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The purpose of this handout is to describe continued fractions and their
connection to hyperbolic geometry.

1 The Gauss Map

Given any x ∈ (0, 1) we define

γ(x) = (1/x) − floor(1/x). (1)

Here, floor(y) is the greatest integer less or equal to y. The Gauss map has
a nice geometric interpretation, as shown in Figure 1. We start with a 1× x
rectangle, and remove as many x × x squares as we can. Then we take the
left over (shaded) rectangle and turn it 90 degrees. The resulting rectangle
is proportional to a 1 × γ(x) rectangle.
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Figure 1

Starting with x0 = x, we can form the sequence x0, x1, x2, ... where
xk+1 = γ(xk). This sequence is defined until we reach an index k for which
xk = 0. Once xk = 0, the point xk+1 is not defined.
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Exercise 1: Prove that the sequence {xk} terminates at a finite index if
and only if x0 is rational. (Hint: Use the geometric interpretation.)

Consider the rational case. We have a sequence x0, ..., xn, where xn = 0.
We define

ak+1 = floor(1/xk); k = 0, ..., n − 1. (2)

The numbers ak also have a geometric interpretation. Referring to Figure 1,
where x = xk, the number ak+1 tells us the number of squares we can remove
before we are left with the shaded rectangle. In the picture shown, ak+1 = 2.
Figure 2 shows a more extended example. Starting with x0 = 7/24, we have

• a1 = floor(24/7) = 3.

• x1 = 24/7 − 3 = 3/7.

• a2 = floor(7/3) = 2.

• x2 = (7/3) − 2 = 1/3.

• a3 = floor(3) = 3.

• x3 = 0.

In figure 2 we can read off the sequence (a1, a2, a3) = (3, 2, 3) by looking at
the number of squares of each size in the picture. The overall rectangle is
1 × x0.

Figure 2
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2 Continued Fractions

Again, sticking to the rational case, we can get an expression for x0 in terms
of a1, ..., an. In general, we have

xk+1 =
1

xk

− ak+1,

which leads to

xk =
1

ak+1 + xk+1

. (3)

But then we can say that

x0 =
1

a1 + x1

=
1

a1 +
1

a2 + x2

=
1

a1 +
1

a2 +
1

a3 + x3

. . . (4)

We introduce the notation

α1 =
1

a1

; α2 =
1

a1 +
1

a2

; α3 =
1

a1 +
1

a2 +
1

a3

. . . (5)

In making these definitions, we are chopping off the xk in each expression in
Equation 4. The value of αk depends on k, but x0 = αn because xn = 0.

Cosidering the example from the previous section, we have

α1 =
1

3
; α2 =

1

3 +
1

2

=
2

7
; α3 = x0 =

7

24
.

We say that two rational numbers p1/q1 and p2/q2 are farey related if

det
[

p1 p2

q1 q2

]

= p1q2 − p2q1 = ±1. (6)

In this case, we write p1/q2 ∼ p2/q2. For instance 1/3 ∼ 2/7 and 2/7 ∼ 7/24.
This is no accident.

Exercise 2: Starting with any rational x0 ∈ (0, 1) we get a sequence {αk}
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as above. Prove that αk ∼ αk+1 for all k. Hint: induction.

Exerxise 3: Consider the sequence of differences βk = αk+1 − αk. Prove
that the signs of βk alternate. Thus, the sequence α1, α2, α3, ... alternately
over-approximates and under-approximates x0 = αn.

Exercise 4: Prove that the denominator of αk+1 is greater than the denom-
inator of αk for all k. In particular, the α-sequence does not repeat. With
a little bit of extra effort, you can show that the sequence of denominators
grows at least exponentially.

3 The Farey Graph

Now we will switch gears and discuss an object in hyperbolic geometry. Let
H

2 denote theupper half-plane model of the hyperbolic plane. We form a
geodesic graph G in H

2 as follows. The vertices of the graph are the rational
points in R∪∞, the ideal boundary of H

2. The point ∞ counts as rational,
and is considered to be the fraction 1/0. The edges of the graph are geodesics
joining farey related rationals. For instance, the vertices

0 =
0

1
; 1 =

1

1
; ∞ =

0

1

are the vertices of an ideal triangle T0 whose boundary lies in G.
Let Γ = PSL2(Z) denote the group of integer 2 × 2 matrices acting on

H
2 by linear fractional transformations. As usual, Γ also acts on R ∪∞.

Exercise 4: Let g ∈ Γ be some element. Suppose r1 ∼ r2. Prove that
g(r1) ∼ g(r2). In particular, g is a symmetry of G.

Now we know that Γ acts as a group of symmetries of G. We can say more.
Suppose e is an edge of G, connecting p1/q1 to p2/q2. The matrix

[

p1 p2

q1 q2

]−1

carries e to the edge connecting 0 = 0/1 to ∞ = 1/0. We call this latter edge
our favorite. In other words, we can find a symmetry of G that carries any
edge we like to our favorite edge. Since Γ is a group, we can find an element
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of Γ carrying any one edge e1 of G to any other edge e2. We just compose the
element that carries e1 to our favorite edge with the inverse of the element
that carries e2 to our favorite edge. In short Γ acts transitively on the edges
of G.

Exercise 5: Prove that no two edges of G cross each other. (Hint: By
the symmetry we have just discussed, it suffices to prove that no edge crosses
our favorite edge.

We have exhibited an ideal triangle T0 whose boundary lies in G. Our fa-
vorite edge is an edge of this triangle. It is also an edge of the ideal triangle
T1 with vertices

0

1
;

1

0
;

−1

1
.

The boundary of this triangle lies in G as well. Thus, our favorite edge
is flanked by two ideal triangles whose boundaries lie in G. But then, by
symmetry, this holds for every edge of G. Starting out from T0 and moving
outward in a tree-like manner, we recognize that G is the set of edges of a
triangulation of H

2 by ideal triangles. Figure 2 shows a finite portion of G.
The vertical line on the left is our favorite line. The vertical line on the right
connects 1 to ∞.

Figure 3
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4 Continued Fractions and the Farey Graph

Let’s go back to continued fractions and see how they fit in with the Farey
graph. Let x0 ∈ (0, 1) be a rational number. We have the sequence of
approximations α1, ..., αn = x0 as in Equation 5. It is convenient to also
define

α−1 = ∞; α−0 = 0; (7)

If we consider the larger sequence α−1, ..., αn, the statements of Exercises
2 and 3 remain true. In particular, we have a path P (x0) in the Farey
graph that connects ∞ to x0, obtained by connecting ∞ to 0 to α1, etc. The
example gave above doesn’t produce such a nice picture, so we will give some
other examples.

Let x0 = 5/8. This gives us

a1 = ... = a5 = 1

and

α1 = 1; α2 =
1

2
; α3 =

2

3
; α4 =

3

5
; α5 = x0 =

5

8
.

Figure 3
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Taking x0 = 5/7 gives

a1 = 1; a2 = 2; a3 = 2.

and

α1 = 1; α2 =
2

3
; α3 =

5

7
.

Figure 4

There are three things we would like to point out about these pictures.
First, they make a zig-zag pattern. This always happens, thanks to Exercises
3 and 4 above. Exercise 4 says that the path cannot backtrack on itself, and
then Exercise 4 forces the back-and-forth behavior.

Second, we can read off the numbers a1, ..., an by looking at “the amount
of turning” the path makes at each vertex. In Figure 4, our path turns “one
click” at α0, then “two clicks” at α1, then “two clicks” at α2. This corre-
sponds to the sequence (1, 2, 2). Similarly, the path in Figure 3 turns “one
click” at each vertex, and this correspons to the sequenc (1, 1, 1, 1, 1).

Exercise 6: Prove that the observation about the turns holds for any ratio-
nal x0 ∈ (0, 1).

7



Third, the diameter of the kth arc in our path is less than 1/k(k−1). This is
a terrible estimate, but it will serve our purposes below. To understand this
estimate, note that the kth arc connects αk−1 = pk−1/qk−1 to αk = pk/qk,
and αk−1 ∼ αk. The diameter of the kth arc is

|αk−1 − αk| =
∣

∣

∣

∣

pk−1

qk−1

− pk

qk

∣

∣

∣

∣

=∗
1

qk−1qk

≤ 1

k(k − 1)
.

The starred equation comes from the fact that αk−1 and αk are Farey-related.
The last inequality comes from Exercise 4. As we mentioned in Exercise 4,
the denominators of the α-sequence grow at least exponentially. So, actually,
the arcs in our path shrink exponentially fast.

5 The Irrational Case

So far, we have concentrated on the case when x0 is rational. If x0 is irra-
tional, then we produce an infinite sequence {αk} of rational numbers that
approximate x. From what we have said above, we have

x ∈ [αk, αk+1] or x ∈ [αk+1, αk] (8)

for each index k, with the choice depending on the parity of k, and also

lim
k→∞

|αk − αk+1| = 0. (9)

Therefore
x0 = lim

k→∞

αk. (10)

The corresponding infinite path in the Farey graph starts at ∞ and zig-zags
downward forever, limiting on x.

The nicest possible example is probably

x0 =

√
5 − 1

2
= 1/φ,

where φ is the golden ratio. In this case, ak = 1 for all k and αk is always
ratio of two consecutive Fibonacci numbers. The path in this case starts out
as in Figure 3 and continues the pattern forever. Taking some liberties with
the notation, we can write

1

φ
=

1

1 +
1

1 +
1

1 + . . .
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Since φ = 1 + (1/φ) we can equally well write

φ = 1 +
1

1 +
1

1 +
1

1 + . . .

(11)

This is a truly famous equation!
The {ak} sequence is known as the continued fraction expansion of x0.

In case x0 > 1, we pad the sequence with floor(x0). So, 1/φ has continued
fraction expansion 1, 1, 1, ... and φ has continued fraction expansion 1; 1, 1, 1...
The subject of continued fractions is a vast one. Here I’ll mention a few facts.

• An irrational number x0 ∈ (0, 1) is the root of an integer quadratic
equation ax2 + bx + c = 0 if and only if it has a continued fraction
expansion that is eventually periodic.

• The famous number e has continued fraction expansion

2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10 . . .

• The continued fraction expansion of π is not known.

In spite of having a huge literature, the subject of continued fractions abounds
with unsolved problems. For instance, it is unknown of the {ak} sequence for
the cube root of 2 is unbounded. In fact, this is unknown for any root of an
integer polynomial equation that is neither quadratic irrational nor rational.

We close this chapter with a sketch-proof of the statement about about
quadratic irrationals. To simplify the proof, we will prove the somewhat
different statement that x0 ∈ (0, 1) has periodic continued fraction expansion
if and only if x0 is the fixed point of an element of Γ = PSL2(R).

Suppose that x0 has an eventually-periodic continued fraction expansion.
Let P (x0) be the zig-zag path joining ∞ to x0.

Exercise 7: Prove that the path P (x0) eventually is periodic, in the sense
that there is a finite union P ′ of edges of P (x0) and an element g ∈ Γ such
that the union

⋃

gk(P ′) is a partition of the “tail end” of P (x0)

Note that x0 is a fixed point of the element g from Exercise 7. This proves
one half of the claim.
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Exercise 8: Let x and y be two distinct irrational points in R ∪∞. Let β
be the geodesic connecting x to y. Prove that there is a unique path in the
Farey graph that connects x to y and only uses edges that cross β. Call this
path P (x, y).

Exercise 9: Prove that P (x0, y) and P (x0) agree in a neighborhood of
x0. Here P (x) is the zig-zag path connecting ∞ to x0, constructed from the
continued fraction expansion of x0.

The element g, being a loxodromic isometry, has a second fixed point
y0. The canonical path P (x0, y0) is invariant under g because it is canonical.
Hence P (x0, y0) is periodic in a geometric sense. But P (x0, y0) agrees with
P (x0) in a neighborhood of x0. But then the tail end of P (x0) is periodic.
But one can read off the continued fraction expansion from the geometry of
P (x0). Hence, the continued fraction expansion of x0 is eventually periodic.
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