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Most of the things in these notes can be found in the book Random Walks
and Electric Networks , by Peter Doyle and Laurie Snell. I highly recommend
this excellent book. These notes cover some of the main points in the book,
but they do not always do things as they are in the book.

1 Harmonic Functions

Let G be a graph. The function f : G→ R (defined on the vertex set of G)
is called harmonic at a vertex v if

f(v) =
1

k

k∑
i=1

f(wi). (1)

Here k is the degree of v and w1, ..., wk are the vertices incident to v. Notice
the similarity between this equation and Equation 9.

Suppose that C is a non-empty and proper subset of vertices of G. Sup-
pose that f is some function on C. We call the function F : G → R a
harmonic extension of f if F = f on C and F is harmonic on G − C. We
will show that each f has a unique harmonic extension.

Lemma 1.1 If F1 and F2 are two harmonic extensions of f then F1 = F2.

Proof: Let g = F1 − F2. Note that g is a harmonic extension of the 0 func-
tion on C. There must be some vertex v where g achieves its maximum. But
g(v) is the average of the values of g at the vertices incident to v. This is only
possible if g also takes its max at all the vertices incident to v. Continuing
outward from v, we see that g must take its max everywhere. But then this
common value must be 0. ♠
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Lemma 1.2 Every function f on C has a harmonic extension.

Proof: Let V be the vector space of functions defined on G − C. Let
∆f : V → V be the map

∆fg(v) = v − 1

k

∑
g(wi). (2)

As usual k is the degree of v and w1, ..., wk are the vertices incident to v.
The map ∆f is an affine transformation from V into V . (It is matrix multi-
plication followed by translation which depends on the function f .)

Suppose that ∆f (F1) = ∆f (F2). We extend g to that g = 0 on C.
Consider g = F1 − F2. Then, at each vertex v ∈ G − C, the value g(v) is
the average of its neighbors. But then the same argument as above shows
that g cannot have a nonzero maximum or a nonzero minimum. Hence g is
identically 0. (This step uses the fact that C is nonempty, so that g = 0 at
some vertex.)

We have shown that ∆f is one to one. But then ∆ must be onto. In
particular, the 0 function on G − A − B is in the image of ∆f . That is,
there exists F ∈ V such that ∆f (F ) is the 0 function. By definition F is a
harmonic extension of F . ♠

2 The Electric Flow

We keep the same notation as above. Now we set C = a ∪ b where a and
b are vertices of G. Let V be a harmonic function on G − a − b. By the
previous result, the values V (a) and V (b) uniquely determine V . We call V
the voltage function induced by V (a) and V (b) This function has two nice
properties:

• If V1 and V2 are voltage functions then so is V1 + λV2 for any constant
λ. In other words, the voltage functions form a vector space.

• If V (a) = V (b) then V is constant.

Let ixy = V (x) − V (y). We call ixy the electric current induced by the
voltage. For each vertex x let

ix =
∑
y↔x

ixy. (3)
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The sum is taken over adjacent vertices. The quantity ix is the total current
flowing out of x. Since V is harmonic on G − a − b, we have ix = 0 unless
x = a or x = b.

Lemma 2.1 ia + ib = 0.

Proof: We have
ia + ib =

∑
x

ix =
∑
x

∑
y

ixy = 0 (4)

The last sum is 0 because ixy = −iyx and we are summing over all pairs. ♠

We define

R(G, a, b) =
V (a)− V (b)

ia
=
V (b)− V (a)

ib
. (5)

Put another way, R(G, a, b) is the value such that ia = 1 when

V (a) = R(G, a, b), V (b) = 0.

Intuitively, R(G, a, b) is large when you have to have a huge voltage differen-
tial to induce a unit current. The quantity R(G, a, b) is called the effective
resistance of G with respect to (a, b).

3 Energy and Resistance

We keep the same notation as above. Say that a nice flow is a function
j : G×G→ R such that

1. jxy = 0 if x and y do not share an edge.

2. jxy = −jyx.

3. If x ∈ G − a − b then jx = 0. That is, the amount of current flowing
into x is the same as the amount flowing out. Here jx =

∑
jxy.

If, additionally, ja = 1, we call ja a unit flow . Finally, if ja = 0 we call j a
null flow .

The nice flows form a vector space V . The electric flows considered above
are examples of nice flows but there are typically many more nice flows than
there are electric flows. We’ll see examples in the next section.

Here is a technical lemma whose use will become clear in the corollary
below.

3



Lemma 3.1 For any function φ : G→ R and any nice flow `,

`a(φ(a)− φ(b)) =
1

2

∑
xy

`xy(φ(x)− φ(y)).

Proof: Both the left hand side and the right hand side are linear functions
of φ. So, to prove this equality it suffices to prove it on a basis in the vector
space of such functions. Suppose that φ(a) = 1 and φ(x) = 0 otherwise.
Then the two sides are equal just by definition. Suppose that φ(x) = 1 for
some x ∈ G − a − b. Then the left side is obviously 0, and the right side is
simply `x, which is 0. Finally, consider the case when φ is identically 1. Then
both sides vanish. We’ve established the identity on a basis, so we’re done. ♠

There is a canonical inner product on V , namely

〈j, k〉 =
1

2

∑
xy

jxykxy. (6)

The factor of 1/2 comes from the fact that we’re summing over ordered pairs,
so each edge appears twice. The quantity 〈j, j〉 is called the energy of j.

Corollary 3.2 Let i be the unit electric flow, j another unit flow, and k =
j−i. Note that k a null flow. This section is devoted to proving 3 statements:

1. R(G, a, b) = 〈i, i〉.

2. 〈i, k〉 = 0.

3. 〈i, i〉 ≤ 〈j, j〉.

Proof: Applying Lemma 3.1 to the case ` = i and φ = V (the voltage
function) we have

〈i, i〉 =
1

2

∑
xy

ixyixy =
1

2

∑
xy

ixy(V (x)− V (y)) =

ia(V (a)− V (b)) = R(G, a, b).

This proves Statement 1.
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Applying Lemma 3.1 to the case ` = k and φ = V the same calcuation
gives

〈k, i〉 = ka(V (a)− V (b)) = 0.

This proves Statement 2.
Finally,

〈j, j〉 = 〈i+ k, i+ k〉 = 〈i, i〉+ 〈i, k〉+ 〈k, i〉+ 〈k, k〉 = 〈i, i〉+ 〈k, k〉 ≥ 〈i, i〉.

Here have used the fact that 〈i, k〉 = 〈k, i〉 = 0 by Statement 2 and symme-
try. This proves Statement 3. ♠

Statement 3 of the Corollary says that the unit electric flow minimizes
the energy amongst all nice unit flows.

4 Moves on Graphs

Here we describe some rules for how the effective resistance changes when we
modify our graph in certain ways.

4.1 Series Law

Suppose c ∈ G − a − b is a cut vertex of G. Let Ga be the lobe of G which
contains a and let Gb be the lobe of G which contains b.

Lemma 4.1 R(G, a, b) = R(Ga, a, c) +R(Gb, c, b).

Proof: Let V be the voltage function on G so that the electric current is
the unit flow. Then

R(G, a, b) = V (a)− V (b) =

(V (a)− V (b)) + (V (b)− V (c)) = R(Ga, a, c) +R(Gb, b, c).

What makes this work is that the electric flow out of c is 0. So, by Lemma 2.1
we get the following results: in Ga there is a unit amount of current flowing
into c and in Gb there is a unit amount of current flowing out of b. ♠
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4.2 Parallel Law

Suppose that {a, b} is a cut set for G and that G is the union of two lobes
joined together at a ∪ b. Call these lobes G1 and G2. Let C = 1/R. The
quantity C(G, a, b) is often called the effective capacity of G with respect to
a, b.

Lemma 4.2 C(G, a, b) = C(G1, a, c) + C(G2, c, b).

Proof: Let V be the voltage function for G, chosen so that V (a) = 1 and
V (b) = 0. Then the total current out of a is C(G, a, b). But the restriction
Vj to Gj is the voltage function on Gj normalized so that Vj(a) = 1 and
Vj(b) = 0. Hence, the total current out of a in Gj is C(Gj, a, b). But the
total current out of a in G is the sum of the total current out of a in G1 and
the total current out of a in G2. ♠

4.3 Adding Edges

Here is Rayleigh’s Theorem.

Theorem 4.3 (Rayleigh) Let G′ be a graph obtained from G by adding an
edge. Then R(G′, a, b) ≤ R(G, a, b).

Proof: Let i be the unit electric flow on G. Let i′ be the unit electric flow
on G′. We can interpret i as a nice unit flow on G′, though possible i 6= i′.
By Statements 1 and 3 proved in the previous section,

R(G′, a, b) = 〈i′, i′〉 ≤ 〈i, i〉 = R(G, a, b).

We’re done. ♠

Of course, we can iterate this to obtain the same result when we add
finitely many edges.
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4.4 Collapsing Edges

Now suppose e is an edge of G whose endpoints are not in {a, b}. Let G/e
be the graph obtained by collapsing e.

Lemma 4.4 R(G/e, a, b) ≤ R(G, a, b).

Proof: Let i and i respectively be the unit electric flows on G and G/e. Let
i′ be the flow on G/e which equals i on each edge of G− e.

Let x, y be the endpoints of e. Let z be the vertex in G/e obtained by
identifying x and y. We have i′z = ix + iy = 0. Hence i′ is a unit nice flow on
G/e. We have

R(G/e, a, b) = 〈i, i〉 ≤ 〈i′, i′〉 = 〈i, i〉 = R(G, a, b).

This completes the proof. ♠

This result may be iterated, showing that the resistence does not increase
when we collapse finitely many vertices of G− a− b to a single vertex.

4.5 Subgraphs

Let H ⊂ G be a connected subgraph which contains the vertices a, b. Here
we prove that R(G, a, b) ≤ R(H, a, b). We can find a finite sequence of graphs

H = G0, ..., Gn = G

such that each Gi is a subgraph of Gi+1 and one of two things is true: Either
Gi+1 is obtained by adding an edge to Gi, or Gi+1 is obtained by adding a
vertex v and connecting it to some vertex of Gi by a new edge e.

In the first case, we have already proved that R(Gi, a, b) ≥ R(Gi+1, a, b).
In the second case, we can extend the voltage function on Gi to the voltage
function on Gi+1 by defining G(v) = G(v′) where v′ is the other endpoint
of e. This gives the voltage function on Gi+1, and the two voltage functions
define the same flow. So, in this case R(Gi, a, b) = R(Gi+1, a, b). Stringing
together all the inequalities gives us our result.
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5 Four Examples

In this section we use the graph moves above to analyze 4 examples. Be-
fore we give these examples, we mention that we can speak about effective
resistance when a and b are replaced by disjoint subsets A and B of ver-
tices. We define GA,B be the graph obtained by identifying all the vertices
of A to a single vertex and all the vertices of B to a single vertex. We call
these new vertices a and b and then we proceed as above. That is, we set
R(G,A,B) = R(GA,B, a, b).

Paths: Suppose that Pn is the path with n edges. Let v0, ..., vn be the
vertices of G. Let a = vn and b = v0. Let A = {vn} and B = {v0}. We
define V (vj) = j. Then V exactly the voltage function, because ia = 1 and
V (i + 1) − V (i) = 1 for all i. Hence R(Pn, a, b) = 1/n. Taking a limit as
n → ∞, we could say that the effective resistance of the infinite path with
a = 0 and b =∞ is 0.

Rooted Binary Trees: Let Gn be n-generations of the rooted binary tree.
So, the leaves of G have distance n from the root. The root vertex a has
degree 2 and all other non-leaves of G have edgree 3. Let Bn be the set of
leaves of Gn. Given a vertex v we let

Vn(v) = 2−d − 2−n

where d is the distance from v to a. For instance V (a) = 1 − 2−n, and
V = 1/2 − 2−n on the two neighbors of a. The total current flowing out of
a is 1 and you can check that V is harmonic at all vertices of G except a.
Also, V takes the same value on all the leaves of Gn. So, V gives rise to
a harmonic function on (Gn)a,Bn . Hence E(Gn, a, Bn) = 1 − 2−n. Taking a
limit, we would say that the effective resistance of the infinite binary tree
(starting at the root) is 1.

The Infinite Square Grid: Let G∞ denote the usual infinite graphs of
edges of the unit square tiling of the plane. Let Gn be be the subgraph of
G∞ consisting of the edges of the (2n) × (2n) square grid centered at the
origin. Let a = {0, 0} and let Bn denote the outer cycle of G2n.

Now we prove that

lim
n→∞

R(Gn, a, Bn) =∞. (7)
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Consider the concentric cycles B1, B2, ..., Bn. These cycles are pairwise
disjoint. Let G′n denote the graph obtained by collapsing each of these cycles
to a point. The graph G′n looks like the right side of Figure 1. Figure 1 shows
the case n = 2. Here we have replaced the multiple edges by a number which
indicates the number of edges connecting each vertex to the next.

4 12

Figure 1: Collapsing the cycles

The collapse of Gn is just a path of length n whose effective resistances
are 1/(4× 1), 1/(4× 3), 1/(4× 5), etc. These graphs all appear in parallel.
So, by Rayleigh’s Theorem, the total effective resistance is

R(Gn, A,Bn) ≥ 1

4
× (

1

1
+

1

3
+ ...+

1

2n+ 1
) (8)

This series is closely related to the harmonic series, and is easily seen to di-
verge. This completes the proof. One could say that the resistance to ∞ in
the infinite square grid is infinite.

The Infinite Cubical Grid: Now let G∞ denote the infinite cubical graph
in R3. Now we will prove that the resistance from the origin to∞ is finite in
G∞. To avoid quite a tedious argument we will not bother making the inter-
mediate finite graph constructions. We’re just going to go right to the limit,
with the understanding that (with some care) the process could be truncated
and we could take an honest limit as in previous cases. Alternatively, it is
better to just define effective resistance for infinite graphs.

We are going to build an infinite tree T∞ ⊂ G∞ in layers. By Rayleigh’s
Theorem, we have

R(G∞, a,∞) ≤ R(T∞, a,∞).
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Here∞ essentially denotes the limit of the (presumed) shells Bn in the finite
approximations.

We will build T∞ in layers. For each k = 0, ..., n, define

Φk = {(100 i, 100 j, 1000 2k)| i, j ∈ {1, ..., 2k}}

The slope of any line segment joining a point of Φk−1 to a point of Φk is at
most 1. So, we can join each point in Φk−1 to 4 points (making a square) in
Φk by paths of length at most C2k. So, the point pij in Φk−1 gets joined to
the points in square ij in Φk.

This is our tree, but the paths we have used are somewhat irregular. We
lengthen some of the paths in T∞ by adding extra vertices so that between
Φk−1 and Φk , all edges have length 10000× 2k. This process only increases
the resistance, by Rayleigh’s Theorem. (You have to think a bit about how
Rayleigh’s Theorem applies in this case.) The new tree T ′∞ is no longer a
subgraph of G∞ but we don’t care. What we know is that

R(T∞, a,∞) ≤ R(T ′∞, a,∞).

We just have to bound this latter quantity.
Why did we add these edges. Well, by symmetry the voltage function on

T ′∞ takes the same value on all vertices that are the same distance from the
initial node! So, we can collapse all the vertices at the same distance from
the initial node and we get a graph with the same resistance. The collapsed
graph is just a “path” consisting of 4k paths, each having length 10000× 2k.
The effective resistance of this “path” is

10000× 2k

4k
= 10000× 2−k.

Summing this, we see that the effective resistance to∞ is at most 20000 2−k.
This completes the proof.

So far we have been talking entirely about electric networks, but now we
turn to the subject of random walks. In a certain sense, our analysis of the
resistance of the square grid and the cubical grid gives a proof of Polya’s
famous theorems about recurrence of the standard random walk in Z2 and
the transience of the standard random walk on Z3. What remains to do is
to relate what we have done above to the theory of random walks, and then
interpret our resistance results in terms of probability.
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6 Random Walks on Graphs

Let G be a graph in which every vertex has finite degree. We usually take
G to be a finite graph, but sometimes we will consider countable graphs.
Suppose that we have given a linear ordering to the edges incident to each
vertex of G. A random walk on G, starting from the vertex v ∈ G, is a
sequence of fair coin flips b1, b2, b3, ... where the (j)th coin has as many aides
as the degree of the vertex vj. The value of b1 selects the vertex v2 adjacent
to v, the value of b2 selects the vertex v3 adjacent to v2, and so on. Here
we have set v1 = v. One funny thing about this process is that the number
of sides of the coin can vary from vertex to vertex. If you prefer, one can
consider random walks on regular graphs, and then one can use the same
coin all the time.

Suppose that A and B are two disjoint subsets of vertices. We define
P (v,A,B) to be the probability that a random walk starting from v reaches
A before it reaches B. Some of you might be satisfied that this notion of
probability makes intuitive sense. In this case, just skip the next section.
Otherwise, you can read a quick sketch of how this probability is defined in
terms of measure theory.

In any case, we are really only going to use a few basic properties of the
above function. Suppose that w1, ..., wk are the vertices incident to v and
v ∈ G− A−B. Then the basic property is

P (v,A,B) =
1

k

k∑
i=1

P (wi, A,B). (9)

In other words, we have an equal chance of going from v to each wi, and then
we can compute the probability of hitting B before A and just average these
probabilities.

Let us relate random walks to electric networks. We have seen already
that every function on A∪B has a unique harmonic extension. Suppose that
we set f = 1 on A and f = 0 on B. Let’s define

F (v) = P (v,A,B). (10)

Note that F = f on A ∪ B. Equation 9 tells us that F is harmonic for all
v ∈ G−A−B. In other words, the probability function v → P (v,A,B) we
have been considering in previous sections is the unique harmonic extension
of the function which is 1 on A and 0 on B.
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7 Polya’s Theorems

Let G∞ be the infinite square grid. Now we explain why a random walk
on G∞, starting at the origin a, returns to the origin with probability 1.
Let Gn be the graph made from n consecutive layers of G∞. Let Bn denote
the outermost layer of Gn. Let Pn denote the probability that a random
walk starting at the origin a. returns to the origin before hitting Bn. The
probability that a random walker returns to the origin in G∞ is at least as
big as the probability that a random walker on Gn hits Bn before returning
to a, because in the latter case the process stops and in the former case the
process continues and the walker has more changes to return home.

Think about it this way. Suppose we lived in a crazy country where the
police throw you in prison if you wander more than 10 miles from your house.
Your chances of returning home are increased if the police just disappear. The
boundary Bn is basically the prison that you land in if you wander too far
from home.

Now we estimate the probability that a random walk starting at a hits
Bn before returning to a. Since every random walk starting at a must hit a
neighbor of a, the probability that a random walk starting at a returns to
the origin is the average of the probabilities that a random walk starting at
each of the neighbors of a hits a before hitting Bn. Let b be such a neighbor.
The probability in question is Fn(b), where Fn is the harmonic extension on
Gn of the function which is 1 on a and 0 on Bn.

Here

Fn =
Vn
Rn

, Rn = R(Gn, a, Bn),

where Vn is the voltage function. Since the total current flowing out of Gn

with respect to the potential Vn is at most 1, we have

Vn(b) ≥ Rn − 1.

But then

Fn(b) ≥ Rn − 1

Rn

.

Since Rn →∞ as n→∞ we see that Fn(b)→ 1. This completes the proof.

Now let’s consider the situation for the cubical grid G∞. This time the
resistance out to infinity is finite. So, there is a nonzero harmonic extension
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of the function which is 1 on a and tends to 0 as one tends to ∞ in G∞. So,
interpreting this fact probabilistically, we see that the probability that the
probability that a random walk starts at a and returns to a is less than 1.
Hence there is a positive probability that the random walk starts at a and
never returns.

8 Measure Theoretic Aside

Here is the way the probability P (v, A,B) is treated from the standpoint of
measure theory. Again, if you are happy with the definition already, just skip
this part of the notes.

In general, the set of all possible coin flips is the subset S(G, v) of infinite
allowable integer sequences. A sequence is allowable if, for all j, the jth digit
bj does not exceed the degree of the vertex vj selected by the previous terms
b1, ..., bj−1. For regular graphs of degree d, the set S(G, v0) is just the set of
all infinite sequences involving d digits.

We let
S = S(G, v) (11)

Supposing that we have chosen initial allowable sequence β = (b1, ..., bn), the
cyclinder set Cβ is the set of all allowable infinite sequences which have start
with β. The probability that a finite random walk of length n starting at v
will produce β is

|Cβ| =
1

d1...dn
, (12)

where dj is the degree of vj.
In general, one defines the outer measure of a subset E ⊂ S as follows.

µ∗(E) = inf
C

∑
C∈C
|C|. (13)

Here C is a covering of S by cylinder sets and |C| denotes the probability
that C occurs, as above. What we are doing is taking the infimum over all
possible coverings.

A subset E is called measurable if

µ∗(X − E) + µ∗(X ∩ E) = µ∗(X) (14)

for all other subsets X ⊂ S. In this case, we define µ(E) = µ∗(E). This
definition looks insane, because it is something we would have to test for all
other subsets. However, one can check several basic properties:
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• Cylinder sets themselves are measurable. This is pretty easy. If we
have a covering of X we get coverings of X ∩ E just by intersecting
the cover with E and we get a covering of X − E by intersecting our
covering with S − E, which is a finite union of cylinder sets.

• If E is measurable so is S − E. This just follows straight from the
definition.

• The countable union of measurable sets is again measurable. This is a
bit more work, but not too bad.

A set is called a Borel set if it is obtained by starting with cylinder sets and
taking complements and countable unions finitely many times. From the
three properties above, Borel sets are measurable.

The function µ is called a Borel measure. The pair (S, µ) is called a prob-
ability space. Subsets of S are often called events . When E is a Borel event,
µ(E) is the probability that E occurs. The measure µ is countably additive:
If E1, E2, E3, ... is any countable collection of pairwise disjoint measurable
subsets of S, then

µ(
⋃
Ej) =

∑
µ(Ej). (15)

The set E(v, A,B) of random walks which start at v and hit A before B
is one of these Borel sets. We define

P (v, A,B) = µ(E(v,A,B).. (16)

Let us sketch the derivation of Equation 9. Let E = E(v, A,B) and also
define Ej = E(wj, A,B). Note that Ej is a subset of the space S(wj, A,B).
Finally let E ′j ⊂ S denote the set of random walks which first go to wj and
then lie in Ej. We have

µ(Ej) = (1/k) µj(E
′
j) (17)

Here µj is the measure on S(G,wj). Also, from Equation 15 (in the finite
case) we have µ(E) =

∑
j µ(Ej). Putting these two facts together gives

Equation 9.
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