problem is based on
the observation that the billiard map T is a symplectomorphism. Namely,
T acts on unit vectors with the endpoints on 7, as is shown in Fig. 2. If ¢
1s the angle between v and a unit vector, and s is the length parameter on
y, then 7 is known to preserve the symplectic form sin ¢ dp A ds [ Bi]. The
analogy with the dual billiard map suggests it should preserve a symplectic
form as well.

Fix the clockwise orientation of y; let x be the angular parameter on
it {le. the angle between a tangent ray and a fixed direction) and r be a
nonnegative real. Let M°=S'xR' with coordinates (. r), and define a
symplectic form = r dr A dx with the potential Z=r"dx/2. Let F be the
map from M to the domain outside of y; the point (x, r) is sent to the
endpoint of the vector of length r tangent to y at the point a.

Lemma.  Fis a symplectomorphism of M to the domain outside of vy with
its standard area form.

Define a function f{a. #) on M as the area of the triangle bounded by the
two lines tangent to 3 through F(a.r} and the arc of y between the
tangency points x and =z, (Fig. 9). Let r, be the length of the second tangent
segment. Then the dual billiard map 7, =F 'TF: M — M sends (. r) to
(o). ry)

FiGure 8
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THEOREM. T, is an exact symplectomorphism with the generating
Sfunction f.

Proof. Observe that

o_ o v

)

o 2] ox, )
Hence,
0 0
Tl*),—/l=;fda, -!-'—fda=4ﬁ
O, O

In particular, T ¥w ~m=df=0.

CoroLLARY [D., M1, M2]. The dual billiard map is area-preserving.

Remarks. (i) Let A be a real number. Let F;(x) be the point of the line
tangent to y such that the distance from F,(x) to the tangency point equals
A times the distance from x to the tangency point. Then F, is conformal-
symplectic with the distortion coefficient equal to A* [D].

(ii) If y is an arbitrary front, the dual billiard map becomes a sym-
plectic relation. For example, fronts in Fig. 10 define symplectic involutions
of the plane outside some compact sets and consist of their fixed points.

FiGure 10
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5. To prove the existence of invariant curves, we apply the following
theorem by Lazutkin [L7].

Consider a transformation T of the annulus S' x R', with coordinates
(x modd L. v = 0)., which has the form

Xp=x v+ ) = el v, mz1,

with smooth function fand g. Assume that for any curve &, homotopic to the
curve v =0 and sufficiently close to it, T(x) intersects a. Then T has invariant
curves arbitrarily close to v =0.

(This thcorem 1s a KAM-theory-type result.}
First we need a technical result.

Limma.  Let T be a transformation of the anmudus which in coordinates
(umodd 1, v =0) has the form

uy=u+plu)r +{r7). y=0v+ylu) it
where the function ¢ has no zeros. Then there exist new coordinates
X, vy=alu)+(v). Vi, vy =blu)r 4 (7)),
in which T has the form
Xy=xH v+ oy =r 00

Proof. The ecquality v, —x=ymod(+?) is satisfied iff a=h/p. The
equality v, = rmod( ') is equivalent 1o M + b’ = 0. which can be solved
as h =expl ~j Wip). Hence, the desired « and b exist.

Now we can prove the existence of invariant curves.

THEOREM.  The dual billiard map T has invariant curves arbitrarily close
to s and arbitrarily far from it.

i

Proof. To prove the first claim, we calculate the map 7 near ;. Let s be
the length parameter on ;. and r as before. Let K(s) be the curvature of ;.

Then a direct calculation shows that 7T acts as follows:

2K B B
5*,1 +(r),

2K, 27K
=) -

§ =84 20—
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By the lemma, 7 has the form
xy=x+y+ () yo=y+

and we can apply Lazutkin’s theorem. because T is area preserving.

To work “at infinity,” let « be the angular parameter and p = 1/r. Then
T “at infinity” can be considered as a map of the annulus (x modd 2x.
p20). We claim that T has the following form:

=a+n+fla)p+(p’). pr=p+(p)

where f(a)<0. Indeed, consider the triangle in Fig. 11. Since r is big
enough, f=x//r=1Ip, where / is bigger than a positive constant. But
f=a+nm—a,, which proves the claim concerning «,. By the triangle
inequality,

d A
pr—p="""xX < const - p-,
hr

which proves the second claim.

It follows that the map T2 has the form of the lemma, and we obtain its
invariant curves in infinity. Finally, if « is invariant under T2, then xu T(x)
is invariant under T.

Remark. The formulas show that the dual billiard map near y is of the
form

x=x+y+(). yi=y+0),

which is also the case in the direct billiard problem [L].

</

FIGURE 11

607:115:2-3
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COROLLARY.  The orbit of a point is separated both from the dual billiard
curve and from infinity.

6. The dual billiard problem proves to be a particular case of the
following general situation, considered by Melrose [ Me]. Consider the
commutative diagram

Xln

where X is a sympletic manifold, Y and Z are hypersurfaces, and W is their
transversal intersection. The characteristic foliations of Y and Z locally
define projections onto the manifolds of characteristics B and C, which
inherit sympletic structures from X. The hypersurface 2 < W consists of
points where the restrictions of the sympletic structure of X onto W are
degenerate. The characteristic curves of the hypersurfaces ¢(2) < B and
Y(X)<= C are the images of the same curves on X, namely, of its
characteristics as a submanifold of X [Arl, Ar2].

The above diagram appears in the direct billiard problem in the follow-
ing way. Let I'" ' < R” be a convex billiard, X ={(q.p)} be the cotangent
bundle 7*R" with its standard sympletic structure dp A dy, ¥ < X be the
unit-momentum hypersurface p> =1, and Z < X be the hypersurface ge I'.
Then B is the space of oriented lines (rays) in R” and C is the cotangent
bundle 7*/". Charactenstics of ¥ and Z intersect W twice in a neighbor-
hood of X, defying two involutions on it, and the billiard map is their
composite (see Fig. 2 for the two-dimensional case).

Let y<R* be the dual billiard curve; X*=T*R> with coordinates
{x. v, u, v), where (x, y) are coordinates on the plane and («, v) are momen-
tum coordinates. Define the sympletic form @ = dx Adv —du ~dr. Let Y7
be the unit-momentum hypersurface #° +0¢° =1, and let Z* consist of
points {x, v, u, v) such that the line /(x,y) through (v, v), which is the
kernel of u dx + v dy, 1s tangent to y (Fig. 12).
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r f (u,v)

(z,v)

FiGURE 12

LEMMA. The characteristic of 'Y through (x,, ¥o. ly, Ug) consists of unit
covectors at (xg, yo); the characteristic of Z through (xq, yo. Ug, Ug) CONSists
of points (x, y, u, v) with (x, yYel(x,, yo) and (u, v)y=f(x, ¥Nu,. vo) with a
certain function f.

Proof. Let a be the angular parameter in the space of momenta.
Since > +v®=1 on Y, if follows that u=cosa, v=sin«. and du A dv=0.
Therefore, the vector field ¢,/8« is characteristic for Y.

Let (x,y)=(y,(5),y-(s)) be the natural parameterization of 7,
p=./u>+v?, r be the length of the segment tangent from (x,y) to y
(Fig. 12). Then (s, p, r) are coordinates in Z and u=pyy(s), v= —pyy(s). It
follows that

wl|,=rdrandx—dpnda,

hence the characteristic field is /0r +r 8/Cp. Therefore, s is constant on
characteristics.

Include X, Y, Z into the hexagonal diagram. It follows from the lemma
that the quotient B? is symplectomorphic to R? with its area form dx A dv.
and C*= T*y. The surface W? consists of the flags

(point outside y; line tangent to y through this point).

The intersection of a characteristic of Y with W consists of two lines
tangent to y through a point, and the intersection of a characteristic of Z
with X consists of two points of a line tangent to y at the same distance
from the tangency point. Hence, two involutions are defined on W, and the
dual billiard map is their composite.

7. Now we are in a position to prove the following result.
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THEOREM.  The arcas A, bounded by simple closed broken lines, joining
consecutive images of n-periodic points of the dual billiard map, have
asymptotics, as n— o,

£
, Fgg 20
A,~ Y a /™.

F=0

The leading term ay is the area bounded by 3y, the next term

/

ol 3
ay =Y (J() Kyt ds> .

where Kois the curvature, s the natural parameter, and L the length of 7.

Proof.  Since the dual billiard map T i1s a composite of the two involu-
tions arising in the Melrose diagram, we apply the analysis undertaken in
[MM]. Namely, there exists a smooth nonnegative function /i near y, such
that 7 equals exp(/i'?sgrad i) modulo maps fixing y to infinite order
(sgrad /i 1s the Hamiltonian field of /). Areas A4, are particular cases of the
sympletic invariants of [GM27]: if T is an exact symplectomorphism with
a generating function / and x is its n-periodic point, then 37_! f(T'x) is
a symplectic invariant of T (does not depend on the choice of a potential 4 and
a function /). The asymptotics as a series in negative even powers of n was
established in [ MM, where the direct bilhard problem was considered.

The changes we have to make are as follows. The coordinates appro-
priate to the billiard problem are (¢, s) {see Section 4), the sympletic form
iIs —d cos ¢ Ads and the function / turns out to be (1 —cos @) a(s) + (p*).
It was shown in [ MM ] that the coefficient «, of the asymptotics equals, up

to a constant,
L] 3
(' ...... ‘(,'S> )
Jooals)y

In the dual billiard problem, we use the coordinates (x, r) of Section 4;
the sympletic form equals d(r*2) A dx. We are looking for the function
h=r’alz)+ (r*). The formulas for T show that T has the form

oy = a4+ 2rK(2) + (1),

where K(x) is the curvature as a function of the angular parameter. Since
T=exp(h'? sgrad h)—on the level of power series—we conclude that
a(x) = K**(a). In the natural parameter, dx =K - ds, so0

2] 3 v 3
a, = const <' (i da(> = const (] K'Y\() ds> )
a|x ) <0

0
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To find the constant, we consider a circle, where it proves to be 1,24,

Remark. The length spectrum of the billiard problem is closely related
to the spectrum of the Laplace operator with the Dirichlet or Neumann
boundary conditions on the billiard curve [GM3]. Is the area spectrum
of the dual bilhard problem related to the spectrum of any differential
operator?

II. HiGHER DIMENSIONAL DUAL BILLIARD Map

1. The motivation for our definition of the dual billiard map in a
higher dimensional setting is again the analogy with the direct one. Let
I'" "' R" be a smooth closed convex hypersurface. Reflection in I” defines
a sympletic billiard transformation of the space of rays N 2 in R” with
its natural sympletic structure. To I" corresponds a hypersurface T < N,
consisting of rays tangent to I. A characteristic of X consists of lines
tangent to a geodesic line on I [ Arl, Ar2]. Let a ray / hit " at a point x,
and let /, be the reflected ray. The rays through x which belong to the
plane 7, generated by / and /,, form a line in N. This line is tangent to %
at (n~T.I')e X and has the characteristic direction there.

Translate this to the dual language of the dual bilhard problem. Let
M~ 1= R™ be a smooth closed strictly convex hypersurface in a linear
symplectic space. Given a point v outside of M, find y € M such that ( yx)
has the characteristic direction at y, and let 7(x) be the reflection of x
in y. To justify this definition of the dual billiard map 7, we need the
following result.

LeMMA.  For any x outside of M there exists a unique ye M as above.

Proof. 1dentify B> with C" and let J be the operator of multiplying by

—1 in tangent spaces. If n( y) denotes the unit normal vector at ye M,
then the characteristic direction at y is that of Ju(y). Let ¢: M x R} - R>"
send (yeM, 1=20) to y+tJn(v). We want to show that ¢ is a homeo-
morphism onto the exterior of M. Compactify M x R! by adding to it the
infinite sphere M x { oz}, and compactify R* by adding the infinite sphere
of all directions. Then ¢ extends continuously to these spheres as a map of
degree 1. Also extend ¢ to the interior of M as the identity. Thus we obtain
a continuous map of closed 2#n-balls, which sends boundary to boundary
with degree 1. A standard topological argument shows ¢ 1s onto.

To check that ¢ is one-to-one, assume that the points (y,.7,) and
{¥,,1,) have the same image - (Fig. 13). Let n be the plane through
V1. Y., cand y=nn M. Then y 1s convex; &, =y, and &, =y, - are vectors
tangent to it. The parallel translate of &, to 3, has an outward direction
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M

with respect to M. By the definition of characteristic directions, the 1-form
i:m is positive on outward vectors (w is the linear symplectic form in R").
Hence, @(&,.,)>0. The same argument implies (&5, E,) >0, which
contradicts the skew-symmetricity of w.

Remark. One can generalize the maps 7,, defined in the Introduction
{see Fig.3), to the higher dimensional situation. To this end, define
@, MxR] >R to send (yeM, 120) to }'+rexp(\/~l a) n(y). Then
¢, is a homeomorphism onto the exterior of M, and weset T, =¢, ¢ |

-

2. The dual billiard map is defined, and now we shall discuss ity
symplectic properties.

THEOREM.  The higher dimensional dual billiard map T is a symplecto-
morphism, and so are all the maps T,.

*

Proof. Consider the product space R x R*" with coordinates (x,. y,.
X, ¥a). where (x,, v;). i=1, 2, are Darboux coordinates in the factors, and
equip it with the symplectic structure  =dv, Ady, —dx, Andy,. We shall
prove that the graphs of the maps 7, are Lagrange submanifolds of
(R x R>, Q).

Let Q< R™ x R¥ be the diagonal with coordinates (g,.¢.); T*Q be its
cotangent bundle with the momentum coordinates (p,.p-); and @ its
standard contact structure dp, A dy, + dp, A dy,. The formulas

X +x, Wi +y
Ty Yo="5"+ Pi=Yo" 1. P2=X70

4= 3

define a linear symplectomorphism R* x R ~ T*Q. The graph of the dual
billiard map in T*(Q is contained in the manifold 7 consisting of the pairs

(point ye M** '<= Q™ covector pe Ann T, M = T *Q),
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i.e., I'is the conical Lagrange manifold corresponding to M < Q. Similarly,
the graph of T, i1s contained in the manifold I', = T*Q consisting of the
pairs

(the end-point of a normal vector n to M; covector ¢{n,->),

where c=cota. This is the graph of the differential of the function
f(y)=c-distance*(y, M), and therefore is a Lagrange manifold.

Remarks. (1)  One can define a diffeomorphism F; of the exterior of M
by extending the characteristic segment through a point to the distance
which is equal to 1 times its length—compare with Remark (i) in [4.
However, this map fails to be conformal-symplectic.

(in) If M fails to be convex and even embedded or smooth, but its
tangent hyperplane is still well-defined at each point (ie., M is a front),
then the dual billiard map becomes a symplectic relation (just as in the
plane case).

(111) T can also be included into a Melrose hexagonal diagram.

(iv) The above considered manifolds 7, are slightly bigger than the

graphs of 7,. Namely, I', is the union of the graphs of 7, and T, ' This
observation 1s important for the next section.

ExampLE. Consider an ellipsoid ¥ (x7/al+);/b;)=1; introduce the
complex coordinates ;= x;/a;++/ —1{y,/b,) in C"=R> A calculation
shows that the dual billiard map T acts as follows:

s 2 2
a;b; —t° 2tab,;
i, =55+ -1 =553,

Tahi4 ab;+1t

o~

where the real r satisfies

|z]?
Si

X I+ 2/a2b? .

Hence, |c,|]=1 and T 1is completely integrable with invariant tori
|z;| = const.

This is dual to the well-known fact that a billiard in ellipsoid is
integrable, which is the limit case of the integrability of the geodesic flow
on ellipsoids [ Arl]. Is there any dual counterpart to the latter?

3. In this section we shall investigate periodic points of the dual
billiard map 7. We apply a construction introduced in [ G]. Consider the
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space (R*)% x (R™)*", where X**' means the product of X with itself &
times; let
(X100 XL L XA )

be coordinates in it; let 2 ="’ «'*! be the symplectic form
dX)ndyt + -+ dA A d —d A dyi — o~ dA A D

Let L be the graph of the cyclic shift, 1.e.,

11 i+ 1

L={xt=x""pi=p""} i=1...k,

where & + | is understood to be equal to 1. The space (R¥}'¥' x (R™)'*" is
symplectomorphic to T*Q'*', where Q = (R™) x (R™) is the diagonal.

LEMMA.  Assume k is odd. Then L. T*Q'% is the graph of the differential
of the function ¢ on Q'*:

Plg's gt )= (=D algl g,

Iy
where o is the linear symplectic structure in Q =~ R,
The proof is a straightforward computation.

Remark. I k is even, the projection of L to Q%' has a kernel. In this
case, one has to apply symplectic reduction (sec [G]).

Now we are in a position to cstablish the existence of pertodic points
of T.

TaeoreM.  If k iy an odd prime, then the dual billiard map possesses
k-periodic orbits.

Proof.  Let I be as in the previous section, ie., /7 is the union of the
graphs of 7and T ' (see Remark 11.2(iv)). The points of the intersection
I'*'~ L correspond to k-tuples (x,. .., x;) of points outside of M with
x;.1=T7*"x, Since I' is the conical Lagrange manifold corresponding to
M = Q. the points of I'*'~ [ are in one-to-one correspondence with the
critical points of ¢ restricted to M'*". Since M'* is compact, this set is
non-void.

To show that there exists an “honest” orbit of T, i.e, (x,,.., x;) with
X, . =Tx, we check that the quadratic differential ¢°¢ has a non-zero
kernel at each excessive point, ie., (x,,...v,) such that v,=Ty, |,
X, ., =T 'x, Tor some i If §=(q'....¢" 1 e M'*" is the corresponding
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critical point of ¢, then ¢’ '=¢’ Consider the vector & tangent to M™%
at ¢, all of whose components vanish, except for the (/— 1)th and ¢th, and
these two are equal to a non-zero vector tangent to M at ¢' ' =¢' Skew-
symmetricity of « implies then that ¢(&) =0.

It follows that to maxima (minima) of ¢ there correspond periodic orbits
of 7, probably multiple ones. Since & is prime, this multiplicity equals
one.

Remarks. (1) In the plane case the function ¢ on A-tuples of points
of y differs from the area of the circumscribed polygon through these
points.

(i1) It is interesting to study the asymptotic behavior of ¢ as k — oc.

(1) We conjecture that T possesses periodic orbits in an arbitrary
neighborhood of M. To find such orbits one should restrict ¢ to an
open submanifold N, M%' consisting of k-tuples (¢'.... ¢*) with
X dist*(q,.q,.,) <e For ¢ sufficiently small and k sufficiently large N,
1s a good homotopical approximation of the space AM of free loops on M
{see [B]).

3. In the plane case, it is obvious how to define the dual billiard
map corresponding to a convex polygon rather than a smooth curve. In
higher dimensions it is not so obvious. The analogy with the smooth case
suggests the following.

Let D be the surface of a convex polyhedron in a linear symplectic space
(R* ) and let J be the operator of the multiplication of tangent vectors
in R*”"=C" by ./ —1. Given a point ve D, let C, be its dual cone, that is,
the convex hull of the outward rays normal to the (2x# — 1)-dimensional
faces of D containing ». If v belongs to the interior of a A-dimensional face,
C, 1s (2n — k)-dimensional. Apply J to each cone C,; an argument similar
to that of Lemma lI.1 shows that the union of JC,, ve D, covers the
domain outside of D,

Let v belong to the interior of a face F. If |, is degenerate, then
dim(JF* ~ F) 2= 1. Hence, dim(|J, . » JC,) < 2n, and this union is contained
in the closure of other cones. Therefore we can ignore such faces, in par-
ticular the odd-dimensional faces (if D is in general position, the restriction
of @ onto even-dimensional faces is nondegenerate).

An argument, similar to that of Lemma I1.1, shows that the intenors of
the prisms |J,., JC, with Kerw|,=0 are disjoint and cover all the
domain outside of D except for a set of dimension (21 —1). We finish with
the definition of the dual billiard map 7. Given a (generic) point x outside
of D, find the (unique) veInt F* <D such that veJC, (this cone is
(2n — 2k )-dimensional), and define T(x) to be the reflection of x in v. Study
of the dynamics of this map seems to be a challenging problem.
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I11. PoLYGONAL DuAaL BILLIARDS

1. In this section we shall study the dynamics of polygonal dual
billiards. In this case. the similarity between the dual billiard problem and the
direct one breaks completely, and the former exhibits quite new features.

The dual billiard map T is not defined at the points which belong to
continuations of the sides of the dual billiard polygon y. Let X, be the set
of points for which some iteration of 7T is not defined. Being a countable
union of lines, X,, is one-dimensional. The rest of the points belong to one
of two sets: X,, the set of points with finite orbits; and X, . the set of
points with infinite orbits (it is probably appropriate to call them Fatoux
and Julia sets). A point x is called stable if it has an open neighborhood
which consists of points with the same dynamics as x (i.e., they undergo
consecutive reflections in the same vertices of 7 as x does). T is a piece-wise
isometry. and each component of the complement of X, is its domain of
continuity. An odd iteration of T on such a domain is a central symmetry:
and even one 1s a parallel translation.

In studying dual billiards the following unfolding method is helpful. Let
X be a point outside of y; choose it as a “system of reference.” that s, reflect
y in its vertex which belongs to the left supporting line through ~ (rather
than reflecting the point x) (Fig. 14). This 1s similar to the well-known
unfolding method in the billiard problem.

LimMa (confer [SV. GS]). Ler y be an n-gon. Even periodic points of T
are stable; their stable neighborfivods are open convex k-gons with k <2n.
Proof.  Let x be a 2N-periodic point. Then after 2N reflections (as in
Fig. 14) 3 comes to the initial position. The intersection of the exterior
(y)
-2
T3(7)

Frourek 14
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angles of , corresponding to each reflection, is the set of points with the
same dynamics as x. There are only 2n different exterior angles, hence their
intersection has at most 2n sides.

If x is N-periodic with an odd N, then TV is the central symmetry of the
above neighborhood with the center at x. Then the other points of it are
2N-periodic.

CorOLLARY. The set X, is open.

ExamMpLE [ M2, SV]. Let y be a triangle, a parallelogram, or an affine-
regular hexagon. Then the dynamics are trivial: all points have finite orbits.

As was mentioned in the Introduction, [ SV, K, GS] contain a sufficient
condition for y to have all orbits of the dual billiard map bounded. In par-
ticular, it holds for integer polygons, i.e., polygons whose vertices belong to
a lattice. It follows that each orbit is finite for such polygons. The group,
generated by reflections in the vertices, is discrete; hence each orbit is
discrete and, therefore, finite.

CoNJECTURE.  For each convex polygon all orbits of the dual billiard
map are bounded.

COROLLARY OF THE CONIECTURE. [If a point has an infinite orbit, then it
is not stable.

Proof. Assume U is the maximal connected stable neighborhood. Since
T is area-preserving, there exists an even r such that 7"(U) n U# . Since
the point is non-periodic, 7" is a non-zero shift, and T"(U)# U. This
contradicts the maximality of U.

2. Now we shall study the case of the (affine-) regular pentagon—
the case in which the dual billiard map 7 exhibits non-trivial dynamics.
Consider the computer pictures which show some infinite orbits of T
(Fig. 18). We observe a regular global structure and a self-similar local one.
We shall make these statements precise.

First, each big, white “circle” (actually, a regular decagon) in Fig 18 is
easily seen to be a periodic stable neighborhood. The map T acts as a cyclic
permutation on each “necklace” of these decagons. The domain inside each
“necklace” 1s T-invariant, hence each orbit belongs to an annulus between
them.

To explain the global structure of orbits, we use unfolding, i.e., reflect the
pentagon y rather than the initial point 0. Translate the sides of y to 0,
where they define 10 equal angles. Define the coordinates (x, ) in each
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angle as shown in Fig. 15. We specify the location of y by the coordinates
of its vertex 4 in which the next reflection occurs., and by an additional
parameter ie {0, 1} which distinguishes between two possible orientations
of ¥ (up to parallel translation). As long as & belongs to one angle. reflec-
tions occur in the same pair of vertices; the composite of two consecutive
ones 1s a parallel translation over the vector twice the diagonal of ; joining
these vertices.

Let (x. v, ) be the coordinates of the vertex J as y first enters an angle,
and let (v, v,.i,) be its coordinates when 7 first enters the next angle.
Define the map

(R A R S N S L N
Let the side of y be equal to 1; define the shift S (in each angle) by
S wmi—=(v+34+ \ﬁ o).

LEmma. § ¢=¢ S

The proof is straightforward.

It follows that the set X, (the white decagons and pentagons in Fig. 18)
and X, (the black “web”) are S-invariant (the number 3 + \/5 1s exactly
the distance between the big, white decagons along a side of the initial
pentagon 7). This explains the global regularity of the orbits.

Now we shall study the structure of the set X, .

THeOREM. X |, has the Hausdorff dimension of In 6/1In( \/g +2)=1.24

Proof. A point x outside of y reflects in the vertex 4 if it belongs to the
exterior angle at & (Fig. 16). Identify these angles under the rotation about
the center of y through 27z/5. The dual billiard map induces a map—we still

Y1

0

FIGURE 15
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FIGURE 16

call it T—of this quotient angle. In view of the above lemma, it is enough
to study T inside the first invariant domain. It consists of the two isosceles
triangles OKL and LMN (Fig. 17). The map 7T acts as the rotation of
AOKL about the center 4 through 37/5, and the rotation of ALMN about
the center B through #/5. Let I” be the dilation with the center O and the
coefficient 4 = 1;‘”(\/§+2). It sends B to A, M to M, etc.

The big regular deeagon in Fig. 17 is invariant under 7, and the two big
regular pentagons are exchanged by T. Consider the collection of decagons
and pentagons, obtained from these ones by applying I” and T (in all
orders). We claim that X, is the union of their interiors: therefore, X, and
X,w X, are [-invariant.

L‘l, ,Ml AL -

FIGURE 17
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Indeed. it is easily seen that 77 sends 4OR, M, to AOLK,; and T
sends AR, K, N, to AL, N, M. Hence. the map T, =1 T 'equals T’ on
AOR, M. and T% on AR, K, N,. If x is periodic under T, then x, =7I{(x)
is periodic under 7, (just change the scale); and since T, is either 77 or
T*, x, is also periodic under 7. Therefore, X, is /-invariant, and so is
X, ulX,.

Let o be the Hausdorff dimension of X, . which coincides with that of
X,u X, . since X, is one-dimensional (provided x> 1). Let ¥, and Y, be
the parts of X,u X, in AOKL and ALMN. respectively, and # and v be
their «-volumes. Figure 17 shows that Y, consists of the two parts,
s-similar to Y,, and Y, consists of five parts, A-similar to Y,, and three
parts, A-similar to Y,. Hence,

w=S5A"u+ 32", v=2"u.

It follows that 2*=1/6 and a=1In 6;‘“ln(ﬁ +2).

Remark. Compulter experiments suggest that for affine-regular n-gons
with »# 2 7. the HausdorfT dimension of X, is strictly between | and 2 (see
Fig. 19).

3. Now we are in a position to describe the orbits of T symboli-
cally. Start with decagonal stable domains. Since the map 7 is the rotation
about either A or B. the orbit of a decagon can be encoded by a word in

FiGure 18
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EE]

FIGURE 19
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the symbols 0 and 1, corresponding to these rotations. The dilation I acts
as the substitution

0+ 0010100, 1 + 000.

The symbol 0 corresponds to the biggest decagon (since it i1s T-invariant).
Thus we generate the sequence:

0150010100
<5 0010100 0010100 000 0010100 000 0010100 0010100 - - ..

Let u, and v, be the number of O’s and I's in the n#th word, 1w, its length.
LEMMA.
w,=(6"+ (=1 "7, 0, =(2/THE" "+ (=1, =(8-6" "H{—1y)7.

The proof follows from the recurrence
Uy 1 = Sll” + 31*11* Uyv1 = 2ll”.

In the same way, one considers pentagonal stable domains. To them
corresponds the sequence

01 -5 0010100 000> - ..

'
ne

and the corresponding numbers u),, v}, W), are

'_9~6” 1

n

I+

2=t (36 sz
- T 7 K}

u

~

W, =26+ (—1)" ")

Observe that the same recurrences describe the number of decagons and
pentagons “of the nth level”; that is, after applying I (# — 1) times (see the
proof of Theorem [11.2). It follows that T acts transitively on the set of
decagons and the set of pentagons of each level.

To recover periods in the initial dual bilhard problem. let us enumerate
the exterior angles of the initial pentagon by the elements of Z5 clockwise.
Then the symbol 0 encodes sending a point by the dual billiard map to the
next angle, and | to the onc after the next. Hence, T"" (or T"™)
corresponds to adding u, + 2v,, {or u), + 2r),) to the number of the initial
exterior angle. Since

u,+2v,=(—1" "modS3, W, + 20 =2-(—1)" mod 5,

one has to apply T"" (or T"™) five times before a stable decagon (or
pentagon) returns to its initial position. In the case of a decagon, T°"" is
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a central symmetry, so we have to double the number of iterations. This
proves the following result.

THEOREM. Periods of points with decagonal and pentagonal stable
neighborhoods are equal, respectively, to

%(8'6”\l+(—1)”) and 1_70(611_'_(_])"71).

Finally, the following result holds.

THEOREM.  Each infinite orbit is dense in X, (recall that we discuss only
the first stable domain of T).

Proof. Let x,yeX,. We want to show that the orbit of y comes
arbitrarily close to x. There exist points x, and ), of the stable (say)
decagonal neighborhoods of the same level, which are sufficiently close to
x and y, respectively. Since T acts transitively on decagonal neighborhoods
of the same level, T*(y,) is sufficiently close to x; for some 4. If the level
of neighborhoods is big enough, T*(y) is close enough to T*(y,), and we
are done.

4. The direct limit of the above sequences of the symbols 0 and 1,
encoding finite orbits of 7, is the infinite sequence

&=0010100 0010100 000 00610106 000 0010100 0010100 --,
which is invariant under the substitution
I': 00010100, 1 — 000.

In view of the existence of infinite orbits, the following result is hardly
surprising.

THEOREM. ¢ is non-periodic.

Proof. Assume ¢ has a period, and let #(0, 1) be the minimal one. Let
0=0010100, T =000. Then &0, 1)=¢&(0, 1) (it is the I-invariance). Making
the preperiod bigger, we assume the period starts with 0 (it should contain
at least one 0. because otherwise the rest of ¢ would consist of the symbols
0). We claim that (0, 1) is a word in 0 and 1. If not, then #(0, 1) ends with
an incomplete word 0 or 1I:

n=0010100---00 : 10100

0010100
T 000

7 =0010100... 0: 00

607/115:2-4
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It 1s clear that wherever the period ends, the next segment of ¢ cannot start
with the words 0.

Hence, 7(0, 1) =#,(0. 1), where #, is a shorter word. Then #,(0, 1) is also
a period of £, which contradicts the minimality of #(0. 1).

Remark.  The above result and its proof are similar to the well-known
case of the Morse sequence

0110 1001 1001 0110 ...,

invariant under the substitution 0+ 01, 1+ 10. The shift of this sequence
15 a particular case of substitution dynamics, i.c., dynamics of shifts of
sequences in 0 and 1, invariant under substitutions [ Qu]. Our analysis of
the dual billiard map for affine-regular pentagons shows that the dynamics
of points with infinite orbits is of this type. Does this hold for other regular
polygons?

ACKNOWLEDGMENTS

I am grateful to numerous mathematicians with whom I discussed dual billiards and learned
from, in particular V. Arnold. M. Berger, Ph. Boyland, F. Dekking, D. Fuchs, E. Ghys.
A. Givental, B. Grunbaum, E. Gutkin, A. Katok, R. de Llave, J. Moser, €. O'Cinneide,
Ya. Sinai, S. Troubetzkoy, A. Veselov, and M. Wojtkowski. My special gratitude goes to
1. Monroe, for his beautiful computer pictures.

REFERENCES

[Arl] V. ArNorb, “Mathematical Methods of Classical Mechanics,™ Springer-Verlag,
New York/Berlin, 1978,

[Ar2] V. Arnorb, Contact geometry and wave propagation, Monograph 34 de I'Enseign.
Math.

[Be] M. BerGER, “Geometry,” Springer-Verlag, New York/Berlin, 1987.

[B] R. Borr, Lectures on Marse Theory, Old and New, Bull, Amer. Math. Soc. T (1982),
331 358

[Bi] G. BIRkHOFF, “Dynamical Systems,” Amer. Math. Soc. Colloquium Publ., Vol. 9.
AMS, Providence, 1927.

[D] M. Day, Polygons circumscribed about closed convex curves, Trans. Amer. Math.
Soc. 62 (1947), 315 319.

[FT] D. Fucus aNn S. TABACHNIKOV, Segments of equal arcas. Quantum 2 (1992).

[G] A. Grvenrtar, Periodic maps in symplectic topology. Funct. Anal. Appl. 23, No. 4
(1989), 37 52.

[GK] E. GutkIN anD A. KaTok, Caustics for inner and outer billiards, preprint, 1993,

[GMI1] V. GUILLEMIN AND R. MuLRrOsE, An inverse spectral result for elliptical regions in R,
Adre.in Math. 32 (1979), 128 148.

[GM2] V. GuiLLEMIN AND R. MELROSE, “A Cohomological Invariant of Discrete Dynamical
Systems,” Christottel Cent. Vol., pp. 672 679, Birkhduser, Basel, 1981,



ON THE DUAL BILLIARD PROBLEM 249

[GM3] V. GuILLEMIN AND R. MELROSE, The Poisson summation formula for manifolds with

[GS]
[K]
L]
[(MI1]

[M2]
[MM]

[Me]
[MT]

[Qu]
(5V]
(T1]
[12]
[T3]

[T4]

boundary, Adv. in Math. 32 (1979}, 204-232.

E. GUTKIN AND N. SiMANYI, Dual polygonal billiards and necklace dynamics, Comm.
Math. Phys. 143 (1991), 431-450.

R. KoLopziey, The antibilliard outside a polygon, Bull. Polish. Acad. Sci. 37 (1989),
163-168.

V. LazutkiN, The existence of caustics for a billiard problem in a convex domain.
Math. USSR fze. 7 (1973), 185 214.

J. MoskRr, Stable and random motions in dynamical systems, Ann. of Math. Stud. 77
(1973).

I. MoseR, Is the solar system stable? Math. Intelligences 1 (1978), 65-71.

S. Marvizi AND R. MELROSE, Spectral invariants of convex planar regions,
J. Differential Geom. 17 (1982), 475-502.

R. MELrosE, Equivalence of glancing hypersurfaces, fnvent. Math. 37 (1976), 165-192.
I. MONROE AND S, TABACHNIKOV, Asymptotic dynamics of the dual billiard map. an
example of a semicircle, preprint, 1992.

M. QUEFFELEC, “Substitution Dynamical Systems—Spectral Analysis,” Lectures Notes
in Math., Vol. 1294, Springer-Verlag, New York/Berlin.

A. SHAIDENKO AND F. Vivarpi, Global stability of a class of discontinuous dual
billiards, Comm. Math. Phys. 110 (1987), 625-640.

S. TaBacHNIKOV, Dual billiards, Russian Math. Surveys 48, No. 6 (1993), 75-102.

S. Tasacunikov, Commuting dual billiards, Geom. Dedicata 53 (1994), 57-68.

S. TABACHNIKOV, Poncelet’s theorem and dual billiards, L’Enseign. Math. 39 (1993),
189-194.

S. TaBACHNIKOV, Billiards: Panoramas et Syntheses, Soc. Math. France, No. 1, 1995,



