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The classic isoperimetric inequality says that a circle uniquely encloses
the region of largest area in the plane for its length. This result has many
proofs. I’ll give several that don’t involve calculations. In some sense I
thought of these myself, but some of the classic proofs inspired me. Possibly
these proofs are out there somewhere already.

1 Symmetrized Polya Proof

Let Sn denote the space of unit length polygons with 2n (possibly repeated)
vertices, modulo isometries. Given P ∈ Sn let A(P ) be the area of the union
of the bounded components of R2 − P . Let P ′ be the convex 2n-gon we get
by taking the convex hull of P , padding with extra vertices if necessary, then
rescaling to get the length back to 1. Then A(P ′) > A(P ) unless P = P ′.
The function A varies continuously on the compact subset Σn ⊂ Sn consisting
of convex 2n-gons. Hence A achieves a maximum on Sn at some P ∈ Σn.
By moving any repeated vertices onto the interiors of other edges, we can
assume that P has no repeated vertices and hence 2n nontrivial edges.

If P has 2 consecutive edges of different lengths we can shorten P while
keeping the area the same by the move shown in Figure 1. Hence, all 2n
sides of P have the same length.

Figure 1: Decreasing the length by sliding parallel to the diagonal
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The chord L of P connecting vertices P0 and Pn divides P into two arcs
Q,R of equal length. We can label so that A(Q∪L) ≥ A(P )/2. We translate
so that the midpoint of L is the origin. Let P ′ = Q∪ (−Q). By construction
`(P ′) = 1 and A(P ′) ≥ A(P ) and −P ′ = P ′. Since P is an area maximizer,
we must have A(P ′) = A(P ). In short, we can assume without loss of
generality that −P = P . Precisely, Pk+n = −Pk for all k.

If we fix the side lengths of a parallelogram but allow the angles to vary,
the area maximizer in the family is the rectangle. Consider the parallelogram
Q = P0PkPnPk+n. Suppose Q is not a rectangle. We divide the region
bounded by P into 5 pieces: the region bounded by Q and 4 flaps made from
arcs of P and sides of Q. See Figure 2. (We think of P as having so many
vertices that the shown arcs are really polygonal.)

Figure 2: Increasing the area of Q by flexing.

We flex Q into a rectangle and let the flaps move isometrically along for
the ride. This increases A(P ) and keeps `(P ) = 1, a contradiction. Hence
Q is a rectangle. Hence ‖Pk‖ = ‖P0‖. Since this is true for all k, and since
all the sides of P have the same length, we see that P is regular. In other
words, the regular 2n-gon is the maximizer. There is a bit more to say: If we
started with a non-regular maximizer we could have chosen the symmetrizing
chord L so that the symmetrized version was non-circular. This contradic-
tion shows that the only maximizer is the regular 2n-gon.

Let γ be loop of length 1 and let C be the circle of length 1. We can
inscribe 2n-gons γn in γ so that limn→∞A(γn) = A(γ). From the polygonal
case discussed above, A(γn) ≤ A(Cn) where Cn is the regular 2n-gon of length
1. So

A(γ) = lim
n→∞

A(γn) ≤ lim
n→∞

A(Cn) = A(C).

Hence C maximizes area enclosed for length 1 loops. The same argument as
above rules out another maximizer γ. We symmetrize so that −γ = γ and
then we do the parallelogram trick.
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2 Recutting Proof

Let P be a convex polygon with no repeated vertices. A k-semidiagonal of P
is a segment that joins the midpoints of two edges of P which are separated
by k clicks. Figure 3 shows a 3-semidiagonal. We insist that the cut edges are
neither one parallel to L, so that the angles a, b lie in (0, π). (The parallelism
could happen if P is not strictly convex.) We call the semidiagonal L isosceles
if a+ b = π. Geometrically this means that the lines extending the cut edges
are either both perpendicular to L or else make an isosceles triangle with L.

L
a

b
a
b a

b

P P' P''

T1

T2a
b

Figure 3: Recutting along a 3-semidiagonal.

The polygon P ′ in Figure 3 is the union of the lower half of P and the
reflection of the upper half of P in the perpendicular bisector of L. Using
the notation above, we have `(P ′) = `(P ) and A(P ′) = A(P ). The two little
triangles T1 and T2 are isometric; a glide reflection in L carries one to the
other. The polygon P ′′ = (P ′ − T1) ∪ T2 therefore satisfies A(P ′′) = A(P ′)
and, by the triangle inequality, `(P ′′) < `(P ′). So, if L is not an isosceles
semidiagonal then we can produce P ′′, having the same number of vertices,
such that A(P ′′) = A(P ) and `(P ′′) < `(P ).

If the 1-semidiagonals of P are all isosceles then all edges of P have the
same length. If all edges of P have the same length and all 2-semidiagonals
are isosceles then all the interior angles of P are equal and hence P is regular.
But, from the construction above, we see that this must happen for an n-
gon of length 1 which maximizes area enclosed. This proves that the n-gons
which maximize enclosed area for the given length are regular. This works
for n both odd and even.

The same limiting argument as above now shows that the circle C is an
area maximizer amongst all loops of length 1.

Suppose that γ is another maximizer. We first symmetrize as above so
that −γ = γ. We can define recutting for convex loops just as for polygons.
Starting with γ and a chord L of γ we let γ′ be the union of one side of γ
and the reflection of the other side in the perpendicular bisector of L. Note
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that γ′ must be convex; otherwise we could take the convex hull of γ′ and
produce a new loop γ′′ with A(γ′′) > A(γ) and `(γ′′) < `(γ).

Consider recuttings of γ along diameters of γ. For these, the convexity of
γ′ implies that γ is contained in the strip bounded by the two perpendiculars
to L at γ ∩ L, as shown in Figure 4.

L

Figure 4: γ is trapped in a strip.

But if γ has the strip property in every direction, it means that the norm
of points on γ, as a function of arc length, cannot increase to first order at
any point. But this implies that the norms of points on γ cannot increase at
all as we move around. Hence γ is a circle.
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