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1 Overview

These notes are organized around the goal of explaining why the family of
Cayley graphs of SL3(Z/p), as p ranges over all primes, is an expander fam-
ily. There is nothing original in the notes, but they gather together essentially
all the material you need to understand this result and some related classics.
After a background chapter, here is what the notes cover:

Expander Families: I give the two definitions of an expander family of
graphs, one based on eigenvalues of the graph Laplacian and one based on
the Cheeger constant. I then show that the two definitions are equivalent.
One of the directions is much harder than the other, and relies on the “hard
Cheeger Inequality”, Equation 11 below. I learned the proof by reading pp 7-
8 of the paper by Fan Chung called Four Proofs of Cheeger’s Inequality and
Graph Partition Algorithms . My exposition follows the proof given there,
except that I change the notation and definitions a bit, only consider the
d-regular case, and add explanations.

The Main Examples: I show that the family of Cayley graphs of SL3(Z/p),
relative to the generating set formed by the elementary matrices mod p, is
a 12-regular expander family. The strategy is to use a bit of representation
theory to reduce the expander property to a special case of Property T for
SL3(Z), and then use Yehuda Shalom’s argument to establish that special
case. I learned Shalom’s argument from his IHES paper, Bounded Genera-
tion and Kazhdan’s Property T . The application to expanders only requires
a certain finite dimensional version of Property T, and in this case we can
replace all the functional analysis with linear algebra.
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Bounded Generation: Though it is not necessary for the expander re-
sult, I include a proof of the bounded generation property of SL3(Z). This
is a beautiful result, and closely related to the expander property. The proof
I give of the bounded generation property of SL3(Z) is taken directly from
pp 197-206 the book by B. Bekka, P. de la harpe, and A. Valette called
Kazhdan’s Property T . The main difference between what I write and what
is written in the book is that I include detailed proof outlines to explain the
strategy of the proof in a top-down way, and I streamline the notation.

Dirichlet’s Theorem: One step of the bounded generation proof is not
elementary: It requires Dirichlet’s classic result about primes in arithmetic
progressions. For the sake of completeness, and because I saw this as a great
opportunity to really learn the proof, I include a proof of this result. My
proof skimps a bit on some of the routine limiting arguments, but otherwise
it is all there. I learned the proof from notes by Anthony Várilly entitled
Dirichlet’s Theorem on Primes in Arithmetic Progressions . Sometimes my
exposition follows Várilly’s notes and sometimes I reorganize and simplify
things. One step of the proof uses the analytic continuation of the Riemann
ζ-function, Lemma 6.11. I learned this proof from Harvard course notes of
Noam Elkies.

So, why read these notes? I think that these notes are more accessible
than any of the sources above. Also, as I said, I tried go “all the way to the
bottom” and include essentially everything that you need to understand the
theorems. These notes are a record of the odyssey I took in order to learn all
this material. Any mistakes I made along the way are my fault, and certainly
not the fault of the sources I used.

I think that you could read these notes provided that you have had a
semester course in each of linear algebra, abstract algebra, and (for Dirichlet’s
Theorem) complex analysis. You should be able to tell from the background
chapter about how much mathematics is being assumed.

This summer, Jasper Liu, an undergrad at Brown, has been these reading
these notes. I want to thank him for pointing out numerous typos and other
glitches.
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2 Background

2.1 The Hermitian Form

Let R and C denote the real and complex numbers respectively. Usually
we are interested in R but we gain perspective, and can prove things more
easily, by going into C. The following operation on Cn × Cn extends the
usual dot product:

〈V,W 〉 = V ·W (1)

Here W is the conjugate vector. If W = (w1, ..., wn) then W = (w1, ..., wn).
The gadget 〈, 〉 is called the standard Hermitian Form. It satisfies the fol-
lowing properties:

• If V and W are real then 〈V,W 〉 = V ·W .

• 〈V1 + V2,W 〉 = 〈V1,W 〉+ 〈V2,W 〉.

• 〈V,W1 +W2〉 = 〈V,W1〉+ 〈V,W2〉.

• 〈λV,W 〉 = λ〈V,W 〉.

• 〈V, λW 〉 = λ〈V,W 〉.

• 〈W,V 〉 = 〈V,W 〉.

We also note that the properties imply that 〈V, V 〉 ≥ 0 with equality iff
V = 0. We write ‖V ‖ =

√
〈V, V 〉. The quantity ‖V − W‖ measures the

Euclidean distance in Cn between V andW . There is one additional property
we will use. Let M t denote the transpose of a possibly non-square matrix
and let M∗ denote the entry-wise conjugate of M t. Then, assuming the
multiplications all make sense,

〈M(V ),W 〉 = 〈V,M∗(W )〉. (2)

2.2 Unitary Transformations

Let T : Cn → Cn be some complex linear transformation. An eigenvector
of T is some nonzero vector V such that T (V ) = λV for some complex λ,
called the eigenvalue. The eigenvalues of T are the roots of the characteristic
polynomial det(T − λI), where I is the identity matrix. There are always n
complex roots, counting multiplicity.
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T is unitary if 〈T (V ), T (W )〉 = 〈V,W 〉 for all V,W ∈ Cn. By Equation
2 this is the same as saying that T−1 = T ∗ when T is treated as a matrix.
All the eigenvalues of T are unit complex numbers.

Lemma 2.1 A unitary T has an orthonormal basis of eigenvectors.

Proof: Some unitary transformations have all unequal eigenvalues, and these
eigenvalues vary algebraically. So, any unitary transformation can be per-
turbed an arbitrary small amount so that it has all unequal eigenvalues. By
continuity, it suffices to prove our result in this case. If V and W are two
eigenvectors corresponding to distinct eigenvalues λ and µ then

λ〈V,W 〉 = 〈T (V ),W 〉 = 〈V, T ∗(W )〉 = 〈V, T−1(W )〉 =∗ 〈V, µW 〉 = µ〈V,W 〉.
The starred equality uses the fact that µ−1 = µ. Thus, if we take unit vectors
corresponding to all the eigenvalues, we get an orthonormal basis. ♠

Lemma 2.2 Suppose that A and B are commuting unitary transformations,
meaning that AB = BA. Then A and B have a simultaneous orthonormal
basis of eigenvectors.

Proof: Lemma 2.1 also works for a unitary transformation T : X → X
where X is a complex subspace of Cn. If (λ, V ) eigenvalue-eigenvector pair
for A, then λB(V ) = B(λV ) = BA(V ) = AB(V ). Hence B(V ) is also a
λ-eigenvector for A. Hence B preserves A-eigenspaces. So setting X equal to
one of these A-eigenspaces, X has an orthonormal basis of B-eigenvectors.
But this is also an orthonormal basis of A-eigenvectors. Now we take the
union of these sub-bases, as X ranges over all A-eigenspaces. ♠

Lemma 2.3 Suppose {Ti} is a collection of n unitary transformations with
the property that ‖Ti(V ) − V ‖ < εi for all i. Let T be the product T1, ...Tn.
We have ‖T (V )− V ‖ <

∑n
i=1 εi.

Proof: By induction it suffices to consider the case n = 2. By the triangle
inequality

‖T1T2(V )− V ‖ ≤ ‖T1(T2(V ))− T1(V )‖+ ‖T1(V )− V ‖ =∗

‖T2(V )− V ‖+ ‖T1(V )− V ‖ < ε1 + ε2.

The starred equality comes from the fact that T2 is an isometry of Cn. ♠
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2.3 Real Symmetric Matrices

An n × n matrix M is called Hermitian if M = M∗. When the entries of
M are real, we have M = M t and we call M real symmetric. We state the
results here for real symmetric matrices, but (if you care) you should be able
to see how the first two results generalize to the Hermitian case.

Lemma 2.4 M has real eigenvalues. If, additionally, M = X tX, then all
the eigenvalues are non-negative.

Proof: If λ is an eigenvalue of M and V ∈ Cn is the corresponding eigen-
vector, then using Equation 2 and the fact that M = M t, we have

λ〈V, V 〉 = 〈M(V ), V 〉 = 〈V,M(V )〉 = 〈V, λV 〉 = λ〈V, V 〉.

Hence λ = λ. This forces λ to be real. If M = X tX then

λ〈V, V 〉 = 〈M(V ), V 〉 = 〈X tX(V ), V 〉 = 〈X(V ), X(V )〉 ≥ 0.

This completes the proof. ♠

Lemma 2.5 Eigenvectors corresponding to distinct eigenvalues of M are
orthogonal.

Proof: If V1 and V2 correspond to distinct eigenvalues λ1 and λ2 then

λ1〈V1, V2〉 = 〈M(V1), V2〉 = 〈V1,M(V2)〉 = λ2〈V1, V2〉.

Since at most one λi is zero, this forces 〈V1, V2〉 = 0. ♠

Lemma 2.6 Let Cn
0 be the subspace of Cn consisting of vectors whose co-

ordinates sum to 0. If M(Cn
0 ) = Cn

0 and all the pairs (λ, V ) with V ∈ Cn
0

have nonzero λ, then Cn
0 has an orthonormal basis of real eigenvectors.

Proof: The dimension of Cn
0 is n− 1, and we can identify it with a copy of

Cn−1. In general, Cn
0 splits as a direct sum of eigenspaces, and within each

one, we choose any orthonormal basis. We can replace each basis vector ξ
by one of iξ or (ξ + ξ)/‖ξ + ξ|. One of these is a unit real vector with the
same eigenvalue. ♠
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2.4 The Graph Laplacian

Let G be a connected graph. Let V denote the vector space of complex
valued functions defined on the set of vertices of G. Let V 0 denote the set
of such functions which sum to 0. We usually identify V with Cn and V 0

with Cn
0 . Here n = |G|, the number of vertices of G.

The graph Laplacian is a linear transformation L : V → V given by

Lf(v) = Dvf(v)−
∑
w∼v

f(w). (3)

Here Dv is the degree of v and w ∼ v means that w is adjacent to v. The
constant functions are eigenvectors of L having eigenvalue 0.

Lemma 2.7 The only eigenfunctions corresponding to the value 0 are the
constant functions.

Proof: If L(f) = 0 it means that the value of f at each vertex is the average
of the neighbors. But if f is not constant, then f has some maximum. This
forces f to have the same value at all adjacent vertices, and so on. Hence f
is constant. ♠

The matrix for L is the degree matrix minus the adjacency matrix. There-
fore, L is symmetric. The constant functions are orthogonal to V 0. Hence
V 0 has an orthonormal basis of real eigenvectors corresponding to nonzero
real eigenvalues of L.

Lemma 2.8 The nonzero eigenvalues of L are positive.

Proof: Label the vertices of G with numbers from 1 to n. Label the edges
of G with numbers 1 to N . The incidence matrix M is given by

• Mij = +1 if vertex i is incident to edge j and the other vertex incident
to j has a higher label.

• Mij = −1 if vertex i is incident to edge j and the other vertex incident
to j has a lower label.

• Otherwise Mij = 0.

We have L = M tM . From this factorization and Lemma 2.4, the n − 1
nonzero eigenvalues of L are all positive. ♠
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2.5 Groups and Graphs

Let Γ be a group. A generating set for Γ is a finite list S = {g1, ..., gd} of
elements such that every element of Γ is some product of these elements. We
always take S to be symmetric, which means that g ∈ S iff g−1 ∈ S.

Example: For any ring R, the group SL3(R) is the group of 3 × 3 de-
terminant 1 matrices with elements in R. The group SL3(Z) is generated
by the 12 elementary matrices. These are the matrices which differ from the
identity matrix by a single nonzero entry which is either +1 or −1. The
finite group SL3(Z/p), is generated by the elementary matrices mod p. The
homomorphism πp : SL3(Z)→ SL3(Z/p) reduces the matrix entries mod p.

The input to a Cayley graph is a pair (G,S) where G is a group and S
is a symmetric generating set for G. The Cayley graph G(Γ, S) is the graph
whose vertices are elements of G, and whose edges join g to gh for each h ∈ S.
This is a regular graph of degree d = |S|.

An action of a group Γ on a set Σ is a homomorphism from Γ into the
group of permutations of Σ. In particular, there are two actions of Γ on the
set of vertices of the Cayley graph G = G(Γ, S): the left action and the right
action. They come from left and right multiplication respectively. Given
h ∈ Γ, we have

Lh(g) = hg, Rh(g) = gh−1. (4)

Note Lh(gs) = hgs = Lh(g)s. This means that Lh maps edges of G to edges
G. The left action is a graph automorphism.

Notwithstanding this nice structure, we only care about the right action.
First, the reason for the inverse in formula for the right action is that

Rh1h2(g) = g(h1h2)−1 = gh−1
2 h−1

1 = Rh1 ◦Rh2(g).

The right action is not a graph automorphism, but it is nicer in some ways.
It can be described as “follow the arrows”. The edges of G are labeled by
the generators. If h is a generator of Γ then Rh tells each vertex to move
along the directed edge labeled by h. In general, if h is some word in the
generators, then h defines a directed walk on the graph, and Rh tells each
vertex to perform that directed walk. The significance of this is as follows:
If we have some set Σ, then each generator of the group maps vertices of G
near ∂Σ to vertices of G near ∂Σ. Here ∂Σ is the set of edges having exactly
one endpoint in Σ.

7



2.6 The Right Regular Representation

Let Un denote the group of unitary transformations of Cn. Let Γ be a group.
A homomorphism ρ : Γ → Un is called a unitary representation. Here we
give the main example of interest.

When Γ is a finite group, we identify Cn with the vector space of complex
valued functions on the vertices of G = G(Γ, S) which sum to 0. Given any
h ∈ Γ we define ρh : Cn → Cn as follows:

ρhf = f ◦Rh. (5)

Tha value of ρhf on v equals the value of f on Rh(v). This gives us a
homomorphism ρ : G→ Un.

To see that ρ(G) ⊂ Un, we need to see that ρh is a unitary transformation.
This is true just because Rh is just permuting the vertices of Gp. Hence

〈ρh(f), ρh(g)〉 =
∑

v∈V (G)

f(vh−1)g(vh−1) =
∑

w∈V (G)

f(w)g(w) = 〈f, g〉.

The representation ρ : G → Un just constructed is called the right regular
representation.

Starting with a unitary representation of a finite group Γ, as above, we can
sometimes get unitary representations a larger (and possibly infinite) group

Γ̂ as follows: If we have a homomorphism π : Γ̂ → Γ, then the composition
ρ◦π is a unitary representation of Γ̂. We will produce unitary representations
of SL3(Z) this way, composing the map πp : SL3(Z)→ SL3(Z/p) with the
right regular representation of SL3(Z/p).

2.7 Kazhdan’s Property T

Let ρ : SL3(Z) → Un be a unitary representation. We say that ρ is ε-small
if there is some unit vector Θ such that ‖g(Θ)−Θ‖ < ε for each elementary
matrix g. We are talking here about 12 conditions, one per elementary
matrix. Relatedly, we say that ρ has a fixed unit vector if there is some unit
vector which is fixed by ρ(g) for all g ∈ SL3(Z). We will prove the following
result:

Theorem 2.9 There is some constant ε0 > 0, independent of ρ and n, with
the following property. If ρ is ε0-small then ρ has a fixed unit vector.
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Remark: Theorem 2.9 is a special case of what is known as Kazhdan’s Prop-
erty T for SL3(Z). The statement is the same, but Cn is allowed to be an
arbitrary Hilbert space. In this case, the standard Hermitian form on Cn is
replaced by a related gadget on the Hilbert space. The proof in the general
case is almost the same, except for one step which requires functional anal-
ysis in place of linear algebra. See the remark at the end of §4.4.

One step in the proof of Theorem 2.9 is difficult, the bounded generation
property for SL3(Z). Now we describe an easier result which bypasses this
difficulty. Let Γp denote the kernel of the map

πp : SL3(Z)→ SL3(Z/p).

The group Γp is the subgroup of matrices in SL3(Z) congruent to the identity
mod p.

Theorem 2.10 There is some constant ε0 > 0, independent of ρ and n and
p, with the following property. If ρ is the identity on Γp for some p, and ρ is
ε0-small, then ρ has a fixed unit vector.

Theore 2.10 is a special case of Theorem 2.9, and it is all that we need
for the expander result.
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3 Expander Families

3.1 Basic Definitions

There are 2 definitions of an expander family. We give them in turn.

Eigenvalue Definition: Given the graph G, we let ρ(G) equal the low-
est positive eigenvalue associated to the graph Laplacian L of G. Let |G|
denote the number of vertices of G. Let d(G) denote the max degree of G.
An expander family is an infinite sequence G1, G2, ... of graphs satisfying the
following properties:

1. |Gn| → ∞ with n.

2. There is some D such that d(Gn) < D for all n.

3. There is some ε > 0 such that ρ(Gn) > ε for all n.

The expander family is d-regular if all the graphs are d-regular for the same
d. That is, all the vertices have the same degree.

Cheeger Constant Definition: Let V (G) denote the set of vertices of
a graph G. Given Σ ⊂ V (G), let ∂Σ denote the set of edges connecting
vertices in Σ to vertices not in Σ. The Cheeger constant h(G) is defined as
follows:

h(G) = min
Σ⊂V (G)

|∂Σ|
|Σ|

. (6)

The minimum is taken over all subsets having at most half the vertices of G.
(Without this restriction the definition is useless.) The Cheeger constant is
small when there is a “bottleneck”, a subset Σ that is relatively large but only
having a small number of edges pointing out of it. We say that a Cheeger ex-
pander family is a sequence of graphs {Gn} having the first two properties of
an eigenvalue expander family and also having the property that h(Gn) > h0

for some h0 > 0 and all n.

For our examples, the Cheeger constant definition turns out to be much
easier to verify. However, the two definitions are equivalent. One goal of this
chapter is to prove

Theorem 3.1 A family {Gn} of graphs is a Cheeger expander family if and
only if it is an eigenvalue expander family.
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3.2 The Main Examples

Recall that SL3(Z/p) is generated by the set S of 12 elementary matrices
mod p. Let

Gp = G(SL3(Z/p), S) (7)

be the associated Cayley graph. This is a 12-regular graph for any prime p.
The number of vertices is p3(p3− 1)(p2− 1). We omit the proof because this
fact is not used anywhere in our main argument.

Theorem 3.2 (Main) The family {Gp} is an expander family.

Proof: We show that {Gp} is a Cheeger expander family. Let Σp ⊂ V (Gp)
be a vertex set which realizes the Cheeger constant hp of Gp. Let fp ∈ Rn

0

be the unit vector which is positive constant on Σ and negative constant on
its complement. Here n = |V (Gp)|. Consider the representation ρ̂ = ρ ◦ π,
where

πp : SL3(Z)→ SL3(Z/p), ρp : SL3(Z/p)→ Cn

are respectively the reduction map and the right regular representation.
Let g ∈ S be an elementary matrix, Let Tg = ρ̂p(g). The right action of

Rg moves a vertex in or out of Σ only if this vertex is incident to an edge
of ∂Σ. There are at most 2|∂Σ| such incident vertices. Hence Tp(fp) = fp
except on at most 2|∂Σ| vertices. When Tp(fp) and fp disagree, the absolute
value |Tp(fp)− fp| is at most twice the value of fp on Σ. Hence

‖Tg(fp)− fp‖ ≤
√

8hp‖fp‖Σ <
√

8hp. (8)

Here ‖fp‖Σ < 1 is the norm of the function which equals fp on Σ and is 0
elsewhere. If {Gp} is not a Cheeger expander family, we can choose p so that
the expression in Equation 8 is smaller than ε0 for all elementary matrices
g. Here ε0 is the constant from Theorem 2.10. But then ρ̂p has a fixed unit
vector by Theorem 2.10.

A fixed unit vector for ρ̂p corresponds to a constant function on V (Gp).
But the sum of the values of this function is 0 and hence the constant would
be 0. This is impossible for a unit vector, contradiction. ♠

Remark: Essentially the same proof works for the family SLn(Z/p) for any
n > 3. The family SL2(Z/p) turns out to be an expander family of 4-regular
graphs, the most beautiful one of all. However, the proof is much harder.
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3.3 The Rayleigh Quotient

The rest of this chapter is devoted to proving Theorem 3.1. If you are satisfied
with the statement that our examples form a Cheeger constant expander
family, you need not read the rest of the chapter.

In this section we introduce a useful technical tool called the Rayleigh
quotient. One could view this object as the bridge between the Cheeger
constant and the lowest positive eigenvalue of the Laplacian.

Let L be the graph Laplacian, as above. Define for the Rayleigh quotient
for any function f : V (G)→ R:

ρ(f) =
|〈Lf, f〉|
〈f, f〉

. (9)

We define the Rayleigh Quotient of G as

ρ(L) = inf
f∈Rn

0−{0}
ρ(f). (10)

This inf is taken over all nonzero real vectors whose coordinates sum to 0.

Lemma 3.3 ρ(L) equals the lowest positive eigenvalue of L.

Proof: We can normalize so that ‖f‖ = 1. Let ξ1, ..., ξn−1 be an orthonormal
basis of real eigenvectors of Cn

0 . We have f =
∑
aiξi for some real constants

a = (a1, ..., an−1) ∈ Rn−1. We compute

F (a) := |〈Lf, f〉| =
∑

a2
iλi.

We are trying to minimize F subject to the constraint G(a) =
∑
a2
i = 1.

Using Lagrange multipliers, we see that ∇F and ∇G are parallel at a min.
This forces all the terms in a to be 0 except for the ones corresponding to a
single eigenvalue. The min occurs when the special eigenvalue is the lowest
one. ♠

Referring to the eigenvalue expander condition, we can summarize the
previous lemma by saying that ρ(G) = ρ(L).
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3.4 Proof of the Equivalence

In this section we prove Theorem 3.1. We start with the easy direction.

Lemma 3.4 If {Gn} is an eigenvalue expander family then {Gn} is a Cheeger
expander family.

Proof: Suppose that this is false. Suppose G is one of our graphs, and
we have h(G) = ε for some small ε. Let Σ be a corresponding set which
realizes this bound. Let Σ′ = V (G) − Σ. We have |Σ| ≤ |Σ′|. We define
f : V (G)→ R so that f ≡ |Σ′| on Σ and f ≡ −|Σ| on Σ′. These properties
imply that f ∈ V 0. Note that 〈f, f〉 ≥ |Σ||Σ′|2. Also, L(f) is 0 except on
vertices incident to edges of ∂E. The value of L(f) on these vertices is at
most 2d|Σ′|, where d is the max degree. But then

|〈Lf, f〉| ≤ 4d2|Σ′|2|∂Σ|,

because we only get nonzero contributions to the sum for the vertices incident
to ∂S. Combining these estimates we have

ρ(G) ≤ 4d2|Σ′|2||∂Σ|
|Σ||Σ′|2

=
4d2|∂Σ|
|Σ|

= 4d2h(G) = 4d2ε.

This makes ρ(G) small as well, a contradiction. ♠

Now we prove the converse of Lemma 3.4. This is the hard direction.
The proof below is taken from Fan Chung’s paper, though I change the
notation somewhat and add explanatory detail. Also, our definition of the
Cheeger constant differs by a factor of d from the one in Chung’s paper,
and this accounts for a difference in the final inequality, Equation 11. These
constants are not important for the overall result.

We will prove through a series of lemmas that

lowest positive eigenvalue = ρ(G) ≥ h(G)2

2d
. (11)

This is known as one of the Cheeger inequalities – the “hard one”. Theorem
3.1 follows immediately from Lemma 3.4 and from this inequality. For ease
of exposition will assume that G has an even number of vertices (as it does
in the main examples). The odd case requires only a minor tweak.
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We have ρ(G) = ρ(g), where g is an eigenvector corresponding to the
lowest positive eigenvalue of L. Perturbing g by a value that is as small as
we like, we can arrange that g never takes the same value twice. We retain
the inequality ρ(G) > ρ(g) − ε and we can make ε arbitrarily small. Let m
be a value such that g > m on half the vertices and g < m on the other half.
Let γ = g −m.

Lemma 3.5 ρ(g) ≥ ρ(γ).

Proof: Note that L(γ) = L(g) and 〈g,m〉 = 0 because g ∈ R2N
0 . From this

we see that

〈L(γ), γ〉 = 〈L(g), g〉, 〈γ, γ〉 = 〈g, g〉+m2.

Our inequality follows immediately from the preceding equation. ♠

For the rest of the proof, it is convenient to work with a non-negative
function. We define a new function γ+ so that γ = γ+ whenever γ > 0 and
otherwise γ+ = 0. We define γ− so that γ = γ+ − γ−. Replacing γ by −γ if
needed we can arrange that ρ(γ+) ≤ ρ(γ−).

Lemma 3.6 ρ(γ) ≥ ρ(γ+).

Proof: We compute

ρ(γ) =
〈L(γ+)− L(γ−), γ+ − γ−〉
〈γ+ − γ−, γ+ − γ−〉

=
〈L(γ+), γ+〉+ 〈L(γ−), γ−〉
〈γ+, γ+〉+ 〈γ−, γ−〉

+X,

X = −〈L(γ+), γ−〉+ 〈L(γ−), γ+〉
〈γ+, γ+〉+ 〈γ−, γ−〉

.

The term X is positive because L(γ±) is negative whenever γ∓ is positive.
From this calculation, we have

ρ(γ) ≥ 〈L(γ+), γ+〉+ 〈L(γ−), γ−〉
〈γ+, γ+〉+ 〈γ−, γ−〉

≥ min ρ(γ+), ρ(γ−) = ρ(γ+).

The last inequality comes from the fact that the Farey sum (a+ c)/(b+d) of
two positive rationals a/b and c/d is at least as large as the min of the two
rationals. ♠

At this point we set f = γ+. To finish the proof, it suffices to show that√
ρ(f) ≥ h(G)/

√
2d. This is what we will do.
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Lemma 3.7 We have√
ρ(f) ≥

∑
u∼v |f 2(u)− f 2(v)|√

2dA
. (12)

Proof: Define

A =
∑
v

f 2(v), B =
∑
u∼v

f(u)f(v). (13)

The first sum is the sum over all vertices and the second sum is the sum over
all the edges. We have

〈f, f〉 = A, 〈L(f), f〉 =
∑
v

∑
u∼v

f(v)(f(v)− f(u)) = dA− 2B ≥ 0.

To explain the last inequality we observe that

dA± 2B =
∑
u∼v

(f(u)± f(v))2 = ‖V±‖2 ≥ 0. (14)

Here V± is the vector obtained by stringing out the terms f(u) ± f(v) for
each edge u ∼ v.

Note that

A(dA+ 2B) = A×
(

2dA− (dA− 2B)
)
≤ 2dA2.

Combining these equations, and using dA− 2B ≥ 0, we have

ρ(f) =
dA− 2B

A
=

(dA− 2B)(dA+ 2B)

A(dA+ 2B)
≥ (dA− 2B)(dA+ 2B)

2dA2
. (15)

Now we go back to Equation 14. Since we are only summing over each
edge once in Equation 14, we can always order so that f(u) ≥ f(v). This
makes V± a non-negative vector. By the Cauchy-Schwarz inequality,

(dA− 2B)(dA+ 2B) = ‖V+‖2‖V−‖2 ≥ (V+ · V−)2 =(∑
u∼v

(f(u)− f(v))(f(u) + f(v))
)2

=
(∑
u∼v

f 2(u)− f 2(v)
)2

. (16)

Combining Equations 15 and 16 we get Equation 12. ♠

Now we come to the interesting part of the proof. We order the vertices
of G as v1, ..., v2N in such a way that f(vi) ≥ f(vi+1) for all i. For the first
half of the vertices, the order is uniquely determined and for the second half
the order is essentially arbitrary. Let Σi denote the first i vertices of G.
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Lemma 3.8 We have

∑
u∼v

f 2(u)− f 2(v) =
N∑
i=1

(f 2(vi)− f 2(vi+1))|∂Σi|. (17)

Proof: Again, we are ordering the edges so that f(u) > f(v) for all u ∼ v.
Consider an edge vi ∼ vj. We order the vertices so that i < j. This edge
belongs to the sets ∂Σi, ..., ∂Σj−1 and at the same time

f 2(vi)− f 2(vj) = (f 2(vi)− f 2(vi+1)) + · · ·+ (f 2(vj−1)− f 2(vj)).

This works because f is decreasing with i. In case j > N , the sum termi-
nates at N because all the other terms are 0. Equation 17 then follows from
counting the same terms in two different ways. ♠

Since |Σi| = i for i = 1, ..., N , the definition of the Cheeger constant tells
us that

|∂Σi| ≥ h(G)× i, i = 1, ..., N. (18)

Combining this with Equation 17, we get

∑
u∼v

|f 2(u)− f 2(v)| ≥ h(G)
N∑
i=1

(f 2(vi)− f 2(vi+1))× i = h(G)A. (19)

The last equality comes from a telescoping sum and uses the fact that f(vi)
is decreasing with i and satisfies f(vN+1) = 0. Equations 12 and 19 together
immediately imply Equation 11. This completes the proof of Theorem 3.1.
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4 Property T

We have proved the Main Theorem modulo Theorem 2.10. In this chapter we
will prove both Theorem 2.9 and Theorem 2.10. Before we start the proof,
we mention an abuse of notation we indulge in. We have a representation
ρ : SL3(Z)→ Un. Given g ∈ SL3(Z) and V ∈ Cn we will often write g(V )
when what we really mean is ρ(g)(V ).

4.1 Bounded Generation

Now only do the elementary matrices generate SL3(Z) but something much
stronger is true.

Theorem 4.1 (Bounded Generation) Every element M ∈ SL3(Z) can
be written like this:

M = gn1
1 ...gn57

57 (20)

for elementary matrices g1, ..., g57 ∈ S and integers n1, ..., n57.

Here n1, ..., n57 are allowed to be arbitrarily large, and some may be 0.
Thanks to some inefficiency on my part, the bound of 57 is a bit worse
than the bound of 48 from the proof in the book by Bekka, de la Harpe,
and Valette. Any finite bound suffices for the proof of Theorem 2.9. The
bounded generation property is false for SL2(Z).

Now we describe a much weaker property that is sufficient for Theorem
2.10. This property also works for SL2(Z), though SL2(Z) does not have
Property T. Recall that Γp is the kernel of the map SL3(Z)→ SL3(Z/p).

Lemma 4.2 (Weak Bounded Generation) For any prime p the follow-
ing is true. Every element M ∈ SL3(Z) can be written like this:

M = Mpg
n1
1 ...gn9

9 , (21)

where Mp ∈ Γp and g1, ..., g9 ∈ S and n1, ..., n9 ∈ Z.

Proof: Given that the map SL3(Z) → SL3(Z/p) is a homomorphism, it
suffices to show that every element of SL3(Z/p) can be written as the prod-
uct of 9 powers of elementary matrices. Multiplying on the left or the right
by a power of an elementary matrix performs an operation whereby one adds
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a multiple of one row/column to another row/column. So we just have to
show that we can reduce M ∈ SL3(Z) to the identity matrix using at most
9 operations. This is just Gaussian elimination; it works because Z/p is a
field! After at most 3 column operations and then at most 2 row operations
we arrange that the bottom row of M is (0, 0, 1) and the right column of M
is (0, 0, 1)t. After at most 2 more column operations and at most 1 more row
operation we arrange that the middle row of M is (0, 1, 0) and the middle
column is (0, 1, 0)t. Since the determinant is 1, the top left entry is 1. ♠

4.2 The Reduction Argument

In this section we deduce Theorems 2.9 and 2.10 from the relevant bounded
generation property and from Theorem 4.3 below. Let A±, B±, C±, D± re-
spectively be the elementary matrices 1 0 ±1

0 1 0
0 0 1

  1 0 0
0 1 ±1
0 0 1

  1 ±1 0
0 1 0
0 0 1

  1 0 0
±1 1 0
0 0 1

 .
These matrices generate a group Γ which is written as SL2(Z)nZ2. The

matrices A± and B± generate a copy of Z2 and the matrices C± and D±
generate a copy of SL2(Z). The group Z2 is normal in Γ. By construction
A± and B± are contained in the normal subgroup, namely Z2, of Γ but C±
and D± are not. We say that A± and B± are normally placed . All in all
4 elementary matrices are normally placed in a copy of SL2(Z) o Z2. The
remaining 8 elementary matrices can be normally placed, 4 at a time, inside
groups Γ′ and Γ′′ which are different copies of SL2(Z) o Z2. We state the
next result for Γ but it also works for Γ′ and Γ′′.

Theorem 4.3 There is some ε1 > 0 with the following property: Suppose we
have a unitary representation ρ : Γ→ Un and a unit vector Ψ ∈ Cn such that
each elementary matrix in Γ moves Ψ less than ε1. Then some unit vector
in Cn is fixed by every element of Z2.

Remark: Shalom proves this result for any unitary representation w.r.t. an
arbitrary Hilbert space, and he establishes that one can take ε1 = 1/10.

Let ρ : SL3(Z)→ Un, be as in Theorem 2.9. We can restrict ρ to Γ.
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Lemma 4.4 Let ε2 ∈ (0, 1). Suppose V ∈ Cn is a unit vector such that
‖g(V ) − V ‖ < ε1ε2/2 for each generator g of Γ. Then ‖h(V ) − V ‖ ≤ ε2 for
all h ∈ Z2.

Proof: Write Cn = Cn
1 ⊕Cn

2 , where Cn
1 is the set of Z2 invariant vectors

and Cn
2 is the orthogonal complement. The splitting is ρ-invariant because

Z2 is normal in Γ. This means that Γ also acts by unitary transformations
on Cn

2 . Write V = V1 + V2 where Vj ∈ Cn
j . Given any h ∈ Z2 we have

h(V1) = V1 and 〈h(Vi), Vj〉 = 0 for i 6= j. Hence

‖h(V )− V ‖ = ‖h(V2)− V2‖ ≤ 2‖V2‖. (22)

Since there are no Z2-invariant vectors, Theorem 4.3 (and scaling) implies
that there is some g ∈ S such that ‖g(V2)− V2‖ ≥ ‖V2‖ε1. But then

ε1‖V2‖ ≤ ‖g(V2)− V2‖ ≤ ‖g(V )− V ‖ ≤ (ε2ε2)/2. (23)

This gives ‖V2‖ ≤ ε2/2. But then Equation 22 finishes the proof. ♠

Corollary 4.5 Let ε0 and Θ be as in Theorem 2.9. If ε0 < ε1ε2/2 then
‖M(Θ)−Θ‖ < 57ε2 for all M ∈ SL3(Z).

Proof: Since every elementary matrix is normally placed inside one of
Γ,Γ′,Γ′′, the previous result gives ‖gn(Θ) − Θ‖ < ε2 for every elementary
g and every n ∈ Z. By Lemma 2.3, every product of 57 powers of elemen-
tary matrices moves Θ at most 57ε2. ♠

Proof of Theorem 2.9: We choose ε2 < 1/57 and then set ε0 = ε1ε2/2.
The SL3(Z)-invariant set

Q =
⋃

M∈SL3(Z)

M(Θ)

is less than 1 unit from the unit vector Θ and hence has a nonzero center
of mass W ′. Since Q is SL3(Z)-invariant, its center of mass W ′ is fixed by
every element of SL3(Z). But then so is the unit vector W = W ′/‖W ′‖. ♠

Proof of Theorem 2.10: Corollary 4.5, with 9 in place of 57, works for a
representation of the form in Theorem 2.10 because the element Mp in the
Weak Bounded Generation Lemma fixes every vector, including Θ. The rest
of the proof is the same. ♠
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4.3 A Measure Theoretic Result

Now we turn to the proof of Theorem 4.3. The lemma in this section (suitably
generalized) appears in Shalom’s paper, and he attributes it to Marc Burger.

Let A be a finite list of points in R2 − {0}, such that each point is given
a positive weight. We assume that the sum of all the weights is 1. For each
subset X ⊂ R2−{0} we define m(X) to be the number of points of A in X,
counted with their weights. If {Xi} is a finite collection of disjoint subsets
of R2 − {0} then m(

⋃
Xi) =

∑
m(Xi).

Lemma 4.6 Let S denote the collection of 4 elementary 2 × 2 matrices.
There is X ⊂ R2 − {0} and g ∈ S with |m(gX)−m(X)| ≥ 1/4.

Proof: The statement and conclusion of the lemma are invariant with re-
spect to rotation by 90 degrees about the origin. So, without loss of generality
we may assume that m(X) ≥ 1/2, where X is the set of points (x, y) with
y/x ∈ [0,∞). (This is the union of the (++) and (−−) quadrants with the
Y -axis removed.) Let X = X0 ∪ X1 where X0 is the union of points (x, y)
where y/x ∈ [0, 1) and X1 is the complementary set. One of these sets has
at most half the mass of the other. So, we have an index i ∈ {0, 1} such that
m(X)−m(Xi) ≥ 1/4. But we can find some g ∈ S such that gX ⊂ Xi. ♠

4.4 A Special Measure

Let ρ : Z2 → Un be unitary. Let A = ρ(1, 0) and B = ρ(0, 1). Let {ξ} be an
orthonormal basis of simultaneous eigenvectors for A and B, as guaranteed
by Lemma 2.2.

We think of the torus T as pairs of unit complex numbers. Given a unit
vector V ∈ Cn, we write V =

∑n
i=1 aiξi. We then introduce the weighted sum

of points in T according to the following rule: The point (λ, µ) is weighted
by the squared-norm of the component of V in the joint (λ, µ) eigenspace.
That is, this point gets weight

|ai1|2 + ...+ |aik |2,

where ξi1 , ..., ξik are the eigenvectors having A-eigenvalue λ and B-eigenvalue
µ. Let νV be the corresponding measure.

20



We say that νV is ε-concentrated if νV (D) > 1− ε, where D is the disk of
radius ε about (1, 1). Now we set V = Ψ, the vector that is almost fixed by
the generators in the statement of Theorem 4.3.

Lemma 4.7 For any ε2 > 0, the measure νΨ is ε2-concentrated if ε1 is small
enough.

Proof: The basis coefficients for Ψ and A(Ψ) respectively are {ai} and
{λiai}. We compute

‖A(Ψ)−Ψ‖2 = 〈A(Ψ), A(Ψ)〉+ 〈Ψ,Ψ〉 − 〈A(Ψ),Ψ〉 − 〈A,A(Ψ)〉 =

1 + 1−
n∑
i=1

|ai|2λi −
n∑
i=1

|ai|2λi = 2−
n∑
i=1

2|ai|2Re(λi).

A similar calculation works for B. Hence

n∑
i=1

|ai|2Re(λi) > 1− ε21/2,
n∑
i=1

|ai|2Re(νi) > 1− ε21/2. (24)

The only unit complex numbers having real part near 1 are near 1. Hence,
Equation 24 establishes our result. ♠

Remark: The proof of Property T for SL3(Z) in the infinite dimensional
case is almost the same as in the finite dimensional case except that the
measure νp comes from what is called a projection valued measure associated
to ρ. This is basically constructed out of the spectral theorem for unitary
operators on Hilbert space. This is a much more advanced approach.

4.5 The Group Action

So far we have been working entirely Z2, but now we remember that ρ is
actually a unitary representation of the larger group Γ = SL2(Z) n Z2.
Consider the generator C = C+ of Γ. We have

CAC−1 = A, CBC−1 = AB. (25)

Recall that we have our orthonormal basis of eigenvectors ξ1, ..., ξn. For ease
of exposition we consider the case when all eigenvalues are distinct. The
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general case can be treated either as a limiting case, or else by the trick or
just listing out an eigenvalue k times if it appears with multiplicity k.

Note that C(ξk) is an eigenvector for CAC−1 = A and CBC−1 = AB.
The corresponding eigenvectors are λk and λkµk. But that means that we
can write

C(Ψ) =
n∑
i=1

aiC(ξi) =
n∑
i=1

a′iξi. (26)

So, νC(Ψ) has two descriptions:

1. It gives weight a2
k to the point (λk, λ

−1
k µk).

2. It gives weight (a′k)
2 to the point (λk, µk).

Item 1 needs some explanation. As we have already mentioned, C(ξk) is
an eigenvector for the transformation A = CAC−1 with eigenvalue λk and
an eigenvector for the transformation AB = CBC−1 with eigenvalue λkµk.
Therefore C(ζk) is an eigenvector for B with eigenvalue λ−1

k µk.
Item 2 just says that νC(Ψ) is supported on exactly the same points as

is νΨ. The important point is that νΨ and νC(Ψ) are supported on the same
set of points. All that changes are the weights given to these points. Item
1 gives one description of how the weights are assigned and Item 2 gives a
second description.

4.6 Changing Coordinates

Now we are ready to change coordinates and interpret Items 1 and 2 above
in terms of the flat square torus.

We identify the torus T with the unit square [−1/2, 1/2]2 with its sides
glued together. The correspondence is

(x, y) ∼ (exp(2πix), exp(2πiy)). (27)

We define C∗(x, y) = (x, x+ y). We have

(x, y) ∼ (λk, µk) =⇒ C∗(x, y) ∼ (λk, λ
−1
k µk).

Item 1 then gives us the following: If X = {(λ, µ)} is one of the points in
our weighted collection, then

νC(Ψ)(X) = νΨ(C∗(X)). (28)
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When X is some other point not in our weighted collection, both sides of
Equation 28 are zero. Since Equation 28 holds for every point, it holds for
all X ⊂ T . The same argument applies to the other generators of SL2(Z),
giving:

νC±(Ψ)(X) = νΨ(C∗±(X)), νD±(Ψ)(X) = νΨ(D∗±(X)), (29)

provided that these maps are appropriately defined. More precisely:

• C∗+(x, y) = (x, x+ y).

• C∗−(x, y) = (x,−x+ y).

• D∗+(x, y) = (x+ y, y).

• D∗−(x, y) = (x− y, y).

Lemma 4.8 For any ε2 > 0 and any g ∈ {C±, D±}, we can arrange that
|νΨ(X)− νgΨ(X)| < ε2 for all X ⊂ T , provided that ε1 is sufficiently small.

Proof: Let Ψ and Ψ′ respectively denote the list of {ai} and {a′i} corre-
sponding to points in X. What we are saying is that we can choose ε1 small
enough to guarantee that ‖Ψ‖2 and ‖Ψ′‖2 are within ε2 of each other. We
treat the case when ‖Ψ‖ ≥ ‖Ψ′‖. The other case has a similar treatment.
So, we want to show that ‖Ψ′‖ > ‖Ψ‖ − ε2. We note that

‖Ψ−Ψ′‖2 ≤
∑
|ai − a′i|2 = ‖Ψ− C(Ψ)‖2 < ε21.

Hence ‖Ψ−Ψ′‖ < ε1. By the triangle inequality ‖Ψ′‖ > ‖Ψ‖ − ε1. Hence

‖Ψ′‖2 > ‖Ψ‖2 − 2ε1‖Ψ‖ − ε21 > ‖Ψ‖2 − 2ε1 − ε21.

This gives us what we want as soon as 2ε1 + ε21 < ε2. ♠

Proof of Theorem 4.3: Combining Equation 29 with Lemma 4.8, we can
pick our favorite ε2 > 0 and then choose ε1 small enough so that

|νΨ(X)− νΨ(g∗(X))| < ε2, (30)

for each generator g ∈ {C±, D±} and all X ⊂ T . Again, these are the maps
from Lemma 4.6. When ε2 < 1/4 this looks a lot like a contradiction to
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Lemma 4.6, but we are not quite there yet: The domain for νΨ is T and the
domain for the measure m in Lemma 4.6 is R2 − {0}. We now fix this.

Most of the mass of νΨ is concentrated very near the origin, and moreover
C± and D± both map the open square (−1/4, 1/4)2 into (−1/2, 1/2)2, a set
which injectively sits inside T . So, we slightly modify νΨ by omitting the
points outside the square (−1/4, 1/4)2 and rescaling so that the new measure
has total mass 1. Let m be the modified measure. We re-interpret m as being
a measure on R2. The no-fixed-vector assumption says that actually m is a
measure on R2 − {0} with total mass 1.

We are only dropping off a small amount of mass, so we can still arrange

|m(X)−m(g∗(X))| < 1/4, (31)

for all X ⊂ R2 − {0} and all g ∈ {C±, D±}. Now we have a direct contra-
diction to Lemma 4.6. This contradiction finishes the proof. ♠
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5 The Bounded Generation Property

The proof of the Main Theorem is done, and also the proof of Theorem
2.10 is done. So, the rest of these notes are only relevant for the reader
who is interested in Theorem 2.9 and/or the bounded generation property of
SL3(Z). As I mentioned above, this proof is taken directly from pp 197-206
of the book by Bekka, de la Harpe, and Valette, though I organize things
a bit differently and use streamlined notation. Perhaps all this will make
things easier for the reader.

5.1 Background

The proof uses three results from number theory.

• Fermat’s Little Theorem: If p is prime and does not divide a, then
ap−1 ≡ 1 mod p. Proof : The multiplicative group (Z/p)∗ has order
p− 1 and the order of the subgroup 〈a〉 divides the order of the group.

• The Chinese Remainder Theorem: If n1, n2 are relatively prime
integers and a1, a2 are any integers, then there is some A having the
property that A ≡ ai mod ni for i = 1, 2. Proof : The map

φ : Z/(n1n2)→ Z/n1 ⊕ Z/n2

is injective because if ni divides some m ∈ Z/A for i = 1, 2 then
n1n2 divides m as well. Hence, by the pidgeonhole principle, φ is also
surjective.

• Dirichlet’s Theorem: If a is relatively prime to n then there is some
prime p such that p ≡ a mod n. (In fact, there are infinitely many.)
There is no elementary way to say why this is true, but I will give more
or less the full proof in the next chapter.

The proof also uses the following linear algebra result.

Lemma 5.1 Let A ∈ SL2(Z) and let s be any positive integer. There are
integers f and g such that As = fI + gA.

Proof: The general case follows from induction and the case s = 2. The
case s = 2 follows from the Cayley-Hamilton Theorem, but one can also see
this directly by calculating that A2 = −I + trace(A)A. The trace is the sum
of the diagonal entries. ♠
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5.2 Proof Outline

Multiplying a 3 × 3 matrix M by a power of an elementary matrix on one
side or the other adds an integer multiple of a row/column to some other
row/column, and all such operations arise this way. We write M →k N if
there is a sequence of at most k operations which converts M to N , and
we shorten →1 to →. Note the symmetry: M →k N then M t →k N

t and
M−1 →k N

−1 and N →k M . Given an arbitrary M ∈ SL3(Z) we produce
M1,M2 ∈ SL3(Z) such that M →7 M1 →2 M2 →48 I. Hence M →57 I.

Step 1: We have

M →7 M1 =

 a b 0
c d 0
0 0 1

 , ad− bc = 1.

Replacing M1 by one of M t
1, M−1

1 , M̃1 if needed, we arrange b ≡ 3 mod 4.

Here we have set M̃1 = (M t
1)−1.

Step 2: There are primes p and q such that P = (p−1)/2 and Q = (q−1)/2
are relatively prime integers, and

M1 →2 M2 =

u p 0
q v 0
0 0 1

 ,
for some u, v ∈ Z. This step uses Dirichlet’s theorem. Note that there are
integers k and ` such that kP + `Q = 1. Hence M2 = MkP

2 M `Q
2 .

Step 3: M3 →4 I and M4 →4 I, where

M3 =

ukP p 0
∗ ∗ 0
0 0 1

 , M4 =

 v`Q −q 0
∗ ∗ 0
0 0 1


for appropriately chosen starred entries. This uses Fermat’s little theorem.

Step 4: For any starred entries we have

MkP
2 →20 M3, M̃ `Q

2 →20 M4.

Combining Steps 3 and 4, and symmetry, MkP
2 →24 I and M `Q

2 →24 I. Since
M2 = MkP

2 M `Q
2 we have M2 →48 I.
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5.3 Step 1

Write

M0 =

 ∗ ∗ x′

∗ ∗ y′

x y z

 ,
If x = y = x′ = y′ = 0 then z = ±1. If z = 1 the M0 = M1. If z = −1 then
M0 →2 M1. Otherwise, replacing M0 with M t

0 if needed we can assume that
not both x, y are 0.

We claim that there is some t such that one of one of the two pairs
(x, y + tz) or (x + tz, y) are relatively prime. Assuming this claim, one
operation reduces to the case when x, y are relatively prime. Then there are
integers u, v such that ux+ vy = 1. We add (1− z)u times the first column
and (1−z)v times the second column to the third column. This gives us z = 1
after 2 operations. But now 4 more operations make x′ = y′ = x = y = 0.
Hence M0 →7 I.

Now we prove our claim. If x = 0 then y, z are we take t = 0. A
similar argument works if y = 0. So, assume that both x, y are nonzero. Let
δ = GCD(x, y). If δ = 1 we are done. Otherwise, write y = δy′. By the
C.R.T. we can choose t so that we have t ≡ 1 mod δ and t ≡ 0 mod y′. By
construction x + tz ≡ 1 mod δ and hence is relatively prime to δ. Likewise
x + tz is relatively prime to y′ because x is relatively prime to y′. Hence
x+ tz is relatively prime to y.

5.4 Step 2

Let a, b, c, d be as in the matrix M1 above. Note that (b, d) are relatively
prime. Since b is odd, (b, 4d) are also relatively prime. By Dirichlet’s Theo-
rem there is some prime p such that p = b+ 4µd for some integer µ. Adding
4dµ times the middle row of M to the top row, we get

M1 →M ′
1 =

u p 0
c d 0
0 0 1

 , ud− pc = 1, p ≡ 3 mod 4.

Note that u 6= 0 because otherwise p would divide det(M ′
1). To get M ′

1 →M2

we just need a pair (η, q) where q = ηu + c is prime and P,Q are relatively
prime. Here P = (p− 1)/2 and Q = (q − 1)/2.
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Let δ = GCD(u, p − 1) and write p − 1 = δp′. By the C.R.T. we can
choose t such that t ≡ c mod u and t ≡ −1 mod p′.

Lemma 5.2 The number t is relatively prime to u(p− 1), and t− 1 is rela-
tively prime to P .

Proof: Since u and c are relatively prime and t ≡ c mod u, we see that t
and u are relatively prime. By construction t and p′ are relatively prime. We
just need to show that t and δ are relatively prime. We have

1 ≡ det(M ′
1) ≡ −pc ≡ (1− p)c− c ≡ −c ≡ −t mod δ.

The last congruence comes from the fact that δ divides u and u divides c− t.
Our calculation shows that t ≡ −1 mod δ. Hence t and δ are relatively prime.
This proves that t is relatively prime to u(p− 1).

Our argument shows that t ≡ −1 mod r for all primes r dividing p − 1.
This means that t − 1 ≡ −2 mod r for all primes r dividing p − 1. Hence,
t − 1 is not divisible by any prime dividing p − 1 except perhaps 2. Since
p ≡ 3 mod 4, the expression P = (p − 1)/2 is an odd integer which, from
what we have just seen, must be relatively prime to t− 1. ♠

By Dirichlet’s Theorem, there is a positive prime q such that

q ≡ t mod u(p− 1).

Since q − 1 and t − 1 are congruent mod P , we see that P and 2Q are
relatively prime. Hence P and Q are relatively prime. We have t = mu + c
for some integer m and q = m′u(p− 1) + t for some other integer m′. Setting
η = m+m′u(p− 1), we see that q = ηu+ c.

5.5 Step 3

The proofs for M3 and M4 are the same, so we treat M3. Note that u is not
divisible by p because det(M2) = 1. By Fermat’s theorem u2P ≡ 1 mod p.
Therefore, we have uP ≡ ±1 mod p. We treat the two cases at the same time
by a careful use of notation. There is some α such that uP ∓ αp = ±1. We
make the undetermined entries of M3 equal to α and ±1 and note that

M3 =

ukP p 0
α ±1 0
0 0 1

→
±1 0 0
α ±1 0
0 0 1

→k I, k = 2∓ 1.

We have underlined the (active) row involved in the operation.
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5.6 Step 4

Given any 2× 2 matrix A, let Â denote the 3× 3 matrix

Â =

[
A 0
0 1

]
.

Here 0 stands for a row or column of 2 zeros. The following more general
result implies Step 4: Given any s ∈N and any x, y ∈ Z so that asy−bx = 1
we have

Âs →20 B̂, A =

[
a b
c d

]
, B =

[
as b
x y

]
. (32)

As a warmup, let’s consider the case s = 1 first. Since ad−bc = ay−bx = 1
we have a(d− y) = b(c− x). Since a and b relatively prime, this is only pos-

sible if x = c+ ak for y = d+ bk for some k. Hence Â→ B̂. Now we outline
the general case.

Proof Outline: Let f, g be such that As = fI + gA, as in Lemma 5.1.
We introduce the matrices

C =

 f + ag bg 0
∗ ∗ 1
1 ∗ ∗

 , J =

 ∗ 0 ∗
0 g f
1 ∗ ∗

 S =

 1 0 −b
0 g f + ga
1 ∗ ∗

 .
(33)

The starred entries are unspecified but they must be such that the matrix
lies in SL3(Z). When we fill in the starred entries of C in some way we call
it an C-filling . Likewise for J and S. We establish the following results:

1. For any C-filling we have Âs →6 C.

2. If some S-filling gives S →k I, then C →k+1 B̂ for some C-filling.

3. For any J-filling, we have some S-filling so that S →5 J .

4. For some J-filling we have J →8 I.

Combining Statements 3 and 4, we see that S →13 I for some S-filling. By
Statement 2, there is some C-filling so that C →14 Â. By Statement 1,
Âs →6 C →14 B̂. ♠
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Proof of Statement 1: For any C-filling, we have

C =

 f + ag bg 0
∗ ∗ 1
1 ∗ ∗

→
 f + ag bg 0
∗ ∗ 1
1 ∗ 1

→
 f + ag bg 0
∗ ∗ 0
1 ∗ 1

→2

 f + ag bg 0
∗ ∗ 0
0 0 1

→1

 f + ag bg 0
cg f + dg 0
0 0 1

 = fI + gA = Âs.

The last arrow is the case s = 1 of the result, which we already established. ♠

Proof of Statement 2: Since As mod b is lower triangular, (As)11 ≡ as

mod b. At the same time (As)11 = fa+ g. Hence B11 = fa+ g− bu for some
u. Hence

B̂ =

 fa+ g − bu b 0
x y 0
0 0 1

→
 fa+ g b 0

x′ y 0
0 0 1

 = C ′.

Now we compute that

C ′S =

 fa+ g b 0
x′ y 0
0 0 1

 1 0 −b
0 g f + ga
1 ∗ ∗

 = C,

where C-filling depends on the S-filling. The fact that entry (C)32 = 1 comes
comes the fact that (f + ag)y − bx′ = 1, which comes det(C ′) = 1. In sum-

mary, C = C ′S →k C
′ → B̂. ♠

Proof of Statement 3:

J =

 ∗ 0 ∗
0 g f
1 ∗ ∗

→
 ∗ 0 ∗

0 g f
1 ∗ 1

→
 1 ∗ ∗

0 g f
1 ∗ 1

→
 1 0 ∗

0 g f
1 ∗ 1

→
 1 0 −b

0 g f
1 ∗ ∗

→
 1 0 −b

0 g f + ga
1 ∗ ∗

 = S.

More precisely, for any J-filling, there is some S-filling so that S →5 J . ♠
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Proof of Statement 4: Now we show that J →8 I for a suitable J-filling.
Note that g2 ≡ 1 mod f . To see this congruence, note that

1 ≡ det(fI + gA) ≡ deg(gA) ≡ g2 det(A) ≡ g2 mod f.

Since f divides g2 − 1 = (g + 1)(g − 1), there are integers f±, g± such that
f = f+f− and g ± 1 = f±g±. Let

G =

 1 0 0
0 g f−
0 g− 1

 , H =

 g+ 0 1
−f− 1 0
g 0 f+

 .
We compute that GH = J for some J-filling. Using g − f−g− = 1, we have

G =

 1 0 0
0 g f−
0 g− 1

→
 1 0 0

0 1 f−
0 0 1

→ I,

Hence G→2 I. Using g − f+g+ = −1 in the underlined arrow, we have

H =

 g+ 0 1
−f− 1 0
g 0 f+

→
 g+ 0 1

0 1 0
g 0 f+

→
 0 0 1

0 1 0
−1 0 f+

→4 I.

Hence H →6 I. Combining these two results, we have J →8 I. ♠

5.7 Discussion

What role does Dirichlet’s theorem really play in all this? We could try
skipping Step 2 and just use M1 in place of M2. The same argument gives

M
kφ(b)/2
1 →24 I, M

`φ(c)/2
1 →24 I.

for any k, ` ∈ Z. Here φ is the Euler φ function. Letting δ be the GCD
of φ(b)/2 and φ(c)/2, we get M δ

1 →48 I. If b, c are not prime, then δ will
probably be quite large, and in all cases δ will be even. So, Dirichlet’s theorem
lets us modify M1 to guarantee that δ = 1 for a “nearby” matrix.

I wonder if there is a completely different strategy for proving the bounded
generation property that does not require Dirichlet’s Theorem. To use an
analogy, one common way to solve Rubik’s cube is to go layer-by-layer, using
complicated moves to get the last layer. But then there are completely
different methods which ignore the layer structure.

31



6 Dirichlet’s Theorem

6.1 A Warmup

Let us start by giving the classic analytic proof that there are infinitely many
prime numbers. Starting from the identity

1

1− 1
p

= 1 +
1

p
+

1

p2
+

1

p3
+ · · · . (34)

one sees that every term of the form 1/k, with k = 1, 2, 3, ... appears exactly
once in the product of such expressions, taken over primes:

∞∑
k=1

1

k
=
∏
p

1

1− 1
p

. (35)

This is the prototypical Euler product . If there were only finitely many
primes, the right hand side would be finite. But the left hand side is infinite.
This contradiction shows that there are infinitely many primes.

Some readers may feel queasy dealing with divergent series. So, for any
s > 1 we note that we have an identity

ζ(s) :=
∞∑
k=1

1

ks
=
∏
p

1

1− 1
ps

. (36)

Both sides converge. Letting s→ 1, the left hand side (the Riemann ζ func-
tion) blows up. We mean that lims→1 |ζ(s)| =∞. If there were only finitely
many primes, the right hand side could not also blow up. This way of doing
things avoids dealing with divergent series.

Taking Logs: One beautiful thing about the Euler product proof is that
one can squeeze a lot more information out of it. For x ∈ [0, 1/2] we have

log
( 1

1− x

)
≤ 2x.

We mean to apply this inequality to x = 1/2, 1/3, 1/5, .... Taking logs of
both sides of Equation 35, we get

∞ =
∑
p

log
( 1

1− 1
p

)
≤ 2

∑
p

1

p
.

This shows that the sums of the reciprocals of the primes diverges, a much
stronger statement than the fact that there are infinitely many.

32



6.2 Proof Outline

We fix n, and a relatively prime to n. Let (Z/n)∗ denote the multiplicative
group of residue classes mod n that are relatively prime to n. The order of
(Z/n)∗ is φ(n), where φ is the Euler φ function.

Dirichlet Characters: A Dirichlet character is a unitary representation

χ : (Z/n)∗ → U1. (37)

Each element T ∈ U1 has the form T (V ) = λV for some unit complex λ. So,
more simply, a Dirichlet character is a homomorphism from (Z/n)∗ into S1,
the group of unit complex numbers.

The image of a Dirichlet character is always a root of unity. The principal
Dirichlet character is the character χ0 whose value is identically 1. The rest
we call non-principal . Below we establish the orthogonality relation:∑

χ∈G

χ(p)χ(a) = 0 (38)

when p, a ∈ (Z/n)∗ are unequal members. Here G is the set of all Dirichlet
characters. When p = a the sum equals φ(n).

Dirichlet L-Series: Given a Dirichlet character χ, we extend χ to N ,
the set of natural numbers, by the following rule: χ(m) = 0 if (m,n) 6= 1
and χ(m) = χ([m]) when (m,n) = 1. Here (m,n) is the GCD of m and n,
and [m] ∈ (Z/n)∗ is the residue class of m mod n. First of all, Equation
38 extends as well, and says that the sum equals 0 when p 6≡ a mod n and
otherwise equals φ(n). Second of all, we define, for s ≥ 1 real:

L(χ, s) =
∞∑
k=1

χ(s)

ns
. (39)

Regardless of χ, this series is majorized by a convergent geometric series for
s > 1, so L(χ, s) is defined for all s > 1. Here are three facts we need:

1. For χ0 principal, L(χ0, s) blows up as s→ 1. This is easy.

2. For χ non-principal, L(χ, 1) exists and is bounded. This is easy.

3. For χ non-principal, L(χ, 1) 6= 0. This is harder.
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Logs of Euler Products: The functions L(χ, s) are not necessarily real
valued when χ 6= χ0, so we have to argue that there is a well-defined way
to take the log of this function. Assume this for now. Using an argument
similar to the Euler product expansion in the previous section, one sees that
there is some function g(χ, s) such that

logL(χ, s) =
∑
p

χ(p)

ps
+ g(χ, s). (40)

This equation holds for all s > 1. The function g(χ, s) is continuous and
defined for all s ≥ 1.

Summing over Characters: Let S(a, n) denote the set of primes con-
gruent to a mod n. We want to see that S(a, n) is an infinite set. Take s > 1
and consider the expression obtained by summing over all characters:

Fa(s) =
∑
χ

logL(χ, s)× χ(a). (41)

Given the 3 properties of the L-series mentioned above, all the terms of Fa(s)
stay bounded as s→ 1 except the term coming from the principle character
χ0. Hence Fa(s) blows up as s→ 1.

From Equation 40 we have Fa(s) = Ga(s) +Ha(s), where

Ga(s) =
∑
χ

g(χ, s)χ(a), Ha(s) =
∑
χ

∑
p

χ(p)χ(a)

ps
. (42)

Ga is continuous and Ga(1) is finite. Hence Ha(s) blows up as s → 1.
Interchanging the order of summation and using (the extended version of)
Equation 38, we have

Ha(s) =
∑
p

(∑
χ

χ(p)χ(a)

ps

)
=

∑
p∈S(a,n)

φ(n)

ps
. (43)

All the other terms vanish! Since Ha(s) blows up as s → 1 there must be
infinitely many primes in S(a, n). This completes the proof.

The rest of the notes are devoted to filling in the details of this outline.
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6.3 Finite Abelian Groups

A number of the form pk is called primary when p is prime. A finite group
is called primary when its order is primary. A group is called cyclic if it is
isomorphic to Z/N for some N . The result we prove in this section is part
of the classification of finite abelian groups:

Theorem 6.1 Every finite abelian group is the product of cyclic primary
groups.

This is Theorem 2.14.1 in Topics in Algebra, 2nd Ed. by I. N. Herstein,
though the full proof there is spread out through several sections of the book.
For the sake of completeness we give a proof here. Our proof is a bit short
on details, and this may not the best place to learn it for the first time. Let
G be a finite abelian group of order |G|.

Lemma 6.2 Suppose p is prime and divides |G|. Then G has an element of
order p.

Proof: For Z/N the element N/p does the job. So, assume G is not
cyclic. Pick any proper subgroup H of G and consider the quotient map
φ : G → G/H. If p divides |H| then, by induction on the order, H has an
element of order p. Hence, so does G. Otherwise p divides |G/H| and by
induction |G/H| has some element φ(g) of order p. We gp = a ∈ H. Let o(a)
be the order of a. Let y = go(a). Since p does not divide o(a), the element y
is not the identity. On the other hand, yp = ao(a) is the identity. Hence y is
the desired element. ♠

A Sylow p-subgroup of G is a primary subgroup whose order is the largest
power of p that divides |G|.

Lemma 6.3 G has a Sylow p-subgroup for each prime p dividing |G|.

Proof: Let pα be the highest power of p dividing |G|. By the preceding
result, G has a subgroup H of order p. Consider φ : G → G/H. By induc-
tion G/H has a subgroup S of order pβ−1. But then φ−s(S) is the desired
subgroup of G having order pβ. ♠
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Lemma 6.4 The Sylow p-subgroup of G is unipue when G is abelian. Any
Sylow subgroup intersects the product of the others only in the identity.

Proof: Let pα be the highest power of p dividing |G|. Suppose H1 and H2

are unequal Sylow p-subgroups. We have the formula

|H1H2| =
|H1||H2|
|H1 ∩H2|

.

Here H1H2 is the set of products of the form h1h2 with h1 ∈ H1 and h2 ∈ H2.
This set is in fact a group. If H1 and H2 are unequal Sylow p-subgroups,
then H1H2 is a subgroup whose order is divisible by pα+1, a contradiction.

Suppose g ∈ H1 ∩H2...Hk. Then o(g) divides a power of p1 and a power
of p2...pk. Hence o(g) = 1, making g the identity. ♠

Corollary 6.5 Every finite abelian group is the product of primary groups.

Proof: Let H1, ..., Hk be the Sylow subgroups of G. The product mapping
ψ(h1, ..., hk) = h1...hk gives a homomorphism from H1⊕ ...⊕Hk to G. Both
groups have the same order, and ψ is injective by the previous result. Hence
ψ is an isomorphism. ♠

Lemma 6.6 Every primary abelian group G is the product of cyclic groups.

Proof: Let G be a counter-example of lowest order. So, G is not cyclic and G
does not factor into smaller groups. Let p be the relevant prime and let g ∈ G
be an element of maximal order. Let H = 〈g〉, the subgroup generated by g.
Consider φ : G→ G/H. If G/H is not cyclic then by induction G = S1⊕S1.
But then G = φ−1(S1)⊕ φ−1(S2), a contradiction.

Hence G/H is cyclic. Let pm = |G/H|. Let a ∈ G be an element such
that φ(a) generates G/H. If ap

m
is the identity we are done, because then G

splits as H ⊕ 〈a〉. Otherwise we have ap
m

= gp
n

for some n.
If |G/H| > |H| then a is an element of G having larger order than g,

which is a contradiction. Hence |G| ≥ p2m. The element a has order at
least pm × (p2m/pn), which forces n ≥ m. Let us say n = m + k. Then
ap

m
= (gk)p

m
. Set b = ag−k. By construction φ(b) generates G/H and bφ

m
is

the identity. Hence G = H ⊕ 〈b〉. ♠
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6.4 Properties of Characters

A kth root of unity ω is primitive if k > 0 is the smallest power such that
ωk = 1.

Lemma 6.7 Suppose that n1, ..., nk are relatively prime and ω1, ..., ωk are
such that ωj is a primitive (nj)th root of unity for j = 1, ..., k. Then the
product ω = ω1...ωk is a primitive (n1...nk)th root of unity.

Proof: By induction, it suffices to prove the case n = 2. If ω1ω2 is not
a primitive (n1n2)th root of unity, then after reordering we can find some

d > 1 such that d divides n2 and (ω1ω2)n1n2/d = 1. But then ω
n2/d
3 = 1,

where ω3 = ωn1
2 is a primitive (n2)th root of unity. This is a contradiction.

♠

The group (Z/n)∗ is a finite abelian group and so is the set of Dirichlet
characters. The character group law is (χ1χ2)(c) = χ1(c)χ2(c).

Lemma 6.8 Let f be the order of p in (Z/n)∗. Let g = φ(n)/f . Then there
are exactly g Dirichlet characters which map p to any given f th root of unity.

Proof: By Theorem 6.1, we have (Z/n)∗ = C1 ⊕ ...⊕C`, where Ci is cyclic
and primary. We write p = (p1, ..., p`) with pi ∈ Ci. Let ai be a generator of
Ci. We specify a character χ uniquely by χ(a1), ..., χ(a`), and χ(aj) can be
any |Cj|th root of unity. Hence there are φ(n) characters.

Let Jp denote the group of fth roots of unity and let J ′p denote the set
of images of p under the maps given by the characters. Since the characters
form a group, J ′p is a subgroup of Jp, and moreover, each member of J ′p is
the image of p under φ(n)/|J ′p| characters. To finish the proof, we just need
to show that J ′p contains a primitive fth root of unity, for then J ′p = Jp.

For each maximal primary number qα dividing f , there is an index j such
that the order of pj is qα. We define a character χ by setting χ(ah) = 1 if
h 6= j and χ(aj) = exp(2πij/|Cj|). By construction

χ(p) = χ
(
a
|Cj |
qα

j

)
= exp(2πi/qα)

is a primitive (qα)th root of unity. But then Jp contains the product over
all such roots of unity corresponding to maximal primary powers dividing f .
By the previous lemma, this product is a primitive fth root of unity. ♠
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6.5 The Orthogonality Relation

In this section we prove Equation 38 and a related result.

Lemma 6.9 Let k ∈ (Z/n)∗. If k 6= 1 then
∑

χ χ(k) = 0. The sum is taken
over all Dirichlet characters.

Proof: By Lemma 6.8, there is a Dirichlet character ψ such that ψ(k) 6= 1.
Let Σ be the sum in question. We have

Σ =
∑
χ

χ(k) =
∑
χ

(ψχ)(k) = ψ(k)
∑
χ

χ(k) = ψ(k)Σ.

Since ψ(k) 6= 1 we have Σ = 0. ♠

Call a pair (a, p) good if Equation 38 holds for (a, p). Since χ(1) = 1 for
all characters, the previous lemma says that (1, k) is good as long as k 6= 1.
Setting k = a−1p, we see that (1, a−1p) is good. Now we compute that∑

χ

χ(a)χ(p) =
∑
χ

χ(a)χ(a−1)χ(a−1)χ(p) =
∑
χ

χ(1)χ(a−1p) = 0.

The starred equality uses the fact that χ(a−1)χ(a−1) = 1 for all choices. This
establishes the orthogonality relation.

We close this section with a related result which will useful in the next
section.

Lemma 6.10 Let χ be a Dirichlet character. If χ 6= χ0, then
∑

h χ(h) = 0.
This sum is taken over all h ∈ (Z/n)∗.

Proof: This has the same kind of proof as Lemma 6.9. There is some
k ∈ (Z/n)∗ such that χ(k) 6= 1. But then

Σ =
∑
h

χ(h) =
∑
h

χ(hk) = χ(k)
∑
h

χ(h) = χ(k)Σ.

This forces
∑

h χ(h) = 0. ♠

Lemma 6.10 is false for χ0. In this case, the sum is φ(n). Note that
Lemma 6.9 and Lemma 6.10 make “dual” statements. In fact the group of
characters on (Z/n)∗ is known as the dual group of (Z/n)∗.
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6.6 Complex Analytic Functions

Given an open set U ⊂ C, a function f : U → C is complex analytic if f
equals a convergent power series in a neighborhood of each s0 ∈ U :

f(s) =
∞∑
k=0

ak(s− s0)k. (44)

More usually, a complex analytic function is defined as one which has a com-
plex derivative, and then the above property is derived as a consequence. We
mention 4 properties of complex analytic functions:

Algebraic Property: If f and g are complex analytic in U then so are
f + g and fg. To see this, just expand out the series.

Cancellation Property: If f(s0) = 0 then g(s) = f(s)/(s− s0) extends to
be a complex analytic function in U . One can see this readily from the series
definition, because we would have a0 = 0 in Equation 44.

Taylor Series Property: The function f is infinitely differentiable, and the
derivative of f is just the term-by-term differentiation of the series. Hence,
the series in Equation 44 is just the Taylor series expansion of f at s0. If
∆ ⊂ U is any disk centered at s0 then Equation 44 is valid throughout U .
This last statement basically boils down to the series convergence test.

Convergence Property: Suppose {fn} is a sequence of complex analytic
functions on U which converges uniformly on closed disks. Then limn→∞ fn
is again a complex analytic function on U . By uniform convergence we mean
that for each ε > 0 and each closed disk ∆ ⊂ U there is some N such that
sups∈∆ |fm(s)− fn(s)| < ε when m,n > N .

Now we mention the important special case for us. For any positive
integer n and s = x+ iy we interpret

ns = nx(exp(i log y)).

The exponential function exp(z) is complex analytic in the entire complex
plane, and hence so are the functions s→ ns and s→ 1/ns.
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6.7 Convergence Properties

Let Hx denote the open halfplane consisting of s with Re(s) > x.
We first deal with the principal character χ0. We have

L(χ0, s) =
∑

(k,n)=1

1

ks
.

Each summand appears once in the product of all terms in Equation 34 where
p is prime and relatively prime to n. Hence

L(χ0, s) =
∏

(p,n)=1

1

1− 1
ps

=
(∏
p|n

1− 1

ps

)
× ζ(s). (45)

The first factor on the right hand side, a product over the primes dividing
n, is a finite product. Moreover, ζ(s) forms a convergent geometric series for
s > 1. By the Convergence Property for complex analytic functions, L(χ0, s)
is complex analytic in H1 and blows up as s→ 1.

Now suppose that χ is some other character which is not the principal
character. We will show that L(χ, s) is finite for all s > 0. By Lemma 6.10,

n∑
k=1

χ(tn+ k) = 0, t = 0, 1, 2, 3, ... (46)

We write

L(χ, s) =
∞∑
t=0

At, At =
n∑
k=1

χ(tn+ k)

(tn+ k)s
. (47)

By Equation 46,

At =
n∑
k=1

χ(tn+ k)×
( 1

(tn)s
− 1

(tn+ k)s

)
.

Hence

|At| <
n

ns
×
∣∣∣ 1

ts
− 1

(t+ 1)s

∣∣∣ < sns−1 × 1

ts+1
.

The last inequality comes from the fact that d
dt
t−s = −st−1−s, and this func-

tion is decreasing in absolute value as t increases. Since
∑

1/ts+1 converges
for all s > 0, so does the series for L(χ, s). By the Convergence Property for
complex analytic functions, L(χ, s) is complex analytic in H0.

We have yet to show that L(χ, 1) 6= 0.
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6.8 Logs of Euler Products

The proof here imitates what we did in the warm-up section on the Riemann
ζ function. Just like Equation 34 we have

1

1− χ(p)
ps

= 1 +
χ(p)

ps
+
χ2(p)

p2s
+
χ3(p)

p3s
+ · · · . (48)

Using the multiplicative nature of χ and routine limiting arguments, we get

L(χ, s) =
∏
p

1

1− χ(p)
ps

, (49)

for all s > 1. Since L(χ, s) is not necessarily real valued, we have to specify
how we take the logs. Integrating the equation

1

1− x
=
∞∑
i=0

xi,

we get

log
( 1

1− x

)
=
∞∑
k=1

xk

k
. (50)

This converges for any complex x with |x| > 1. In particular, using the fact
that the log of the product is the sum of the logs and making suitable limiting
arguments, we have

logL(χ, s) =
∑
p

χ(p)

ps
+ g(χ, s), g(χ, s) =

∑
p

∞∑
k=2

χ(pk)

kpks
. (51)

To show that g(χ, s) is well defined and bounded, note that for all s ≥ 1:∣∣∣ ∞∑
k=2

χ(pk)

kpks

∣∣∣ ≤ ∞∑
k=2

1

pk
=

1

p2
× 1

1− 1
p

≤ 2

p2
.

In the last equation we used p ≥ 2. So when we sum over p we get a
convergent series for all s ≥ 1. In fact g(χ, s) is complex analytic in H0, but
we don’t need to know this.
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6.9 The Nonvanishing Property: Outline

We will assume that L(χ, 1) = 0 for some non-principle Dirichlet character
χ and derive a contradiction.

Step 1: We show that the product

F (s) =
∏
χ

L(χ, s), (52)

taken over all Dirichlet characters, is complex analytic in H0.

Step 2: We show that in H1 we have

F (s) =
∞∑
j=1

aj
ns
, aj ≥ 0. (53)

Step 3: We produce another series

G(s) =
∞∑
j=1

bj
ns
, 0 ≤ bj ≤ aj (54)

which diverges at s = 1/φ(n).

Step 4: We show that Equation 53 actually holds on H0. By the com-
parison test, G converges at s = 1/φ(n). This contradiction finishes the
proof.

Remark: Steps 3 and 4 almost seem unnecessary, but not quite. If we
had two nonprincipal characters χ1, χ2 such that L(χj, 1) = 0 for j = 1, 2
then F (1) = 0. Step 2 then would say that F is identically 0. So, Steps 1
and 2 already say that the bad event L(χ, 1) = 0 can happen at most once.
Note also that the non-real characters come in pairs. If χ is a character
then so is the conjugate χ. Moreover, L(χ, 1) = 0 iff L(χ, 1) = 0. Thus, for
proving Dirichlet’s Theorem, the only case we have to worry about is when
χ is real. In the special case when n is prime, there is only non-real non-
principle Dirichlet character, namely the Legendre symbol: χ(k) = ±1 with
the positive sign taken if and only if the polynomial x2 = k has a root mod
n. This is one connection between Dirichlet’s Theorem and matters related
to e.g. quadratic reciprocity.
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6.10 Nonvanishing Property: Details

Proof of Step 1: Define

Z(s) = ζ(s)− 1

1− s
. (55)

Lemma 6.11 Z(s) is complex analytic in H0.

Proof: We have

Z(s) =
∞∑
n=1

1

ns
−
∫ ∞
t=1

dt

ts
=
∞∑
n=1

Zn(s), Zn(s) =

∫ n+1

n

( 1

ns
− 1

ts

)
dt. (56)

We also have

|Zn(s)| ≤ max
u∈[n,n+1]

∣∣∣ d
du

1

us

∣∣∣ ≤ s

nx+1
.

Thus, the sum defining Z(s) converges uniformly on closed disks contained
in H0. So, by the Convergence Property for complex analytic functions, the
limit of such a sum is also complex analytic in H0. ♠

If follows immediately from Equation 45 that

L(χ0, s) = A(s) +B(s)
1

1− s
,

Where A and B are complex analytic in H0. We have already seen that
L(χ, s) is complex analytic in H0 when χ is not principle.

Suppose that L(χ1, 1) = 0. By the Cancellation Property and the Alge-
braic Property, the function

C(s) = L(χ0, s)L(χ1, s) = A(s)L(χ1, s) +B(s)
L(χ1, s)

1− s

is complex analytic in H0. Finally,

F (s) = C(s)×
∏

χ 6=χ0,χ1

L(χ, s),

is the product of two functions which are complex analytic in H0. Hence,
F (s) is complex analytic in H0.
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Proof of Step 2: Let p be a prime that does not divide n. Let f(p), g(p), Jp
be as in Lemma 6.8. Using the Euler product expansion (and closely follow-
ing Várilly’s notes) we have

F (s) =
∏
χ

∏
(p,n)=1

1

1− χ(p)
ps

=
∏

(p,n)=1

1

A(p, s)
, A(p, s) =

∏
χ

(
1− χ(p)

ps

)
.

(57)
From the Lemma 6.8, we have

A(p, s) = B(p, s)g(p), B(p, s) =
∏
ω∈Jp

(
1− ω

ps

)
=

p−f(p)s
∏
ω∈Jp

(ps − ω) =∗ p−f(p)s(pf(p)s − 1) = 1− 1

pf(p)s
. (58)

The starred equality has the following justification: the polynomial xM − 1
factors as (x− ω1)...(x− ωM), and we then set x = ps and M = f(p).

Equations 57 and 58 combine to prove

F (s) =
∏

(p,n)=1

( 1

1− 1
psf(p)

)g(p)
. (59)

We can now expand this out just as in Equation 35, and we see that we get
Equation 53 for some non-negative sequence {aj}.

Proof of Step 3: Let f, g, φ be positive integers with fg = φ. Compare the
series:

1

1− γφ
,

( 1

1− γf
)g
.

Both consist of positive terms, and every term of the series on the left also
appears as a term in the series on the right. With this in mind, we define

G(s) =
∏

(p,n)=1

1

1− 1
psφ(n)

=
∞∑
j=1

bj
ns

= L(χ0, sφ(n)). (60)

We have F (s) ≥ G(s) in the strong sense that 0 ≤ bj ≤ aj for all j. The last
equality in Equation 60 shows the series diverges at s = 1/φ(n).
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Proof of Step 4: We simplify the argument in Várilly’s notes. The key
to the proof is the following identity, which derives from the Taylor series
expansion for ez:

∞∑
k=0

1

k!
(log j)k = j ∀j = 1, 2, 3, ... (61)

Every point in H0 has the form s−1 for some s ∈ H1. Since F is complex
analytic in H0, by restriction F is also complex analytic in a disk ∆ of radius
1+ε about any point s ∈ H1, as long as ε > 0 is small enough. By the Taylor
series property for F , applied to s− 1 ∈ ∆, we have:

F (s− 1) =
∞∑
k=0

(−1)k

k!

dkF

dsk
(s). (62)

Using Equation 53, we compute

dkF

dsk
(s) =

∞∑
j=1

(−1)k
aj(log j)k

js
. (63)

Combining these equations, we have a convergent double sum, which we
rearrange as:

F (s− 1) =
∞∑
j=1

aj
js

( ∞∑
k=0

1

k!
(log j)k

)
=∗

∞∑
j=1

aj
js
× j =

∞∑
j=1

aj
js−1

. (64)

The starred equality is Equation 61. This final expression is exactly the series
from Equation 53 evaluated at s − 1. Hence Equation 53 holds not just in
H1 but also in H0. This completes the proof.
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