
Handout 1

Rich Schwartz

September 6, 2007

The purpose of this handout is to discuss some notions in geometry. If
some or even most of this handout makes no sense, you shouldn’t panic or
think that this seminar isn’t for you. The handout is meant as a reference,
and we’re going to be talking a lot about the objects discussed in the handout,
as well as how to read text like this. I hardly knew any of the stuff when I
started college.

At the end of each section I’ll pose one or two questions. If you’re com-
fortable with the material in a given section, you might want to think about
the questions. If the material in the section doesn’t make that much sense,
you should just ignore the questions.

1 The Euclidean Plane

The Euclidean plane is usually denoted by R
2, where R stands for the set

of real numbers. Points in the Euclidean plane are usually denoted by (x, y)
or else (x1, x2), etc.

Writing p = (x1, x2) and q = (y1, y2), the distance between the points p1

and p2 is given by

d(p, q) =
√

(x1 − y1)2 + (x2 − y2)2. (1)

This is the usual formula.
An isometry of R

2 is a map T : R
2 → R

2 such that

d(T (p), T (q)) = d(p, q) (2)

for all points p, q ∈ R
2. By map, I mean a rule that assigns a point T (p)

for each point p. For example, the map T (x, y) = (x + 1, y) is an isometry.
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Geometrically, this map picks up the plane and translates it one unit to the
right. As another example, the map

(x, y) → (x cos(θ) + y sin(θ),−x sin(θ) + y cos(θ)) (3)

is an isometry for any choice of θ. The map T (x, y) = (2x, y) is not an isom-
etry.

Questions:

• Can you prove that the map in Equation 3 is really an isometry?

• Can you figure out all the isometries of the plane?

2 Euclidean Space

In general, n dimensional Euclidean space is denoted by R
n, and points in

R
n are denoted by (x1, ..., xn). Points in R

n are sometimes called vectors.
You will learn a lot about R

n in a linear algebra course.

Note: Whenever you are reading about something like R
n, you should usu-

ally have in mind a simple example, like R
3. You can much better understand

the general case if you knew a few simple examples really well.

The distance between two points p = (x1, ..., xn) and q = (y1, ...., yn) is
given by

d(p, q) =
√

(x1 − y1)2 + .... + (xn − yn)2. (4)

An isometry of Euclidean space is defined just as for the Euclidean plane.
The dot product between two vectors in R

n is given by

p · q = x1y1 + ... + xnyn. (5)

The norm of p is given by
‖p‖ =

√
p · p (6)

With this notation, the distance formula above reads

d(p, q) =
√

‖p − q‖. (7)
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A hyperplane in Euclidean space is the set of solutions to an equation of
the form

p · v = C. (8)

Here v is a nonzero vector in R
n and C is a constant. That, the hyperplane

consists of all the points p that satisfy the equation. Some special cases:

• For n = 1, a hyperplane is just a point.

• For n = 2, a hyperplane is a straight line.

• For n = 3, a hyperplane is a copy of the plane.

A flat is any finite intersection of hyperplanes. For instance, if two dif-
ferent hyperplanes in R

3 intersect, then they intersect in a line. Similarly,
three hyperplanes in R

3 can intersect in a single point. So, the flats in R
3

are points, lines, and planes. A flat has a dimension, which I won’t define
formally. Informally, a flat is a copy of R

k, and the dimension is k.

Questions:

• Can you give a definition of dimension?

• Suppose that you have two flats in R
n that have the same dimension.

Can you prove that there is an isometry of R
n that maps one flat to

the other.

3 Convexity

As you read this section, you should think about the simplest cases first, even
though the text might be talking about something in general. So, I’m going
to talk about what convexity means in R

n, but you should draw pictures in
R

2. The pictures in R
1 are even simpler, but they’re pretty boring!

A subset S ⊂ R
n is convex if, for any two points p1, p2 ∈ S, the line

segment joining p1 to p2 also lies in S. The line segment I mean can be
described as the set of points of the form

tp1 + (1 − t)p2, (9)

with t in the interval [0, 1]. A line segment is a subset of a 1 dimensional flat.
Here are some examples.
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• A disk is a convex subset of R
2.

• Triangles and squares are convex.

• Some quadrilaterals are not convex. (Draw a picture of one.)

• A solid cube is convex.

• A solid ellipsoid is convex.

• The intersection of any number of convex sets is again convex.

Given any subset S ⊂ R
n, the convex hull of S, sometimes denoted by

Hull(S) is defined to be the intersection of all the convex sets that contain
S. So, the convex hull of S is the smallest convex set that contains S.

A convex polytope in R
n is the convex hull of a finite set of points, pro-

vided that the convex hull is genuinely n-dimensional. For instance, the
convex hull of 2 points in R

n is always a line segment, but we wouldn’t re-
ally want to call this line segment a polytope because it is just 1-dimensional.
Polytopes are called xonvex polygons in R

2 and convex polyhedra in R
3.

Questions:

• Suppose that S is a collection of 5 points in R
2. What are the possi-

bilities for the convex hull of S?

• Suppose that S is a collection of 5 points in R
3. What are the possi-

bilities for the convex hull of S?

• Write the letters of your name in the plane. Think of them as sets.
Sketch their convex hulls.

• What is the convex hull of a hyperbola?

• Suppose you are given a set of 100 points in R
2. Can you think of a

way to systematically compute the convex hull of the set? This is a
computer-science type question.

• Suppose that P is a polytope in R
n and Π is a hyperplane in R

n that
divides P into two pieces. Prove that each piece is again a polytope?
(Draw a picture in R

2.)
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4 Groups

A group is a set G, together with an operation for combining elements of G.
The operation, sometimes denoted by a (∗), has to satisfy 4 axioms in order
for it to turn G into a group. Here are the axioms.

1. For any g1, g2 ∈ G, the operation g1 ∗ g2 makes sense as an element of
G. In other words, the operation “always works”.

2. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for all g1, g2, g3. This is sometimes called
the associative law .

3. There is an element of g, called e, such that g ∗ e = e ∗ g = g for all g.
In other words, e is kind of like the “zero element”.

4. For any g there is an element h such that g∗h = h∗g = e. The element
h is sort of like “negative g”. Sometimes h is written as g−1.

You will learn a lot about groups when you take abstract algebra (Math 152).
Here are some examples:

• G = Z, the integers, and ∗ is just +. In this case e = 0 and g−1 = −g.

• G is the set of hours on the clock and ∗ is just “clock addition”. For
instance,

8 : 00 ∗ 9 : 00 = 5 : 00. (10)

because it is 5 : 00 nine hours after it is 8 : 00. Here e = 12 : 00. What
is (8 : 00)−1?

• You can imagine making the same construction with a clock that has
n hours. The resulting group is called Z/n.

• The set of isometries of R
n is a group. The (∗) law is composition. In

other words, the map T1 ∗ T2 has the action

T1 ∗ T2(p) = T1(T2(p)). (11)

The isometry that does nothing–i.e., the identity map–is e. The isom-
etry T−1 just “undoes” whatever T does. For instance, if T rotates
R

2 clockwise by 5 degrees, then T−1 rotates R
2 counterclockwise by 5

degrees.

5



One nice way to make groups is to let P be a polytope in R
n and consider

the set G of all isometries T such that T (P ) = P . For instance, if P is a
square in R

2 then you can rotate T by 90, degrees, 180 degrees, etc. This
group is often called the symmetry group of P .

Questions:

• It turns out that the group of symmetries of a square has 8 different
elements. Can you draw what they all do?

• How many elements does the group of symmetries of a cube have?

• The n-dimensional cube is the convex hull of the set of all points of
the form (x1, ..., xn), where each coordinate is either 0 or 1. How many
elements does the symmetry group of the n-dimensional cube have?

• Any polytope P always has the identity map as an element of its sym-
metry group? Can you draw a polygon in the plane that only has this
element in its symmetry group?

• Some groups have the property that g ∗h = h∗ g for all g and h. These
groups are called abelian. Prove that the symmetry group of the square
is not abelian?

• Can you draw a polygon that has an abelian symmetry group?
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