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Abstract

This article, which loosely follows lectures I gave at Luminy, dis-
cusses some ideas about polytope exchange transformations and polyg-
onal outer billiards.

1 Introduction

This article is an elaboration on two of the four lectures I gave at C.I.R.M.,
Luminy, in August 2023. Two of the lectures discussed polygonal outer
billiards and piecewise isometric maps. Amongst the piecewise isometric
maps I mostly talked about polytope exchange transformations, or PETs.
The third lecture discussed ordinary billiards, and the fourth lecture – kind
of a wild card topic I threw in at the spur of the moment – discussed a
connection between continued fractions and a special case of the Four Color
Theorem.

This article will concentrate on the two lectures about polygonal outer
billiards and PETs. Aside from considerations of length, let me give some
rationale for this choice. First, I recently wrote a survey article that concen-
trated on ordinary billiards for the Proceedings of the 2022 ICM. See [S1].
Second, the mathematics on the Four Color Theorem is well exposited in my
paper [S2]. Third, I am inspired by the popularity of one of the problem

∗Supported by N.S.F. Grant DMS-2102802, a Mercator Fellowship, and a Simons Sab-
batical Fellowship

1



sessions I gave at Luminy. This problem session concentrated on a beau-
tiful (and well studied) two dimensional example of a piecewise isometric
map. See §2.3. I thought it would be nice to talk more about that kind of
mathematics.

Lastly, my involvement with outer billiards is much more extensive than
my involvement with the other topics I lectured on. I spent about 7 years
of my life really working hard on this topic. I thought it would be nice to
give an impressionistic overview of all this work, culminating in a grand but
unfiulfilled vision of how I see polygonal outer billiards.

I have a wistful feeling as I write this article. While working on outer
billiards and PETs, I had the impression that I could spend the rest of my
life making fruitful discoveries about it. It was very much like drinking water
by putting a fire hose up to your face. I guess that many people working
in dynamics, especially experimentally inspired dynamics, would say similar
things. However, eventually I abandoned the topic because I wanted to
explore other areas of mathematics, to see what else I could do.

This article is structured as follows. In §2 I define what I mean by a
piecewise defined map, and then give a bunch of examples. PETs represent
the special case when everything is defined in terms of polytopes and the
maps are translations. The examples start out easy and familiar and then
gradually evolve into more intricate ones. One theme in §2 is the role played
by renormalization in understanding the deep structure of the dynamics of
these kinds of maps. These maps do not always have a renormalization
scheme associated to them, but then they do it is a powerful tool.

In §3 I will discuss polygonal outer billiards, often through examples. One
general idea I want to get across is that there is an associated unbounded
PET which I call the pinwheel map. This map is often easier to understand
than outer billiards but, with respect to unbounded orbits, it contains pre-
cisely the same information. I will use the structure of the pinwheel map
to explain the celebrated result of Vivaldi-Shaidenko [VS], Kolodziej [K],
and Gutkin-Simanyi [GS] that all orbits are bounded for so-called quasi-
rational polygons. (I stick to the case where there are no parallel sides.) As
a corollary, one gets the familiar and very appealing result that all orbits are
periodic with respect to a polygon with rational vertices.

In §4 I will concentrate on my result about unbounded orbits for irra-
tional kites. This is the subject of both my monographs [S3] and [S4]. I
hope to give at least a feel for how the results work. The way I will illus-
trate the result is through an associated geometric construction called the
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arithmetic graph. This idea is closely related to the Galois flux for interval
exchange transformations, and the module construction in [VL]. The final
section in §4 discusses some ideas about a general theory of polygonal outer
billiards. Many sections in this article illustrate these ideas separately, in
simple situations, and then I will try to put them all together.

One thing I would like to say is that almost everything discussed in this
article comes from experimentation. I invite the reader to download the
software 1 and try it out. Using these programs and seeing the pictures is
really the right way to absorb this kind of mathematics. I learned everything
from writing and using the programs. If you are having trouble installing
and using the software, feel free to send me email and I will personally help
get it to work for you.

I would like to thank C.I.R.M. for their hospitality during my stay there
in the summer of 2023. I had a great time. I would especially like to thank
Nicolas Bedaride and Jayadev Athreya for inviting me to give these lectures.
Some of the ideas about compactification of polygonal outer billiards systems
benefitted from discussions with John Smillie. He and I had planned to work
on some of this together but somehow never did. I’d like to thank John for
those conversations. My work is currently supported by the U.S. National
Science Foundation, by a Mercator Fellowship (from Germany) and by a
Simons Sabbatical Fellowship. I thank all these institutions for their support.

1In a few simple cases, as for 3-IETs, my code is not publicly available because it is
not a very polished program; I can send it out upon request.
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2 Piecewise Isometric Maps

2.1 General Definitions

In this section we give very general definitions, and then we give concrete
examples in subsequent sections. Some special cases of maps we define have
been studied in quite a bit of detail and for a long time. See e.g. [Go] for
a survey in the piecewise isometric case. Since the definition is so general,
many other cases have not been explored at all.

Piecewise Defined Maps: Suppose that X ⊂ Rn is a subset with non-
empty interior. Suppose that A is some collection of maps from Rn to Rn.
A piecewise-A map of X is given by the following data:

• A union X = X1 ∪ ... ∪Xm such that each Xi has non-empty interior
and these interiors are pairwise disjoint. We call this decomposition an
almost partition of X.

• A choice fi ∈ A for all i = 1, ...,m such that fi : Xi → X is well-defined.

We then define f : X → X by the rule f(p) = fi(p) when p lies in the interior
of Xi. The map is undefined on points of X which do not lie in the interior
of some Xi. We have set things up in such a way that f is almost everywhere
defined in X. That is, f is defined except on a set of Lebesgue measure 0.

Invertibility: We call f invertible if the maps fi are all injective, and
f−1i ∈ A, and the sets f1(X1), ..., fm(Xm) form an almost partition of X.
In this case, the inverse map f−1 is also a piecewise-A map. All the ex-
amples we consider will be invertible. Usually the maps we consider are
invertible in this way. In the invertible case, f is defined in terms of the first
partition X1, ..., Xm and the second partition f(X1), ..., f(Xm), and the maps
between them.

Periodic Points and Islands: We denote the k-fold composition of f
by fk. A point p ∈ X is periodic if fk(p) = p for some k. A subset Y ⊂ X
is called a periodic island if there is some k such that fk is the identity on
Y . Given a periodic point p, we define the symbolic sequence of p to be the
finite sequence i0, ..., ik−1 such that f j(p) ∈ Xij . So, in other words, p ∈ Xi0

and f(p) ∈ Xi1 , etc.
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First Return Map: Given Y ⊂ X and a point p ∈ Y we can attempt to
define the first return f |Y (p) ∈ Y to be the first positive iterate fk(p) ∈ Y .
Of course, it might happen that this is not defined at all. We say that f |Y
is well-defined if there is a piecewise-A map f ∗ : Y → Y which agrees with
f |Y whenever both are defined. In particular, f |Y is defined on some almost
partition of Y .

Renormalization Sets: We call Y a renormalization set for f if f |Y is
well defined and if there is some k such that X − Y has an almost partition
into periodic islands and sets of the form f j(Y ) for j ≤ k. So, ignoring a
set of measure 0, all points X either belong to periodic islands or else land
in Y after a certain number of iterates. If we ignore the finite number of
periodic islands in X − Y , then the dynamics of f on X essentially reduces
to the dynamics of f |Y on Y . The kind of situation sometimes gives a lot of
information about f , particularly if we can relate f |Y back to f in some way.

2.2 Interval Exchange Transformations

The simplest maps of the kind we are considering are interval exchange trans-
formations . These are often called IET s for short. In this case n = 1 and
X is a line segment and A is the set of translations of the line. There is
an enormous literature on these, and we will only mention a few things.
For information about IETs, especially in connection with rational billiards,
translation surfaces, and Teichmuller dynamics, see [FM] and [Z] and the
references therein.

General Case: Let Sm be the group of permutations on {1, ...,m}. In
general, an interval exchange transformation is defined by three pieces of
data: an integer m, a permutation π ∈ Sm, and positive numbers λ1, ..., λm.
Setting λ = λ1 + ...+λm, our initial partition of [0, λ] is given by intervals of
lengths λ1, ..., λm ordered from left to right. We then reorder these intervals
according to the partition π and obtain a second partition of [0, λ]. The map
f in this instance carries the kth interval of the first partition to the π(k)th
interval of the second partition by a translation. The space of all m-interval
IETs is naturally identified with Sm × Cm, where Cm is the strictly positive
orthant in Rm.

A permutation π is called irreducible if π does not preserve any subset
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{1, ..., k} of {1, ...,m} with k < m. Otherwise we call π reducible. Usually we
ignore the components of Sm×Cm corresponding to reducible permutations.
The corresponding IETs can be understood by breaking them into simpler
pieces.

Rotations: The simplest example of an interval exchange transformation
arises when the unit interval [0, 1] is divided into two intervals [0, λ] and
[λ, 1]. The interval exchange transformation switches the two intervals. In
other words, f : [0, 1]→ [0, 1] is defined so that f(x) = x+(1−λ) if x ∈ (0, λ)
and f(x) = x − λ if x ∈ (λ, 1). We do not define f on the endpoints of the
intervals. The map f agrees with the rotation f ∗(x) = [x−λ] in R/Z wher-
ever f is defined. When λ is irrational, every defined orbit of f is dense.
When λ is rational, every defined orbit is periodic.

Three Interval IETs: Three interval IETs are still quite special and well
understood. Let me describe a nice way to visualise them. A similar idea, in
a slightly different context, is considered by [VL].

Let ω = exp(2πi/3) be the usual third root of unity. Let νk = ωk−1. Thus
ν1, ν2, ν3 are the three third roots of unity. Given a point p ∈ [0, λ] with a
well defined orbit we first assign the integer symbolic sequence i0, i1, i2, ...
such that fk(p) lie in the ikth interval. We define

zk = νi0 + ...+ νik , k = 0, 1, 2, ... (1)

Thus we define a path z0 → z2 → z2, ... in the plane which chooses its
direction to turn based on the itinerary of the orbit. Call this path Π(p).

The path Π(p) is not quite embedded. However, here is an interesting
phenomenon. We define the drift vector

d =
3∑
i=1

λiνi. (2)

We then define the modified path Πε(p) so that its vertices are z′0, z
′
1, z
′
2, ...

with
z′k = zk + εk. (3)

We are giving the path Π(p) a little push in the direction d and calling the
new path Πε(p). This is something I noticed computationally, and just for
fun. I would not be surprised if the result is known, though I don’t know a
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reference. Let me show some pictures, when ε = .3. In each case, the black
part of the path corresponds to one period, and then the lighter grey part is
the periodic continuation. The chosen point p is rather random; other points
would yield similar pictures: The (inplied) infinite grey path would stay the
same and the black portion would shift.

Figure 2.1: π = (13) and
−→
λ = (24/64, 23/64, 17/64).

Figure 2.2: π = (13) and
−→
λ = (157/512, 175/512, 180/512).

These pictures are a somewhat biased sample. I tried to pic ones which
look especially interesting. The reader might enjoy writing a program that
codes up this construction, as I have done. My own software for this – a
fairly crude program – is available upon request.
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Generic Minimality: The literature on IETs is enormous, and there are
many, many structural results. Let me mention two that relate well to the
rest of the material in this article. The first is generic minimality . If π is an
irreducible permutation then almost every point in {π}× Cn gives rise to an
IET in which every defined orbit is dense. This is a corollary of a somewhat
more precise result of Keane [Ke]. When π is reducible, one could break the
corresponding IETs into suitable pieces and make a similar statement about
each irreducible piece. So, at least generically, there are no periodic islands.

Rauzy Induction: The second property is a general renormalization scheme
called Rauzy renormalization or Rauzy induction. See [R] for the original
source; there are also many other articles which use Rauzy induction. Let f
be an n-interval IET. There are three cases to consider:

• If the last interval of the first partition is shorter than the last interval
of the second partition. We define ρ(f) to be the first return map of
f to the first n − 1 intervals of the first partition. This union is an
renormalization set.

• If the last interval of the second partition is shorter than the last interval
of the first partition. We define ρ(f) to be the first return map of f
to the union of the first n − 1 intervals of the second partition. This
union is an renormalization set.

• Otherwise we do not define ρ(f).

Rauzy proves that ρ(f) is another n-interval IET. On each component of
Sn × Cn, the map ρ is either entirely undefined or else almost everywhere
defined and piecewise affine.

2.3 The Isosceles Triangle Example

Going to higher dimensions, we can take A to be the set of translations of
Rn and insist that X and its partitions are all convex polytopes. (A convex
polytope is the convex hull of a finite set of points in Rn.) When these maps
are invertible, we call them polytope exchange transformations , or PET s for
short.

We can generalize this further by allowing A to be the set of all isometries
of Rn, or perhaps the set of all affine transformations of Rn. The nice thing
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about affine transformations is that they form a finite dimensional Lie group,
and they preserve the collection of convex polytopes. So, if we deal with
piecewise affine maps, ultimately we are describing how various polytopes
move around in space. This is as general as we are going to get.

In this section we describe a classic example in R2. See [Go] for another
discussion of this example. Comparing the discussion here to the general
case discussed in §2.1, we switch notation somewhat so that X = T0 and
(X1, X2) = (T0, U). Let T0 be an isosceles triangle with side lengths 1, φ, φ,
where φ = (1 +

√
5)/2 is the golden ratio. The left side of Figure 2.3 shows

how one can use a regular pentagon as scaffolding to draw T0 and also a
partition of T0 into two smaller isosceles triangles T0 and U1.

U

T0

T1

U

T0

T1

1

1

Figure 2.3: The partition of T0 into T1 and U1.

The right side of Figure 2.3 shows a second partition of T0 into two smaller
isosceles triangles. The rotated labeling is deliberate. We map T1 and U1 to
their counterparts by rotations. The rotated labels and dots indicate this.
This piecewise rotation is defined everywhere on T0 except for the interface
T1∩U1. The resulting map f is an example of an invertible piecewise isometry.

U2 T2

P PP

T2f(  )

T2f (  )
2

T2f (  )
3

  Uf (
3

2)

0 00

Figure 2.4: The periodic island P0 and the first return map f |T1 .
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The left side of Figure 2.4 shows a regular pentagon P0 which is a periodic
island. The iterate f 5 acts as the identity on P0.

Let’s look at the middle and left part of Figure 2.4. The triangle T1 breaks
into two smaller pieces T2 and U2. The first return map f |T1 is well defined,
and there is some additional structure. There is a similarity φ : T1 → T0
such that

f 3|T1 = φ−1 ◦ f ◦ φ. (4)

Furthermore, we have the almost partition.

U1 − P0 = f(T2) ∪ f 2(T2). (5)

All this says that T1 is a renormalization set for f . Moreover, the action of
f |T1 on T1 is essentially a smaller copy of the action of f on T0.

This structure lets us recursively analyze the periodic islands. First, if we
see a certain pattern of periodic islands in T0 then we can shrink and copy
that pattern and put it inside T1. Second, we can use f and f 2 to transport
any pattern of periodic islands in T2 to a pattern in f(T2) and f 2(T2). Figure
2.5 shows this in action.

P
0

P
1

P
2P

3

P
4

Figure 2.5: Recursively constructing periodic islands

The left side of Figure 2.5 shows some more periodic islands whose exis-
tence is implied by the two rules above. P1 is a smaller copy of P0, and then
P2 is a smaller copy of P1. Finally, P3 and P4 are images of P2 under f and
f 2 respectively. We jave added some additional line segments to illustrate
how these islands may be constructed just using a ruler. We could continue
this analysis forever, producing a dense set of pentagonal periodic islands.
The middle and right pictures in Figure 2.5 show a subdivision rule which
breaks an isosceles triangle into two pentagons and 5 smaller isosceles trian-
gles of the same shape. If we iterate this subdivision rule, we produce all the
periodic islands for the map f .
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Figure 2.6: The biggest periodic islands

Figure 2.6 plots all the periodic islands having period less than 1275. The
islands are shaded randomly, based on a random number that is associated
to each possible period.

Visualization: There is a neat way to visualize the dynamics of this map. I
don’t know if this method has been studied by other authors, but it is closely
related to what people call the Galois flux for IETs. We associate to each
orbit the symbolic sequence using the numbers {1, 4}. We assign a 1 when
the orbit lies in T1 and a 4 when the orbit lies in U1. (Doing the reverse would
lead to the same kind of picture.) Call this sequence m0,m1,m2, .... We set
nk = (m0 + ... + mk) mod 5. We then let ζk = ωnk where ω = exp(2πi/5).
The number ζk is the Galois conjugate of the unit complex number which
computes the local rotation of the map fk applied to the initial point. Fi-
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nally, we associate to the orbit the polygon whose successive vertices are ζ0,
ζ0 + ζ1, ζ0 + ζ1 + ζ2, etc. Here is what a long periodic orbit looks like:

Figure 2.7: The Galois flux of a long periodic orbit.

2.4 Subattice PETs

Here I describe a general construction I made in [S6] and [S7] for lattices.
A sublattice in Rn is the Z-span of a list of k ≤ n linearly independent
vectors. Here k is the rank of the sublattice. When k = n, a sublattice is
known as a lattice. A fundamental domain for a sublattice L is a subset
X ⊂ Rn such that union of translates of X by L gives an almost partition of
Rn. For instance, the unit cube [0, 1]n is a fundamental domain for Zn. One
typical example we consider is that of a parallelotope fundamental domain
for a lattice. Another example we consider is an infinite strip fundamental
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domain for a rank one sublattice in R2. Every sublattice has infinitely many
fundamental domains.

Given a sublattice L and a fundamental domain X there is a map

fX,L : Rn → X

Given p ∈ Rn, the point fX,L(p) lies in L and differs from p by a member of
L. For almost all p ∈ Rn this map is uniquely defined. For all other points
we leave the map undefined.

Suppose now that Γ is a finite bipartite graph, with black and white
vertices. We say that a decoration of G is an assignment of a sublattice to
each white vertex and a subset of Rn to each black vertex such with the
following property: For each edge, the set associated to the black vertex is a
fundamental domain for the sublattice associated to the white vertex.

We now consider paths in Γ that start at black vertices. Suppose that γ is
a length 2 path in Γ, whose consecutive vertices are b0, w1, b2. Let X0, L1, X2

be the corresponding decorations. We have a canonical piecewise isometry
X0 → X2 defined as the composition

φγ = φb2,w1,b0 = fX2,L1 ◦ ι, (6)

where ι is the inclusion map. More generally, if γ is a length 2n path with
vertices b0, w1, ..., b2n then we have the composition

φγ = φb2n,w2n−1,b2n−1 ◦ ... ◦ φb2,w1,b0 . (7)

When γ is a loop, meaning that b2n = b0, the map φγ is a PET defined on
X0. The inverse of the map is given by φγ−1 , where γ−1 is the same loop as
γ but traced in the reverse order.

One case we specially consider is as follows:

• Γ is a 4-cycle.

• γ is a loop that traverses all 4 vertices.

• The white vertex decorations are lattices.

In this case, we call φγ a double lattice PET . We have two lattices and two
fundamentals for them. We consider such examples in the next section.
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2.5 The Octagonal PETs

Now I will specialize the discussion above to a 1-parameter family of 2-
dimensional double lattice PETs. These are the main objects in [S7].

Given s ∈ R, the two fundamental domains are

X0 = 〈(2s, 2s), (2, 0)〉, X2 = 〈(−2s, 2s), (0, 2)〉. (8)

Here 〈v1, v2〉 denotes the parallelogram with vertices ±v1/2 ± v2/2. These
paralleograms are 90-degree rotations of each other. The two lattices are

L1 = {(2s, 2s), (0, 2)} L2 = {(−2s, 2s), (−2, 0)} (9)

Here {v1, v2} denotes the Z-span of v1 and v2. These two lattices are also 90-
degree rotations of each other. Each parallelogram is a fundamental domain
for each lattice, and so the map fs, defined by the loop b0, w1, b2, w3 is a
double lattice PET.

It turns out that fs has a dense set of periodic islands for any s ∈ R.
These periodic islands are either right-angled isosceles triangles or semi-
regular octagons. (A square counts as a semi-regular octagon.) When s
is irrational, there are no triangles. For a generic choice of s, once sees
a dense set of shapes of semi-regular octagons amongst the set of periodic
islands. All of this is proved in [S7].

Here is the picture for s =
√

2/2. All the periodic islands are regular
octagons. This picture is reminiscent of Figure 2.6, and there is a similar
renormalization scheme, discussed below, that is responsible for this structure
of periodic islands.

Figure 2.8: The periodic islands for s =
√

2/2.
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Here is a picture for s =
√

3/2 − 1/2. This time all the periodic islands
are squares. I have shaded them in to indicate the two different types. The
interface between the squares is a union of two continuous embedded arcs.

Figure 2.9: The periodic islands for s =
√

3/2− 1/2.

If we think of this picture as living on a torus rather than on a paral-
lelogram, then the two arcs piece together to make a continuous embedded
loop. The restriction of fs to this loop is conjugate to an irrational rotation
(wherever it is defined). A renormalization scheme is also responsible for all
this structure.

Now we explain how the renormalization scheme works in general. We
define R : (0, 1)→ [0, 1) as follows:

• R(s) = 1− s if s > 1/2.

• R(s) = 1/(2s)− floor(1/(2s) if s < 1/2.

Recall that fs : X0,s → X0,s is our PET. We let Y0,s = X0,s−X2,s. In Figures
2.8 and 2.9, the set Y0,s is the complement of the central tile in the picture.
This set has two components in all cases. The intersectionX0,s∩X2,s is always
a semi-regular octagon and a periodic island. So, we omit this periodic island
to get Y0,s.

Let t = R(s). The main result of [S7] is that there is a renormalization set
Zs ⊂ Ys together with a piecewise similarity φs : Zs → Yt which conjugates
the map fs|Zs to the map ft|Yt . The map φs is a similarity on each of the two
symmetrically placed components of Zs. We illustrate this result with the
same pictures that we use in [S7]. We are not showing the dynamics, but
rather the collection of periodic islands. Comparing the pictures in Figures
2.10a and 2.10b, and then again in Figures 2.11a and 2.11b, one can get a
sense of what the main theorem says. The details are worked out in great
detail in [S7].
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Figure 2.10a: Yt lightly shaded for t = 3/10 = R(5/13).

Figure 2.10b: Zs lightly shaded s = 5/13.

Figure 2.11a: Yt lightly shaded for t = R(8/13) = 5/13.

Figure 2.11b: Zs lightly shaded for s = 8/13.
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The self-similar nature of the periodic islands for s0 =
√

2/2 comes from
the fact that R2(s0) = s0. The self-similar nature of the periodic islands
for s1 =

√
3/2 − 1/2 comes from the fact that R(s1) = s1. In general, any

quadratic irrational parameter is pre-periodic under R and exhibits the same
kind of self-similar behavior, albeit more complicated. The typical orbit of s
under R is dense in [0, 1]. This accounts for our statement that for generic
choice of s, one seems a dense set of shapes of semi-regular octagon amongst
the periodic islands.

The most significant property of R is that the orbit of any rational number
under R is finite and ends at 1/2. The map R has a simplifying effect on
rationals. For instance, 3/10 = R(5/13) is simpler than 5/13. The whole
orbit of 5/13 is

5/13→ 3/10→ 2/3→ 1/3→ 1/2.

The simplification property allows one to inductively understand the struc-
ture of fs when s is rational. Then, taking limits, one can understand many
things about fs for any value of s.

2.6 PETs Constructed from Strips

Suppose now we have a bipartite graph which is a 2n-cycle. Suppose that to
the black vertices we have associated infinite strips

Σ0,Σ2, , ...,Σ2n−2 ⊂ Rn.

We insist that cyclically consecutive strips are not parallel.
For each odd index k there are precisely two rank-1 sublattices having

both strips Σk−1 and Σk+1 as fundamental domains. Both choices have the
form Zvk where vk is a vector which is the difference between a pair of
opposite vertices of the parallelogram Πk = Σk−1 ∩ Σk+1.

We suppose that the kth white vertex is decorated by one of these sub-
lattices. So, up to 2k choices, our strips define for us a sublattice PET.

Quasi-Rationality: There is an equivalence amongst these sublattice PETs.
If A is any affine transformation of the plane, then the strips

A(Σ0), ..., A(Σ2n−2)

define an affinely conjugate PET provided that we make the correct choices
for the sublattices. We say that the PET is quasi-rational if A may be cho-
sen so that all the parallelograms considered above have integer area. This
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notion is closely related to the notion of quasi-rationality in polygonal outer
billiards. We will discuss this in the next chapter.

Parallelogram Rotations: There is an alternate way to view these kinds of
PETs. Each planar parallelogram has a unique order 4 affine involution that
rotates clockwise. For instance, the square [−1, 1]2 the map is the restriction
of order 4 clockwise rotation about the origin. This special case is affinely
equivalent to the general case. We call this map the fundamental rotation of
the parallelogram, even though it is only a rotation in the affine sense.

Say that a parallelogram tiling of an infinite strip Σ is an almost partition
of Σ into parallelograms which are all translates of each other. Say that
a parallelogram map of Σ is the piecewise affine map obtained by applying
the fundamental rotation to each parallelogram separately. It is a fun ex-
ercise to show that PETs we have constructed here are compositions of n
parallelogram maps of the strip Σ0.

In the quasi-rational case, the parallelogram widths are all commensu-
rable, and we can scale so that they are integers. In this case, the union of
all the parallelogram tilings (superimposed on top of each other) is periodic
modulo a certain translation. This fact is the key to understanding quasi-
rational outer billiards.

Quarter-Turn Compositions: There is yet another interpretation in which
one alternates parallelogram maps based on rectangle tilings with shears of
the strip. I call these quarter turn compositions . My paper [S6] takes this
point of view and makes a detailed study.

For these strip maps, the first case of interest in all this is when n = 3.
In this case the space of affinely inequivalent PETs is 3 + 3 + 3 − 6 = 3
dimensional. The point here is that the affine group is 6-dimensional and
the space of directed strips in R2 is 3-dimensional. I have studied this 3-
dimensional space to some extent, though not in enough detail to report on
any interesting results. This seems like an attractive object for further study.
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3 Polygonal Outer Billiards

3.1 Basic Definitions

Outer billiards goes back at least to B. Neumann’s short article [N]. J. Moser
considered outer billiards as a toy model for planetery motion [M1], [M2].
I will concentrate on the case of polygons.

Polygonal outer billiards is a piecewise isometric map of R2 that is based
on a convex polygon P ⊂ R2. Given a point p0 ∈ R2 − P one defines
p1 = f(p0) to be the point such that the line segment p0p1 is tangent to P
uniquely at its midpoint, and a person walking from p0 to p1 would see P on
the right. Figure 3.1 shows the construction.

p0

p1

p2

p3

P

Figure 3.1: Definition of outer billiards

The points p1, p2, p3, ... are the forward iterates of p0 under the outer
billiards map. The map is defined in the complenent of the grey rays which
emanate from the edges of P like a pinwheel. The inverse map is defined
by a similar construction, with the words left and right swapped. For any
n, the first n iterates of f , both forwards and backwards, are defined in the
complement of a finite union of lines. In particular, the full orbit of the map
is defined in the complement of a countable union of lines.

It is sometimes nicer to consider the square map f 2 = f ◦ f instead. This
map is a piecewise translation.
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3.2 Some Examples

Triangles and Parallelograms: Outer billiards is an affinely natural sys-
tem. If A is an affine transformation, then A conjugates the outer billiards
map with respect to P to the one with respect to A(P ). Thus, for instrance,
one can understand outer billiards with respect to any triangle by under-
standing the equilateral triangle case. Likewise, one can understand outer
billiards with respect to any parallelogram by understanding the square case.
For the case of equilateral triangles, the initial triangle extends to the usual
tiling of R2 by equilateral triangles. Each of these tiles is a periodic island.
The square case has a similar description in terms of the square tiling.

The Regular Pentagon: Here is what outer billiards looks like on the
regular pentagon.

Figure 3.2: Outer billiards on the regular pentagon
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The structure in this case is first analyzed in [T2]. There is a dense set
of periodic islands, either regular pentagons or regular decagons. There is
an infinite union of “pentagon necklaces” made from pentagons isometric to
the central one. These necklaces alternate with an infinite union of “decagon
necklaces”. Figure 3.2 just shows the first of each necklace, and about half
of the second decagon necklace.

Between these necklaces there is a self-similar pattern that is reminis-
cent to the isosceles triangle example considered in §2.3. S. Tabachnikov
establishes this self-similar property using a similar kind of renormalization
scheme. The picture between consecutive decagon necklaces is essentially
independent of the position. To say this somewhat more precisely, we can
consider the intersection of the picture with a horizontal strip. Once we go
sufficiently far out to the right, the picture becomes periodic. Figure 3.3
illustrates what we mean.

Figure 3.3: Outer billiards (again) on the regular pentagon

The Regular Octagon: Figure 3.4 shows some of the periodic islands for
outer billiards on the regular octagon. Once again we have an infinite se-
quence of octagon necklaces with a fractal pattern in between them. We
are showing the innermost later. Notice that the pattern inside the high-
lighted parallelogram exactly matches the one in Figure 2.8. Considered as
a semi-regular octagon, the regular octagon has parameter s =

√
2/2. The

parameter is such that the highlighted rectangle has the same parameter as
the fundamental domain X0,s.
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Figure 3.4: Outer billiards on the regular octagon

Semi-Regular Octagons: Figure 3.5 shows outer billiards with respect to
the the semi-regular octagon with pattern s = 3/2−

√
3/2. Again, we are just

showing the inner layer. The fractal pattern that lives between the octagon
necklaces matches the one for the octagonal pet with the same parameter.
The given parameter s is such that R(s) is the parameter for the octagonal
PET shown in Figure 2.9. You can see the close resemblance. Were we to
plot the picture for the pet fs with s = 3/2−

√
3/2 we would get exactly the

picture inside the white parallelogram.
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Figure 3.5: Outer billiards on the regular octagon

Let O(s) be the semi-regular octagon with parameter s ∈ (1/2, 1). We
proved in [S7] that R2−O(s) is tiled by congruent parallelograms, each iso-
metric to X0,s, such that the union of periodic islands in each parallelogram is
isometric to the corresponding union for the octagonal PET fs : X0,s → X0,s.
Technically, Figures 3.4 and 3.5 are illustrating the phenomenon for a central
parallelogram that is not part of our parallelogram tiling, but one could also
formulate a version of the result that works for this central parallelogram.

The dynamics of outer billiards is not quite the same as the dynamics in
the corresponding octagonal PET. The two systems are “commensurable” in
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a sense made precise in [S7]. In any case, the octagonal PETs control the
structure of the periodic islands for outer billiards in semi-regular octagons.

There is an important point to note. The octagon O(s) is only defined
when s ∈ (1/2, 1) and the octagonal PETs are defined when s ∈ (0, 1).
Our renormalization scheme for octagonal PETs works for the whole interval
(0, 1). One could consider the first return map to (1/2, 1) but this is a bit
awkward.

What I am trying to say is that to notice that outer billiards on semi-
regular octagons has a renormalization scheme, one has to enlarge the class
of systems one needs to consider. Perhaps this phenomenon occurs more
generally in polygonal outer billiards. A natural generalization of the family
of semi-regular octagons is the family of all polygons which have fixed inte-
rior angles. So, all members of the family are obtained by “rolling” the sides
parallel to themselves. I have not explored this, however.

Regular Polygons: We have already discussed outer billiards on regular
n-gons for n = 3, 4, 5, 8. The case n = 6 resembles the cases n = 3, 4 in that
the periodic islands make a global and regular tiling. It is a good exercise
to work out the picture. The cases n = 10 and n = 12 are similar to the
cases n = 5, 8. Bedaride and Cassaigne [BC] study the symbolic dynamics
of these maps in detail. I believe 2 that much progress has been made on
outer billiards for the regular 7-gon, though this case is considerably more
intricate.

One recent general result is that outer billiards on a regular n-gon has
periodic orbits provided that N > 4 and either N is odd or N/2 is an odd
integer. See [KRTZ]. Beyond this result, and the ones mentioned above,
not much is known about outer billiards on regular n-gons. Gordon Hughes
has spent many years producing beautiful and intricate numerical studies of
these. See [H].

3.3 The Pinwheel Map

In §2.6 we discussed a certain kind of sublattice PET which we called a strip
map. Here we relate that construction to outer billiards. The results men-
tioned here are proved in [S8]. As in [S8] we work with polygons having no

2I seem to remember that Alexei Kanel-Belov was one of the authors involved, but I
couldn’t find a preprint.
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parallel sides. I have not carefully thought through the construction when P
has some parallel sides, but I know how to do it for the regular octagon. See
[S9].

The Strips: Each edge e of P defines an infinite strip X. One bound-
ary component of X is the line extending e. The centerline of X contains
the (unique) point of P farthest from e. Figure 3.6 shows the construction.

e

X

Figure 3.6: The strip X defined by (P, e).

The n-gon P thus determines n-strips. A very large circle centered at
the origin intersects these strips in a certain order, and the order stabilizes
once the circle is sufficiently large. We order the strips according to their
counter-clockwise intersection with such large circles. Put another way, we
order the strips according to their slopes in R ∪ ∞. We label these strips
X0, X2, .... See Figure 3.7 below.

The Sublattices: For each consecutive pair of strips (Xk−1, Xk+1) there
is a unique choice Lk = Zvk of sublattice such that

1. Xk±1 is a fundamental domain for Lk.

2. Lines parallel to vk very far from the origin intersect Xk−1 and Xk+1

consecutively.

Figure 3.7 shows the correct choice for an example. Here are take k = 1.
We draw the a segment for vk instead of a vector because ±vk works here,
independent of sign. We are not drawing the polygon P here; in fact we just
made up this artificial example by putting down 5 strips
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X0

X2

X4X6

X8

v1

Figure 3.7: Defining the lattice L1 in terms of the strips.

We introduce the “double wedge” Wk as the union Σk−1 and Σk+1 and
the two infinite cones between these strips. This set is highlighted in Figure
3.7. (It is made from 4 different shades of grey.) Let f 2 be the square of the
outer billiards map f . The basic geometric principle is that if p ∈ Wk−Xk+1,
and p is sufficiently far from the origin, then f 2(p) = p± vk, where the sign
is chosen so that p± vk is one step closer to Xk+1.

Shallow and Deep Equivalence: The discussion above has the follow-
ing consequence. If p ∈ X0 is very far from the origin then f 2 moves p along
a line parallel to v1 until the point lands in X2, then f 2 moves p along a
line parallel to v3 until the point hits X4, etc. When p is close to the origin,
the relationship between the sublattice PET and f 2 is more subtle, and we
will discuss this below. Let ψ denote the second return map of f 2 to X0.
The reason we consider the second return map is that we want to consider
orbits which circulate all the way around P and not just halfway around. Let
ψ∗ denote the square of the PET defined by our decoration of the bipartite
2n-cycle. We take the square here to match the behavior of ψ. We call ψ∗

the pinwheel map.
The discussion above justifies the result that ψ = ψ∗ outside a compact

subset of R2. We call this fact shallow equivalence, because it is not very
hard to prove. The discussion above practically constitutes a proof.
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We now mention the main result of [S8], which establishes a much deeper
equivalence between the two maps.

Theorem 3.1 (Deep Equivalence) There exists a large disk ∆ ⊂ R2,
centered at the origin, with the following two properties:

• Let p ∈ R2 be any point for which the first n iterates of ψ are defined,
and both p and ψn(p) are outside K. Then there is some n∗ > 0 such
that the first n∗ iterates of ψ∗ are defined on p and (ψ∗)n

∗
(p) = ψ(p).

• Let p ∈ R2 be any point for which the first n iterates of ψ∗ are defined,
and both p and (ψ∗)n

∗
(p) are outside K. Then there is some n > 0 such

that the first n∗ iterates of ψ are defined on p and (ψ∗)n
∗
(p) = ψ(p).

The analogous result holds for n < 0. We have stated the case n > 0 just
for ease of exposition.

Theorem 3.1 says that near K the action of outer billiards and the pin-
wheel map, though perhaps quite different from each other, is “removable”.
The two different dynamical systems might do very different things to a point
once it wanders into K, but the point emerges from K in the same way for
both systems. I like to describe this theorem intuitively as saying that “what
happens in Las Vegas stays in Las Vegas”. The unequal behavior of the two
systems is entirely trapped in K, and it has no impact on what happens
outside of K.

Theorem 3.1 immediately implies, for instance, that ψ has an unbounded
orbit if and only if ψ∗ has an unbounded orbit.

3.4 Quasi-Periodic Polygons

We call the polygon P quasi-rational is the associated sublattice PET is
quasi-rational. Let us unpack this definition. The polygon P defines the
strips X0, X2, ... as above. We have the parallelograms Π1,Π3, ... where

Πk = Xk−1 ∩Xk+1.

The polygon P is quasi-rational if it may be scaled so that all these par-
allelograms have integer areas. Semi-regular and regular polygons are all
quasi-rational, and so are polygons whose vertices have rational coordinates.

One well known result in polygonal outer billiards is that all orbits are
bounded for quasi-rational polygons. This result is proved by three teams of
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authors. See [VS], [K], and [GS]. Here I will sketch a proof. In some sense
all the proofs are the same. The proof here only uses shallow equivalence, so
it is quite elementary.

We keep the notation from the previous section. We think of our sublat-
tice PET as a product of parallelogram rotations, as described in §2.6. As
we mentioned in §2.6, the superposition of all the parallelogram tilings of
X0 is periodic in the quasi-rational case. The intersection of all the strips is
precisely the polygon P . This means that around the origin there is a certain
collection of parallelograms, one per tiling, whose intersection is P . Call this
the big intersection “the sweet spot”.

Corresponding to the sweet spot, there is a copy of P on which ψ acts as
the identity. But then there are infinite many translated copies of the sweet
spot and this infinitely many translated copies of P on which ψ∗ acts as the
identity. Since ψ = ψ∗ outside a compact set, there are infinitely many copies
of P on which ψ acts as the identity. Figure 3.8 shows what this looks like.

P

Q

Figure 3.8: Periodic array of copies of P .

By construction P has a unique vertex on the centerline of the strip X0.
Let Q be the result of reflecting Q in this vertex. Let P ′ be any copy of P in
our periodic array that is sufficiently far from the origin. By construction,
f(P ′) = Q′, where Q′ is the corresponding copy of Q. Here f is the outer
billiards map. Figure 3.9 shows f 2k(P ) for k = 0, 1, 2, 3 and f 2kQ) for k =
0, 1, 2. By construction, the consecutive images share a vertex in common.

P

Q

X1

X0

Figure 3.9: The formation of a necklace
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We have depicted the case when f 4(Q) ∈ X2. In general there will be
some first k > 0 when either

• f 2k(P ) ∈ X2 and all previous polygons lie in W1 −X2.

• f 2k(Q)] ∈ X2 and all previously defined polygons lie in W1 −X2.

The choice of P or Q depends on whether or not the edges defining X0 and
X2 are adjacent or not. We are showing the non-adjacent case. In either
case, we now consider the images between X2 and X4. The significant thing
is that P sits inside X2 just as it sits inside X0. Repeating all the same steps,
we see that the orbit of P ′ continues into W3, starting and stopping in X2

and X4.
Continuing all the way around, we produce a necklace orbit, one consist-

ing of cyclically tangent isometric copies of P . Compare Figure 3.2. But we
can make this construction for any P ′ sufficiently far from the origin. This
gives us an infinite sequence of necklace orbits. All other orbits are trapped
between the necklaces and hence bounded. Compare Figure 3.3. That’s it.

The Rational Case: When P has rational vertices, we can scale so that
all the vertices have integer coordinates. The map f 2 is then a piecewise
translation involving a finite number of integer vectors. In particular, if we
start with any point p ∈ R2 − P with a well-defined orbit, the orbit of p is
bounded and consists of points which differ from p by integer vectors. Hence,
this orbit must be finite. Hence, all orbits are periodic in this case. This is
an especially appealing situation, because every rational polygon gives rise
to a dynamically invariant tiling of R2 by periodic islands.

Culter’s Theorem: C. Culter proved 3 hat outer billiards has a periodic
orbit outside every compact subset of R2 with respect to any polygon. Here
is a sketch of this result. (I have never read Culter’s proof.) When the
sublattice PET is quasi-rational, the necklace orbits furnish infinitely many
periodic points. In the general case, we see an infinite sequence of polygons
in X0 which converge to P up to translations of X0. Each such polygon is the
intersection of the parallelograms in the tiling that contain it. For this reason
ψ∗ is the identity on such polygons. But then, by the shallow equivalence,
the same is true for ψ far from the origin. This gives periodic orbits outside
any compact set.

3I don’t know if Culter ever wrote a paper about his result, but see [T1] for an account
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3.5 The Arithmetic Graph

We continue with the notation from the previous section. In particular, recall
that ψ : X0 → X0 is the square of the PET map. Let p0 ∈ X0 be some point
with a well-defined orbit. Referring to Equation 6, define

p2k+2 = φb2k+1w2k+1b2k(p2k) ∈ X2k+2.

We mean to define this for k = 1, ..., 2n and we take the indices cyclically
mod 2k. Far from the origin, the points p0, p2, p4, .. are just the successive
points of the f 2-orbit of p which lie in the strips.

There is a non-negative integer Nk such that p2k+2 − p2k is Nk times one
of the two generators of the sublattice L2k+1. Far from the origin, Nk simply
tells the number of times we have to apply f 2 to get from p2k to p2k+2. We
define the spectrum of p to be the length-n vector

S(p) = (N0 −N2n, N2 −N2n+2, ..., N2n−2 −N4n−2) ∈ Zn. (10)

Typicallly all the entries of Sp lie in {−1, 0, 1}, and for all I know this always
happens.

Supposing that we have chosen a linear projection Λ : Rn → C we define
the Λ-spectrum of p to be Λ ◦ S(p). One choice of projection is given by

Λk(S) =
n∑
k=1

Skω
k, ω = exp(2πki/n). (11)

We call the corresponding spectrum Λk ◦ S the k-cyclotomic spectrum.
Assuming we have fixed Λ, we can associate to a periodic point p a pe-

riodic path Λ(p) ⊂ C. Letting {pk} be the ψ∗-orbit of p = p0, we form the
path whose vertices are

Λ ◦ S(p0), Λ ◦ S(p0) + Λ ◦ S(p1), Λ ◦ S(p0) + Λ ◦ S(p1) + Λ ◦ S(p2), ...

When we use the k-cyclotomic spectrum, we call Λ(p) the k-cyclotomic graph
of p. The cyclotomic case is adapted to the case of regular polygons.

We now return to outer billiards on the regular pentagon. Recall that this
system has two kinds of periodic islands: pentagonal and decagonal. Figure
3.11 shows the 2-cyclotomic graph for a pentagonal periodic island on the
left and for a decagonal periodic island on the right. One should compare
this with Figure 2.6.
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Figure 3.10: The 2-cyclotomic graph in the regular pentagon case

The 3-cyclotomic graph looks the same. The 1-cyclotomic graph and the
4-cyclotomic graph are not interesting; they essentially just reproduce the
orbit.

Our computer program makes sense of the pinwheel map for regular oc-
tagons. For the regular octagon the 2-cyclotomic graph and the 3-cyclotomic
graph are different. Figure 3.11 shows what the 3-cyclotomic graph looks like.
This is quite similar to what happens for the regular pentagon.

Figure 3.11: The 3-cyclotomic graph in the regular octagon case

Figure 3.12 shows the two typical pictures of the 2-cyclotomic graph for
long periodic orbits. The first case is a closed polygon, though not embedded.
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The rescaled limit of this thing is an object somewhat reminiscent of the
classic square Sierpinski carpet. The second case is an open polygonal path,
and we are showing several periods of it.

Figure 3.12: The 2-cyclotomic graph in the regular octagon case

I wrote a long article [S9] exploring the arithmetic graph in the regular
octagon case, though I never published it. My program also draws the cyclo-
tomic graphs with respect to other regular polygons. The interested reader
can play around with the software (or write their own) and see other neat
pictures.
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4 Unbounded Orbits for Outer Billiards

4.1 Some Results and Questions

The Moser-Neumann problem [N], [M1], [M2] asks about the existence of
unbounded orbits for outer billiards. I have already mentioned the result
[VS], [K], [GS] that all orbits are bounded for quasi-rational polygons. An-
other result along these lines, due to Dan Genin [Ge], is that all orbits are
bounded for trapezoids. Trapezoids fall outside the quasi-rational frame-
work. See the introduction of [S3] for a survey of other boundedness results
for non-polygonal shapes.

I answered the Moser-Neumann question in 2007 by proving that outer
billiards on the Penrose kite has an unbounded orbit. See [S5]. The Penrose
kite is the convex quadrilateral that arises in the famous Penrose kites-and-
darts tiling. I showed, in particular, that the point p in Figure 4.1 has a well
defined and unbounded orbit when outer billiards is defined with respect to
the kite shown in Figure 4.1. The auxiliary lines in the picture are present
to show the construction of the kite and the special point.

p

Figure 4.1: The Penrose kite and a point with an unbounded orbit.

My initial proof of this result exploited a quasi-self-similarity property of
the arithmetic graph associated to this orbit. See Figure 4.X below. Initially
I derived this by hand, in some sense. Later on, I found a renormalization
scheme which explained this. I will discuss all this below.

In [S3] I proved a more general result, concerning the kites K(A) having
vertices (−1, 0) and (0,±1) and (A, 0) with A ∈ (0, 1). The Penrose kite is
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affinely equivalent to K(
√

5−2). Note that K(A) is a rational polygon when
A ∈ Q and not quasi-rational when A ∈ R−Q. My main theorem in [S3] is
that outer billiards on K(A) has unbounded orbits whenever A ∈ (0, 1)−Q.
The orbits I found all lie on the set Σ = R×Zodd, where Zodd is the set of
odd integers.

I discovered quite a bit about these orbits. For instance

• The orbits are erratic in the sense that they enter every neighborhood
of the points (0,±1) and also exit every compact subset of R. So,
they go in and out, in and out, repeatedly. Most orbits are erratic in
both the forwards and backwards direction; a few are erratic in just
one direction.

• The orbit intersects the set (0, 2)× {1} in a set which equals a Cantor
set up to deleting a countable number of points. The first return to
this near Cantor set is conjugate in an explicit way to the “plus one
map” in a profinite group.

I will illustrate some of this structure in the next section.
Let me also mention that the orbit corresponding to the point in Figure

4.1 is very special. It is erratic in the forwards direction and not in the
backwards direction. In the backwards direction the orbit intersects every
compact set in finitely many points.

Shortly after [S3], D. Dolgopyat and B Fayyad [DF] proved that outer
billiards has unbounded orbits when defined relative to a semi-disk, the set
you get when you cut a disk in half. They also proved this result for the sets
you get when you nearly cut the disk in half. Their methods are completely
different, and their unbounded orbits march straight out to infinity.

These are the only known unboundedness results. One natural question
is:

Conjecture 4.1 Outer billiards has unbounded orbits with respect to almost
every polygon.

Here is a more precise conjecture:

Conjecture 4.2 Suppose that P is a convex polygon with no parallel sides. If
P is not quasi-rational then outer billiards has unbounded orbits with respect
to P .

This second conjecture is so strong that I am not completely certain it is
true. One should probably just take it as a question.
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4.2 The Kite Result Illustrated

In this section I am going to use the arithmetic graph to give some ideas
behind my result about unbounded orbits for outer billiards on irrational
kites. In discussing the ideas, I will depart somewhat from the treatment in
[S3] in order to better relate to the ideas we have presented above. My idea
is to present things here in a way that might generalize more naturally than
the special treatment given in [S3].

The first idea in our analysis is to understand what happens for K(A)
when A = p/q is rational. In our proof we work with pq odd but here we
will show pictures for pq even. The pictures are nicer. We let ψA denote the
pinwheel map associated to K(A), and we let Λ(S0, S1, S2, S3) = (−S0, S2).
We define the arithmetic graph relative to this choice of Λ. The set Σ is
invariant under the outer billiards map, and so it makes sense to look for
unbounded orbits on this set. We label so that X0 is the strip shown in
Figure 4.2.

X0

K(A)

Figure 4.2: Σ ∩X0, and the fundamental start.

Given the deep equivalence between outer billiards and pinwheel map
– a result which is quite easy to prove for kites – it suffices to prove that
ψ : X0 ∩Σ→ X0 ∩Σ has unbounded orbits. This map is an infinite interval
exchange transformation. When A = p/q, all the intervals in the exchange
have length which is an integer multiple of 2/q. For this reason, all points in
the set

(0, 2/q)× {1} (12)

have the same combinatorial orbit. We call the point (1/q, 1) the fundamental
start and its pinwheel orbit the fundamental orbit . We will show pictures of
the arithmetic graph of the fundamental orbit.

35



We first mention a few general features of these paths. The arithmetic
graphs are all lattice polygonal paths . That is, their vertices are integer
points. I proved in [S3] that the arithmetic graphs are embedded, and that
consecutive vertices are always adjacent in Z2. That is, each coordinate
of a given point differs by at most 1 from the corresponding coordinate of
the adjacent points. Given the integer nature of the path, a fractal-looking
example much be really huge. The point is that such a monster is meant to
be scaled so that its vertices are integral.

Define the baseline to be the line of slope −A through the origin. The dis-
tance between a point on the arithmetic graph and the baseline is comparable
to the distance from the corresponding point in the orbit to the origin. Thus,
if the arithmetic graph is very tall, then some points in the orbit are very
far from the origin. We are interested in finding points having an arithmetic
graph that rises unboundedly far above the baseline.

At the same time as this, the points of the arithmetic graph that are
within 1 unit of the baseline correspond to the intersection of the orbit with
the special interval (0, 2) × {1} mentioned above. This is the top interval
labeled Σ in Figure 4.2. So, the fine scale structure of the orbit in this
interval can be read off the part of the arithmetic graph near the baseline.

Now we show some pictures. Again, when A =
√

5 − 2 the kite K(A)
is affinely equivalent to the Penrose kite. The first 4 continued fraction
approximations to A are 1/4 and 4/17 and 17/72 and 72/305. The numbers
1, 4, 17, 72, 305 satisfy the recurrence relation an+2 = 4an+1, and the pattern
continues. Figure 4.3 below shows the arithmetic graph of the fundamental
orbit for these first 4 fractions.

It looks like these pictures are converging to a fractal. When they are
scaled so that the edges have about unit length, their height tends to ∞.
This strongly suggests that there are unbounded orbits. However, we cannot
take the limit of the fundamental starting point, because this point converges
to the kite vertex as the approximating rational converges to

√
5 − 2. We

need to take a limit in a careful way.
It looks like these pictures are converging to a fractal. When they are

scaled so to have integral vertices, their height above the baseline tends to∞.
This strongly suggests that there are unbounded orbits. However, we cannot
take the limit of the fundamental starting point, because this point converges
to the kite vertex as the approximating rational converges to

√
5 − 2. We

need to take a limit in a careful way.
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1

4
4

17

17

72
72

305

Figure 4.3: The arithmetic graph for 1/4, 4/17, 17/72, and 72/305.

There is something else to notice about these pictures. The bottom parts
of the picture seem to be touching – or, rather, nearly rouching – the baseline
in a Cantor set. This corresponds to the fact that the fundamental orbit is
becoming dense in a Cantor set in (0, 2) × {1} as the continued fraction
approximant converges to

√
5 − 2. Many points on this Cantor set have

well-defined orbits, and I show that these points have unbounded orbits.
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Here is another especially pretty one. The rational 408/985 is a continued
fraction approximant of

√
2 − 1. One can see the same kind of Cantor set

formation near the baseline.

Figure 4.4: The arithmetic graph for 408/985.

The numbers
√

5− 2 and
√

2− 1 are fixed points of a certain renormal-
ization operator that is similar to the one R described in §2.5. For a general
choice of irrational A we also observe this Cantor set phenomenon, but the
Cantor set is not as regular.

Let me illustrate the general phenomenon with one example. Two ratio-
nals p1/q1 and p2/q2 are Farey adjacent if |p1q2 − p2q1| = 1. The 4 rationals
involved in the next picture are consecutively farey adjacent. We plot the
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corresponding 4 arithmetic graphes at the same scale. One can see that the
consecutive polygons are nested inside of each other. Each one is somehow
part of the next one.

Figure 4.4: The arithmetic graph for 2/5 and 5/12 and 8/19 and 21/50.

This general nesting phenomenon is responsible for the Cantor set forma-
tion with respect to any irrational A. (I formulate this somewhat differently
in [S3].) I want to emphasize that this is really just an impressionistic ac-
count of the unbounded orbits result. See [S3] for details.

One thing I should say is that I did not actually establish the strict nesting
property you see in Figure 4.4. Even though I did not prove it, it seems that
this strict nesting phenomenon always happens. Rather, I considered the
graphs corresponding to rationals of the form p/q with pq odd, and I proved
that the larger graph copies the bottom part of the smaller graph. What
I am trying to say is that you see some extra-beautiful phenomena in the
pictures which I did not actually prove. I just proved enough to get the main
results.
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4.3 Compactification

Let ψ∗ : X0 → X0 be a pinwheel map. It turns out that there is always
a higher dimensional double lattice PET ψ̂ : X̂0 → X̂0 and an injective
semi-conjugacy Θ : X0 → X̂0. This means that

ψ̂ ◦Θ = Θ ◦ ψ∗. (13)

The map Θ is injective if and only if ψ∗ is not quasi-rational. The dimension
of the closure image is the Q-rank of the list A1, ..., An of areas of parallelo-
grams associated to ψ∗. So, in the quasi-rational case, this is 1 and otherwise
it is greater than 1.

Generically, the Q-rank is n, the number of parallelograms, and the map
Θ has dense image. I proved all this in a long and unpublished preprint [S6].
So, the punchline here is that generically the pinwheel map, which is essen-
tially the same as outer billiards, has a higher dimensional compactification
which is a double lattice PET. In [S6] you can find details about how to see
the arithmetic graph directly in terms of the dynamics of the double lattice
PET.

All this specializes to the case of kites. In [S3] and [S4] I studied the
kite case of the compactification in great detail, but only for the restriction
of ψ∗ to X ∩ Σ0. That is, I studied the compactification of an infinite IET.
(I wrote [S3] first, and this gave me the idea for the generalization in [S6]. )

In the case studied in [S3] and [S4], namely the compactification of a
1-dimensional infinite IET, the compactification is 2-dimensional when the
parameter is a quadratic irrational, and 3-dimensional when the parameter is
neither rational nor quadratic irrational. As we vary A, these various systems
all line up and appear as slices of a single piecewise integral affine PET. I call
this the master PET . The domain is an integer convex polytope – meaning
that the vertices have integer coordinates – and the two partitions are made
from smaller convex integer polytopes. I call this compactification result the
Master Picture Theorem in [S3].

The large scale structure of the arithmetic graph is a consequence of the
properties of this master PET. For instance, the reason that the bottom
parts of the arithmetic graphes agree for Farey related rationals is that we
compute the two fluxes by looking at two slices of the master PET. These
slices are very close in comparison to the size of the interval, namely 2/q,
involved in the fundamental orbit. Again, this is just a brief summary of a
huge amount of work.
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4.4 Compactification and Renormalization

One further project I never completed was to consider the pinwheel map
compactifications for all of X0 and not just for X0 ∩ Σ. I did, however
consider this in one case, for the Penrose kite. In [S10] I worked out the 3-
dimensional compactification for the pinwheel map associated to the Penrose
kite. This is a 3-dimensional double lattice PET, though I did not explicitly
write it this way in [S10].

After extensive experimentation, I discovered that this 3-dimensional
PET has a renormalization scheme much like the octagonal PET at the
parameter s =

√
2/2. This allowed me to get an understanding of all the

outer billiards orbits on the Penrose kite. Here are some sample results, all
taken from [S10].

1. Every orbit is either periodic or unbounded in both directions.

2. The union of the unbounded orbits has Hausdorff dimension 1.

3. The set of horizontal lines containing unbounded orbis lies on a certain
explicitly defined Cantor set of Hausdorff dimemsion log(3)/ log(φ3).

4. Suppose that y = m + nφ where φ is the golden ratio and m,n ∈ Z.
Then the line R × {y} has unbounded orbits if and only if m is odd
and n is even.

This 150 page paper has many other results about outer billiards on the
Penrose kite. Part of why I eventually abandoned polygonal outer billiards
is that I could see that I would just end up writing forever and never do
anything else. I didn’t think that there would be a large enough audience for
so much detail.

Let me close by showing one more picture. Figure 4.5 shows the arith-
metic graph for the orbit of the point p shown in Figure 4.1. The graph itself
is shown in black and then the grey path is a rescaled version. The rescaling
factor is φ3. The renormalization scheme I found implies that the correspond-
ing arithmetic graphes are quasi-self similar. That is, the arithmetic graph
for one of these unbounded orbits lies in a bounded tubular neighborhood
of a dilated copy of the same arithmetic graph. This dilation structure also
implies that the unbounded orbit itself is locally self-similar.
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Figure 4.5: Quasi-self-similarity for the arithmetic graph.

One of my dreams is that the Master PET discussed in the previous
section, or the larger 5-dimensional version which comes from looking at the
whole pinwheel map and not just the restriction to Σ, has a renormalization
scheme like the octagonal PETs. This would be a different way to explain
some of the self-similar properties of the arithmetic graph. This kind of
renormalization scheme would bring the study of outer billiards on kites
more in line with the study of the octagonal PETs.

Going further, I think it would be great to have a renormalization scheme
for double lattice PETs in general. There is some hope, because these objects
are closely associated with the general linear groups. I imagine something
along the lines of multi-dimensional continued fractions, a higher dimensional
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version of Rauzy induction.
In summary, here is my idea about a 4-step plan to understand the ques-

tion of unbounded orbits in polygonal outer billiards.

1. Replace outer billiards with the pinwheel map. See [S8].

2. Compactify the pinwheel map. The result, at least generically, is a
double lattice PET. See [S6].

3. Look for general renormalization scheme for double lattice PETs, along
the lines of Rauzy induction for interval exchange transformations. See
[S0] for the Penrose kite.

4. Encode the dynamics of the double lattice PET using the arithmetic
graph. See [S6] and also a deep exploration of this in [S4] for kites.
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