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Let M be the flat Moebius band

M = [0, a]× [0, b]/ ∼, (t, 0) ∼ (a− t, b). (1)

We are taking a rectangle and identifying opposite sides by the usual orien-
tation reversing map. We suppress a, b from the notation. A paper Moebius
band is a smooth isometric embedding I : M → R3. That is, I is infinitely
differentiable and the differential dI is an isometry. Let Ω = I(M).

A bend on Ω is a line segment that lies in the interior of Ω except for its
endpoints, which lie in the boundary. The purpose of these note is to give an
elementary and self-contained proof of the following classical result, which
plays an important role in [HW] and [S].

Theorem 0.1 There is a continuous partition of Ω into bends.

We will deduce Theorem 0.1 from a subsidiary result, which we now
describe. Let Ωo be the interior of Ω. Let S2 be the unit 2-sphere. The Gauss
map, which is well defined and smooth on any simply-connected subset Ωo,
associates to each point p ∈ Ωo a unit normal vector np ∈ S2. Let dnp be the
differential of the Gauss map at p. Since the curvature Ωo is 0 everywhere,
dnp has a nontrivial kernel. The point p has nonzero mean curvature if
and only if dnp has nontrivial image. Let U ⊂ Ωo denote the subset having
nonzero mean curvature. Theorem 0.1 is a quick consequence of the following
result in differential geometry.

Lemma 0.2 Each p ∈ U lies in a unique bend γ. Furthermore, the interior
of γ lies in U .
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Proof of Theorem 0.1: It follows immediately from Lemma 0.2 that U has
a continuous partition into bends. The uniqueness implies the continuity. Let
τ be a component of Ω−U . If τ has empty interior then τ is a line segment,
the limit of a sequence of bends. In this case τ is also a bend. Suppose τ
has non-empty interior. The Gauss map is constant on τ and hence τ lies in
a single plane. Two sides of τ , opposite sides, lie in ∂Ω and are straight line
segments. The other two sides of τ , the other opposite sides, are bends. Thus
τ is a planar trapezoid. But then we can extend our bend partition across τ
by simply choosing any continuous family of segments on τ that interpolates
between the two bends in its boundary. Doing this construction on all such
components, we get our continuous partition of Ω into bends. ♠

On the bottom of p. 46 of [HW], Halpern and Weaver say that the result
of Lemma 0.2 is well known. They cite the references [CL], [HN], and [St].
More precisely, Lemma 0.2 is a special case of the two essentially identical
results, [CL, p. 314, Lemma 2] and [HN, §3, Lemma 2]. These results and
proofs are done in a general multi-dimensional setting. I found these proofs
quite difficult to read. What follows is an elementary proof of Lemma 0.2,
tailored to the 2-dimensional case.

Let U ⊂ Ωo as above. Let p→ np be a local choice of the Gauss map. We
can rotate and translate so that near the origin U is the graph of a function

F (x, y) = Cy2 + higher order terms. (2)

Here C > 0 is some constant. The normal vector at the origin is n0 = (0, 0, 1).
The vector v0 = (1, 0, 0) lies in the kernel of dn0. Let w0 = v0×n0 = (0, 1, 0).
Let Π0 be the plane spanned by w0 and n0. The image of Π0 ∩ U under the
Gauss map is (near n0) a smooth regular curve tangent to w0 at n0.

Working locally, we have three smooth vectorfields:

p→ np, p→ vp, p→ wp = vp × np. (3)

Here vp is the kernel of dnp and × denote the cross product. Let Πp be the
plane through p and spanned by wp and np. From our analysis of the special
case, and from symmetry, the image of Πp∩U under the Gauss map is (near
np) a smooth regular curve tangent to wp at np. The asymptotic curves are
the smooth curves everywhere tangent to the v vector field. Here is the first
key point of the proof.
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Lemma 0.3 The asymptotic curves are line segments.

Proof: Let γ be an asymptotic curve. By construction, the Gauss map is
constant along γ. About each point in γ there is a small neighborhood V
which is partitioned into asymptotic curves that transversely intersect each
plane Πp when p ∈ γ∩V . Hence the image of V under the Gauss map equals
the image of Πp ∩ V under the Gauss map. This latter image is a smooth
regular curve tangent to wp at np. Since this is true for all p ∈ γ ∩ V and
since np is constant along γ we see that wp is constant along γ. Hence vp is
constant along γ. Hence γ is a line segment. ♠

The nonzero mean curvature implies that γ is the unique line segment
through any of its interior points. To finish the proof of Lemma 0.2, we
just have to rule out the possibility that γ reaches ∂U before it reaches ∂Ω.
Assume for the sake of contradiction that this happens. We normalize as in
Equation 2.

We now allow ourselves the liberty of dilating our surface. This dilation
preserves all the properties we have discussed above. By focusing on a point
of γ sufficiently close to ∂U and dilating, we arrange the following:

• A neighborhood V of Ωo is the graph of a function over the disk of
radius 3 centered at the origin.

• The normal to V at (0, 0, 0) is (0, 0, 1).

• γ ⊂ V contains the arc connecting (0, 0, 0) to (3, 0, 0), but (0, 0, 0) 6∈ U .

• Given p ∈ V let p′ be the projection of p to the XY -plane. We have
|p′1 − p′2| > (2/3)|p1 − p2| for all p1, p2 ∈ V .

For a ∈ (0, 3) and at (a, 0, 0) we have

va = (1, 0, 0), wa = (0, 1, 0), na = (0, 0, 1).

Let Πa be the plane {X = a}. Near (a, 0, 0), the intersection Ua = U ∩Πa is
a smooth curve tangent to wa at (a, 0, 0).

Let ζ = (1, 0, 0). Fix δ > 0. By continuity and compactness, the asymp-
totic curves through points of U1 sufficiently near ζ contain line segments
connecting points on U2 to points on Uδ. Call these connectors . There exists
a canonical map Φδ : U1 → Uδ defined in a neighborhood of ζ: The points
q ∈ U1 and Φδ(q) ∈ Uδ lie in the same connector.
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Lemma 0.4 Φδ expands distances by less than a factor of 3.

Proof: For each X ⊂ V let X ′ ⊂ R2 denote the projection of X. Let `1 and
`2 be two connectors through U1. Let bj = `j ∩Uδ and aj = `j ∩U1. We have

|b2 − b1|
|a2 − a1|

<
3

2

|b′2 − b′1|
|a2 − a1|

≤ 3

2

|b′2 − b′1|
|a′2 − a′1|

≤∗ 3

2
× 2 = 3.

The first two inequalities come from the properties of projection on V ar-
ranged above. Here is the explanation of the starred inequality. The line
segments `′1 and `′2 have slopes less than 1/100 in absolute value provided
that we take U1 small enough, because these two segments are disjoint from
the x-axis, and intersect a small neighborhood of (1, 0), and extend at least
1/2 away from this small neighborhood in either direction. Geometrically,
a′1, b

′
1 and a′2, b

′
2 are the endpoints of nearly parallel line segments. This gives

the starred inequality easily. ♠

Fix ε > 0. The mean curvature along Uδ supposedly tends to 0 as we
let δ → 0. If we choose δ sufficiently small then the Gauss map expands
distances along Uδ in a neighborhood of (δ, 0, 0) by a factor of less than
ε. Combining Lemma 0.4 and the fact that nq = nΦδ(q), we see that the
Gauss map expands distances by at most a factor of 3ε along U1 in a small
neighborhood of ζ. Since ε is arbitrary, w1 ∈ ker(dnζ). But v1 ∈ ker(dnζ)
by definition. Hence dnζ is the trivial map. The contradicts the fact that
ζ ∈ U . This completes the proof of Lemma 0.2.

References:

[CL], S.-S. Chern and R. K. Lashof, On the total curvature of immersed
manifolds , Amer. J. Math. 79 (1957) pp 306–318

[HL], P. Hartman and L. Nirenberg, On spherical maps whose Jacobians do
not change sign, Amer. J. Math. 81 (1959) pp 901–920

[HW], B. Halpern and C. Weaver, Inverting a cylinder through isometric
immersions and embeddings , Trans. Am. Math. Soc 230, pp 41–70 (1977)

[S], R. E. Schwartz, The Optimal Paper Moebius Band , Annals of Mathe-
matics, January 2025.

[St], J. J. Stoker Jr., Differential Geometry , Interscience, New York, 1969.

4


