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1 Introduction

These are some notes that I handed out during the two times I taught (what
was) Math 1140 at Brown University. This is a course on manifolds. The
course covers the following topics:

1. Facts about differentiation; inverse and implicit function theorems

2. Basic definitions of manifolds; tangent spaces; diffeomorphisms

3. Exterior algebra and differential forms

4. Stokes’ Theorem on manifolds and applications.

I used the book Mathematical Analysis by Andrew Browder, and mostly
covered chapters 11,12,13,14. I often found that the proofs in the book were
not as efficient as I would like, so I often wrote up my own notes. I have
gathered all these notes together in one place in case someone else teaching
a similar course would find them useful. The notes do not cover everything
in the book; just topics that I thought I could clarify. Some of the notes are
on slightly extraneous topics.

The notes are not guaranteed to be correct! I have tried my best to get
everything right but perhaps there are still some glitches and omissions. In
particular, you will probably find a lot of typos. Sometimes the proofs are
things I thought of myself, but I really don’t make many claims to originality.
I am sure that I learned practically everything in this bundle somewhere.
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Here is a list of topics covered in these notes.

• Two results about differentiation

• Equality of the Mixed Partials

• The Inverse and Implicit Function Theorems

• Elementary Properties of Volume

• Change of Variables formula (for integration in Rn)

• Abstract Manifolds: Basic Definitons

• Tangent Spaces and Orientation

• Tensor Transformations

• Partitions of Unity

• The Poincare Lemma (for deRham cohomology)

• The Brouwer Fixed Point Theorem

• Integrating Functions on Manifolds

• Harmonic Functions and the Hodge Star Operator

Each topic is contained in an essentially stand-alone set of notes. However,
occasionally the later notes refer back to the earlier ones. I have tried to
minimize this.
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2 Two Results about Differentiation

The purposes of these notes is to prove two results about differentiation.
The first result is that C1 maps are differentiable and the second result is
the Chain Rule. We assume that all maps we consider fix the origin. You
can easily extract the general case from this.

2.1 Basic Definitions

Let F : Rm → Rn be a map. Let e1, ..., em be the standard basis vectors.
The expression

∂F

∂xj
(a) = lim

h→0

F (a+ hej)− F (a)

h
(1)

is called the jth partial derivative of F at a. The higher partial derivatives
are defined in an iterative way. For instance

∂2F

∂xi∂xj
=

∂

∂xi

(
∂F

∂xj

)
.

The derivative just listed has order 2. In general, the partial derivative of a
kth order partial derivative has order k + 1.

Here are some basic definitions.

1. F is called Ck if the order j partial derivatives exist and are continuous
for all j = 1, ..., k.

2. F is called C∞ if F is Ck for all k. In this case, F is also called smooth.

In this class we are going to work exclusively with smooth maps.
It turns out that when F is Ck, all the defined partial derivatives com-

mute. In particular, if F is C2 then

∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
.

This is by no means obvious. Your first homework assignment takes you
through a proof.

Here is a related notion. Now assume that F (O) = O, where O is the
origin. We say that F is differentiable at O if there is a linear transformation
T with the following property.
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lim
‖v‖→0

‖F (v)− T (v)‖
‖v‖

= 0 (2)

To expand this out, Equation 2 says that for any ε > 0 there is some N such
that ‖v‖ < 1/N implies that ‖F (v) − T (v)‖ < ε‖v‖. We usually denote T
by F ∗. When F is differentiable at 0, the first partial derivatives exist and

∂F

∂xj
= F ∗(ej). (3)

This means that F ∗ is just the matrix of first partial derivatives evaluated
at the origin.

The converse is trickier. It is not obvious that F is differentiable at O
even if all its partial derivatives exist at all points. In fact, this is false in
general.

2.2 A Strange Example

Here we construct a map F : R2 → R which has partial derivatives at all
points of R2 but is not differentiable at O.

Choose any smooth (π/2)-periodic function φ, with φ(0) = 0. This means
that φ(kπ/2) = 0 for k = 1, 2, 3, ... We arrange that φ(π/4) = 1. Using polar
coordinates, define F (r, θ) = rφ(θ). Here are some properties of F :

• F is continuous on R2 and C∞ on R2 −O.

• The partial derivatives of F exist everywhere. Since F = 0 on the
coordinate axes we have ∂F/∂x1(O) = ∂F/∂x1(O) = 0.

Suppose F is differentiable at O. The polar coordinates of the vector (h, h)
are (h

√
2, π/4). Hence F (h, h) = h

√
2. If F is differentiable at O then F ∗

is the 0 matrix, because it is given by the matrix of first partials. Thus
F ∗(h, h) = 0 for all h. In particular F ∗(1, 1) = 0. On the other hand, by
Equation 2 we have

F ∗(1, 1) =
1

h
F ∗(h, h) = lim

h→0

F ∗(h, h)

h
= lim

h→0

F (h, h)

h
=
√

2.

This is a contradiction. Hence F is not differentiable at O. The issue here is
that F is not C1.
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2.3 Continuous Differentiability

You don’t have to worry about garbage like the above example in our class.
In this section we prove that F is differentiable at O provided that F is C1.
This result extends easily to other points. So, C1 maps are differentiable
everywhere in their domain. In particular, smooth maps are differentiable at
every point in their domain and their derivative matrices vary continuously.

Let us call a function F nice if F is C1 and differentiable at O. We want
to prove that all C1 functions (which fix O) are nice.

Let us first clean off the statement we want to prove. Here F is a general
map from Rm to Rn. We can write F = (F1, ..., Fn). The function F is nice
if and only if each Fi separately is nice. So, it suffices to prove the case when
F : Rm → R is a function.

We now observe that two functions G1 and G2 are both nice, then so is
G1 ± G2. This follows from the usual sum and difference rules for taking
limits. We next observe that all linear functions are nice. In particular, the
matrix F ′ of partials of F (which is really just the gradient of F ) at the origin
is also nice. This means that F − F ′ is nice if and only if F is nice. So, we
can assume that all ∂F/∂xi(O) = 0 for all i = 1, ...,m.

Given a point v = (x1, ..., xn) let vk = (x1, ..., xk, 0, ..., 0). Note that vk
and vk+1 differ in the (k + 1)st coordinate. Notice that

F (v) =
n−1∑
k=1

(F (vk+1)− F (vk)).

Hence

‖F (v)‖ ≤
n−1∑
k=1

‖F (vk+1)− F (vk)‖. (4)

Let Lk be the line segment connecting vk+1 to vk. The restriction of F
to Lk is just a single variable function. This single variable function is, in
particular, differentiable.

Lemma 2.1 ‖F (vk+1)− F (vk)‖ ≤ AkBk where

Ak = ‖vk+1 − vk‖, Bk = sup
q∈Lk

∥∥∥∥ ∂F

∂xk+1

(q)
∥∥∥∥.

Proof: This is just the Fundamental Theorem of Calculus. But let’s give
a self-contained proof. By scaling and translation it suffices to consider the
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single variable case of f : R → R with f(0) = 0 and supx∈[0,1] |f ′(x)| ≤ 1.
We want to see that |f(1)| ≤ 1.

Fix some η > 1. Let us call a sub-interval J ⊂ [0, 1] bad if

|f(J0)− f(J1)| > η|J |.

Here J0, J1 are the endpoints of J and |J | is the length of J . We are trying
to prove that [0, 1] is not bad with respect to any η > 1.

If J is bad then one of the two intervals obtained by subdividing J in half
is bad. This is just the triangle inequality. So, if [0, 1] is bad we can find an
infinite nested sequence {Jn} of intervals, all bad, such that |Jn| → 0. By
compactness (or the completeness of R) the intersection

⋂
Jn has a single

point x of intersection. But, by construction |f ′(x)| ≥ η. This is a contra-
diction. ♠

Now we apply Lemma 2.1 to Equation 4. Since F is C1 and the partials
vanish at 0, we can make these partials as small as we like when we work
close to the origin. That is, we can make the expression Bk as small as we
like by taking ‖v‖ small. But then, for any ε > 0 we can find some N such
that when ‖v‖ < 1/N we have Bk ≤ ε for all k. At the same time we have
Ak < ‖v‖ for all k. Hence, by Equation 4 ‖F (v)‖ ≤ nε‖v‖. But then

‖F (v)− T (v)‖
‖v‖

< nε.

Here T is the 0-map. This shows that F is differentiable at O and F ∗ is the
0-map. Hence F is nice.

This completes the proof.

2.4 Reformulation of Differentiability

Our next goal is to prove the Chain Rule. We first reformulate the notion of
differentiability and then give the Chain Rule Proof.

Let F : Rm → Rn be a map such that F (O) = O. Let Dn be the map
which dilates distances by 1/n. For n large, Dn is massively shrinking points.
Define

Fn = Dn ◦ F ◦D1/n. (5)

Note that Fn is differentiable at 0 if and only if F is differentiable at 0. Also
F ∗n = F ∗. Finally, the behavior of F on any set K is the same as the behavior
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of Fn on the set Dn(K). We call this the scaling principle.

Definition: Let Gn be a family of functions indexed by the positive re-
als. We say that Gn → G uniformly on a compact set K if the following
is true. For any ε > 0 there is some N such that n > N implies that
‖Gn(x) − G(x)‖ < ε for all x ∈ K. We say that Gn → G uniformly on
compacta if Gn → G uniformly on any compact set K.

Now we reformulate differentiability in terms of this kind of convergence.

Lemma 2.2 Suppose F is differentiable at O. Then Fn → F ∗ uniformly on
compacta.

Proof: Let K be an arbitrary compact subset of Rm. Being compact, K is
closed and bounded. So, we can assume that K is the ball of some radius
centered at the origin. Using the scaling principle (i.e., by replacing F by
some Fn if needed) we can assume that K is the unit ball.

Let ε > 0 be given. Equation 2 says that there is some N such that
‖v‖ < 1/N implies that

‖F (v)− F ∗(v)‖ < ε‖v‖.

In particular this is true for the vector v = w/N , where w ∈ K is any vector.
What we are saying is that

‖F (w/N)− F ∗(w/N)‖ < ε‖w/N‖ ≤ ε/N.

But this is just saying that

‖F ◦D1/N(w)− F ∗ ◦D1/N(w)‖ ≤ ε/N.

Scaling this equation by N we find that

‖FN(w)− F ∗(w)‖ < ε. (6)

Here we are using the fact that DN ◦ F ∗ ◦ D1/N = F ∗. Equation 6 exactly
expresses the uniform convergence condition. ♠

Lemma 2.3 If Fn → T uniformly on compacta then F is differentiable at 0
and T = F ∗.
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Proof: The proof really just amounts to reversing the implications of all the
steps given for the previous proof. Let’s work it out. The hypotheses imply,
in particular, that Fn → T uniformly on the unit ball.

Let ε > 0 be given. There is some N so that ‖Fn(w)−T (w)‖ < ε for any
unit vector w in the ball of radius 1 centered at the origin and any n ≥ N . If
we have any vector v with ‖v‖ ≤ 1/N then we can write v = w/n for some
unit vector w and some n ≥ N . (This n is not necessarily an integer.) We
have

‖F (v)− T (v)‖ = ‖F (w/n)− T (w/n)‖ =

‖D1/n ◦ Fn(w)−D1/n ◦ T (w)‖ ≤ ε/n = ε‖v‖.
Dividing through by ‖v‖ we see that

‖F (v)− T (v)‖
‖v‖

< ε

provided that ‖v‖ < 1/N . This is equivalent to differentiability. By defin-
tion, we have T = F ∗. ♠

2.5 The Chain Rule

Now suppose that H = F ◦ G. We assume that all these functions map 0
to 0. We also assume that F and G are differentiable at 0. We want to
prove that H is differentiable at 0 and that H∗ = F ∗ ◦ G∗. We will use the
reformulation.

Recall that Fn = Dn ◦ F ◦D1/n. Define Gn and Hn similarly. We have

Hn = Fn ◦Gn. (7)

Let K be any compact set and let v ∈ K. We have

‖Hn(v)− F ∗ ◦G∗(v)‖ =

‖Fn ◦Gn(v)− F ∗ ◦G∗(v)‖ =

‖Fn ◦Gn(v)− F ∗ ◦Gn(v) + F ∗ ◦Gn(v)− F ∗ ◦G∗(v)‖ ≤
‖Fn ◦Gn(v)− F ∗ ◦Gn(v)‖+ ‖F ∗ ◦Gn(v)− F ∗ ◦G∗(v)‖.

Call the terms on the last line A and B. We estimate these two terms
separately. Because Gn → G uniformly on compacta, there is some larger
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compact subset K ′ such that Gn(K) ⊂ K ′ for n sufficiently large. But
Fn → F ∗ uniformly on K ′. That means that we can make A as small as we
like, independent of v, by taking n large enough.

Consider B. The map F ∗, being a linear transformation, only expands
distances by at most a constant factor: There is some ` with the following
property: If ‖w1 − w2‖ < ε then ‖F ∗(w1) − F ∗(w2)‖ < `ε. We can make
‖Gn(v)−G∗(v)‖ as small as we like by taking n large. But then B will only
be ` times bigger. Hence, we can make B as small as we like by taking n
large enough.

Since we can make both A and B as small as we like, we can make
‖Hn(v)− F ∗ ◦G∗(v)‖ as small as we like by taking n large. This shows that
Hn converges uniformly on compacta to F ∗ ◦ G∗. But this means that H is
differentiable at 0 and H∗ = F ∗ ◦G∗.
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3 Equality of the Mixed Partials

This set of notes is actually a worksheet. The goal of the worksheet is to
prove that the mixed second partials of a function F : Rn → R are equal
when they are continuous. This seems to be one of the most fundamental
results about partial derivatives.

Mostly we’ll work with n = 2. One disadvantage to this outline is that
the first problem is possibly the hardest.

Defintion: Say that F : R2 → R is special if F has continuous sec-
ond partial derivatives, and F vanishes on the coordinate axes. That is,
F (t, 0) = F (0, t) = 0 for all t.

1. Suppose F is special and

∂2F

∂x∂y
(0, 0) = 0.

Prove that

lim
t→0

F (t, t)

t2
= 0. (8)

Hint: First show that

|F (t, t)| ≤ t× sup
s∈[0,t]

|∂F/∂y(t, s)|.

2. Suppose that F is special and

∂2F

∂x∂y
(0, 0) = C.

lim
t→0

F (t, t)

t2
= C. (9)

(Hint: Apply Exercise 1 to the function G(x, y) = F (x, y) − Cxy, which is
again special.

3: Prove that the second mixed partials of a special function are equal at
the origin. Hint: use Exercise 2.
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4. Let V denote the set of functions on R2 whose second mixed partials
exist and are equal at the origin. Prove that V is a real vector space. (The
addition law is just (f +g)(x) = f(x)+g(x)). It follows from Exercise 3 that
V contains all special functions.

5. Say that a function G : R2 → R is simple if one of the following two
properties holds:

• G(x, y) = F (x, 0) for some function F having first partial derivatives.

• G(x, y) = F (0, y) for some function F having first partial derivatives.

Prove that the second mixed partials of a simple function are 0. Hence, the
vector space V contains all simple functions, and all finite sums of simple
functions.

6. Let F : R2 → R be a function whose second partials exist and are
continuous. Prove that F is the sum of a special function and finitely many
(in fact three) simple functions. Hence F ∈ V .

7. Let F : Rn → R be a function whose second partials exist and are
continuous. Prove that

∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
,

for all i and j. Hint: reduce this to the case n = 2, and then compose F
with suitable translations. In other words, if you can prove something at the
origin for all functions, you can prove the same thing for all functions at all
points.
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4 Inverse and Implicit Function Theorems

The purpose of these notes is to prove the Inverse Function Theorem and the
Implicit Function Theorem.

4.1 Some Technical Preliminaries

If you have a smooth function F and dF is invertible, you can translate,
compose with linear transformations, and scale so that dF is really close to
the identity in a huge neighborhood. Let’s study this situation first.

Let Br denote the ball of radius r centered at the origin. Suppose that F
is defined in B100, and smooth, and at all points F ∗ is within 10−100 of the
identity matrix. The first result is crucial to the whole business. It says that
the vectors F (p)−F (q) and p− q are almost the same vector in some sense.

Lemma 4.1 Given any points p, q ∈ B100, we have

‖(F (q)− F (p))− (p− q)‖ < ‖p− q‖/1000.

Proof: Let γ1 : I → Rn be the straight line segment joining p to q. We
parametrize so that γ1 has unit speed. Let γ2 = F (γ1). By the Chain Rule
dγ2/dt = F ∗(dγ1/dt). Given that F ∗ is within 10−100 of the identity along
γ1, we see that dγ1/dt and dγ2/dt are almost the same vector at each point.
More precisely, dγ2/dt = dγ1/dt + v, where ‖v‖ < 1/1000. Integrating, we
see that

(F (q)− F (p))− (q − p) =
∫
I
dγ2/dt dt−

∫
I
dγ2/dt dt =

∫
I
v dt.

This last vector-valued integral has norm less than ‖p− q‖/1000. ♠

Corollary 4.2 F is injective on B100.

Proof: Suppose not. Then we have p 6= q ∈ B100 with F (q) − F (p) = 0.
This violates Lemma 4.1. ♠

Let O be the origin. Assume now that F (O) = O.

Lemma 4.3 B1 ⊂ F (B10).
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Proof: Suppose this is false. Let y ∈ B1 be a point not in the image of B10.
Let φ(x) = ‖F (x)− y‖. Let

α = inf
x∈B10

φ(x).

Since B10 is compact there is some x ∈ B10 such that φ(x) = α. If α = 0 we
are done. Suppose not.

By Lemma 4.1, we have ‖x‖ < 2. Let x′ = x + (y − F (x)). We have
x′ ∈ B4 ⊂ B10. By Lemma 4.1, there is some v with ‖v‖ ≤ α/100 such that

F (x′)− F (x) = x′ − x+ v = y − F (x) + v.

Simplifying this, we get F (x′)− y = v. Hence φ(x′) < α, a contradiction. ♠

We need one last technical result.

Lemma 4.4 Let φ = g ◦h where g is smooth and h is k-times differentiable.
Then φ is k-times differentiable.

Proof: This goes by induction. Let f ∗ be the matrix derivative of f , and
likewise for the other functions. When k = 1 the result is just the Chain
Rule. Consider the general case. From the Chain Rule, we have

φ∗ = (g∗ ◦ h)× h∗.

The product is matrix multiplication. The function g∗ is smooth because g
is smooth. The function h is k − 1 times differentiable because it is (more
strongly) k times differentiable. So, by induction g∗ ◦ h is k − 1 times dif-
ferentiable. Also h∗ is k − 1 times differentiable because it is the matrix of
first partials of h. By the product rule, this product is also k − 1 times dif-
ferentiable. Since φ∗ is k−1 times differentiable, φ is k-times differentiable. ♠

4.2 The Inverse Function Theorem

Let U, V be subsets of Rn. A diffeomorphism from U to V is a bijection
F : U → V such that F and F−1 are both smooth and the derivatives F ∗

and (F−1)∗ are invertible at all points of their domains.
Here is the Inverse Function Theorem.
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Theorem 4.5 Let U be an open subset of Rn and let f : U → Rn be a
smooth map. Suppose that f ∗ is invertible at some point x ∈ U . Then there
are open subset Ux ⊂ U and Vx = F (Ux) such that x ∈ Ux and F : Ux → Vx
is a diffeomorphism.

Composing with linear transformations, translating, and scaling, we can
assume that F is normalized as in §4.1. The results §4.1 show that F is
injective on B100. In particular, F is injective on U , the open unit ball.

Lemma 4.6 V is an open set and F−1 is continuous on V .

Proof: Choose any y ∈ V and let x ∈ U be such that F (x) = y. By
translation and scaling and Lemma 4.3, F maps some small ball around x to
a set which contains a small ball around y. Hence V contains an open ball
centered about y. Hence V is open

To show that F−1 is continuous it suffices to show that F maps open
subsets of U to open subsets of V . But this is just the same argument that
we just gave. ♠

Lemma 4.7 F−1 is differentiable and (F−1)∗ = (F ∗)−1 ◦ F−1 on V .

Proof: Let Dn be dilation by n. Translating, we reduce to proving this
equation at O. The dilated map Fn = Dn ◦ F ◦D1/n converges to F ∗|O uni-
formly on compacta. But (F−1)n = (Fn)−1, and (Fn)−1 converges uniformly
on compacta to (F ∗)−1. But this implies that F−1 is differentiable at O and
its derivative is the inverse of F ∗|O. ♠

Now we know that F−1 is differentiable. Suppose that F−1 is k-times dif-
ferentiable. The formula in Equation 4.7 combines with Lemma 4.4 to show
that (F−1)∗ is k-times differentiable. Hence F−1 is k+ 1 times differentiable.
By induction, F−1 has partial derivatives of all orders. Since differentiable
functions are continuous, all the partials of F−1 are also continuous. Hence
F−1 is smooth. We’re done.
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4.3 The Implicit Function Theorem

Suppose that F : RN → Rn with n < N . We call p ∈ RN a regular point
for F if F ∗|p is a surjective linear map. Let F |V be the restriction of F to an
open subset V .

Theorem 4.8 (Implicit Function Theorem) Suppose that p is a regular
value for F . Let q = F (p). Then there is an open neighborhood V of p and

an an open subset U ⊂ RN−n and a smooth bijection f : U → V ∩(F |)V−1(q)
such that f ∗ has full rank at each point.

I am stopping short of calling f a diffeomorhism because it is not a map
from a Euclidean space to itself. It is a map from RN−n to RN . Otherwise
it behaves like a diffeomorphism.

Composing with linear maps and translating, it suffices to consider the
case when F (O) = O and F ∗|O is just the projection from RN to Rn. In
particular, F ∗|O is the identity on the vectors e1, ..., en and kills the remaining
standard basis vectors.

We introduce the new map F̂ : RN → RN by the formula

F̂ (v1, ..., vn, vn+1, ..., vN) = (F (v1, ..., vN), vn+1, ..., vN). (10)

That is, the first n coordinates are taken up by F and then we pad out the
remaining coordinates. By construction F̂ ∗|O is the identity matrix. By the
Inverse Function Theorem, There are open subsets Û and V̂ about the
origin such that F̂ ∗ : Û → V̂ is a diffeomorphism. We can trim these sets
so that V̂ is an open ball centered at the origin. Now let Π be the copy
of RN−n given by the last N − n coordinates. That is, Π = {0} × RN−n.
Notice that F̂ (x) ∈ Π if and only if F (x) = O. Hence F̂ gives a map from
Û ∩ (F |

Û
)−1(O) to V̂ ∩ Π.

Since F̂ is a diffeomorphism from Û to V̂ , the inverse F̂−1 gives a diffeo-
morphism from V̂ to Û , and this diffeomorphism maps V̂ ∩ Π to the set we
care about, Û ∩ (F̂

Û
)−1(O). Now we change notation in the following way:

• Let U = V̂ ∩ Π.

• Let V = Û .

• Let f be the restriction of F̂−1 to U .

By construction f is a smooth bijection from U to V ∩ F−1(O). Since F̂−1

is a diffeomorphism, the derivative of f has full rank everywhere.
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5 Elementary Properties of Volume

This is a worksheet which deals with elementary properties of volume. Prob-
lem 5 is the really significant and useful problem.

1: Define the area of a parallelogram P in R2 in the following way. For
each covering U of P by a finite union of squares Q1, ..., Qn whose sides are
parallel to the coordinate axes define

µ(U) =
n∑
i=1

d2i , di = side length(Qi).

Now define
area(P ) = inf

U
µ(U)

where the infimum is taken over all covers. Of course this definition works
much more generally, and also coincides with the Lebesgue measure of P .

Let M be an elementary matrix, namely one with 1s on the diagonal and
then a single other nonzero element. Let Q be the unit square. Prove that
M(Q) also has area 1. This matches with the fact that det(M) = 1.

2: Suppose that M is an elementary 2 × 2 matrix as in Problem 1. Use
the result of Problem 3 to prove that for any parallelogram P the two paral-
lelograms P and M(P ) have the same area. Prove the same result when M
is a diagonal matrix with positive entries.

3: Prove that for every positive determinant 2 × 2 matrix M and every
parallelogram P we have

A(M(P ))

A(P )
= det(M).

Here A(·) is the area function defined as in Problem 3. Hint: Use the fact
that M is the product of a diagonal matrix and elementary matrices.

The purpose of this problem is to reconcile two common definitions of the
area of a parallelogram. One definition is given by cube covers as above, and
the other is just that the area of a parallelogram P is det(M) where M is
positive determinant linear transformation mapping the unit square Q to P .
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4: Formulate a result similar the one in in Problem 3 for Rn and at least
sketch how you would prove it.

5: Let M be an positive determinant linear transformation of Rn. Suppose
that {fj} is a sequence of smooth maps defined on Rn such that fj(0) = 0
and the matrix derivative Dfj differs from M at every point by less than
1/j. Let Q be the unit cube. Use the result of Problem 6 to show that the
volume of fj(Q) converges to det(M). Extended Hint: look at the symmetric
difference between are fj(Q) and M(Q). Show this is small. You to this by
writing fj = Lj + εj where Lj is the linear map given by Dfj|0 and εj is a
map that you prove is extremely small.
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6 The Change of Variables Formula

Consider the following data.

1. U and V are open subsets in Rn.

2. F : U → V is a diffeomorphism.

3. f : V → R be a continuous function.

4. K ⊂ V is a compact set.

The purpose of these notes is to give a self-contained proof of the following
result. ∫

K
f dV =

∫
F−1(K)

(f ◦ F ) det(dF ). (11)

The result also holds when f is just Lebesgue measurable. But, this re-
sult requires some auxiliary results from measure theory, like the monotone
convergence theorem. The special case when f is continuous suffices for all
applications in the class, because these have to do with integrating smooth
differential forms on manifolds.

I’ll prove the result through a series of steps, each treating a more general
case.

6.1 Step 1

The case when K is a cube and F is a linear transformation and f is a
constant function just boils down to the determinant.

6.2 Step 2

Let’s prove this result when K is a cube and f is a constant function. If
f = 0 then both integrals are obviously 0. So, we can scale so that f = 1.
Introduce the function

J(K,F ) =

∫
F−1(K) det(DF )

µ(K)
. (12)

Equation 11 is equivalent to the statement that J(K,F ) = 1.
Suppose that there is some b > 0 such that J(K,F ) > 1 + b. Then, for

every ε > 0, there is some sub-cube K ′ ⊂ K such that the side length of
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K ′ is less than ε and J(K ′, F ) > 1 + b. This comes from the additivity the
integral. If the ratio were near 1 on all small scales, it would also be near
one on the large scale.

However, once ε is sufficiently small, the restriction of F to K ′ is nearly
a linear map, and the ratio J(K ′, F ) must converge to 1. This is a contra-
diction. The same argument shows that there cannot be any b > 0 so that
J(K,F ) < 1− b.

These two cases combine to show that J(K,F ) = 1.

6.3 Step 3

Suppose that K is a cube and f is continuous. This time define

J(K,F, f) =

∫
F−1(K)(f ◦ F ) det(DF )∫

K f
(13)

The same argument as in Step 2 works here. The point is that the re-
striction of f to a small cube K ′ ⊂ K is nearly constant. So, up to an error
which vanishes as ε > 0 we are back in the constant function case.

6.4 Step 4

Say that two cubes are almost disjoint if they have disjoint interiors. Say that
K is approximable by cubes if, for every ε > 0, there is some finite collection
Q1, ..., Qm of almost disjoint cubes (with m depending on ε) so that

K ⊂ Q =
m⋃
i=1

Qi, µ(K) >
m∑
i=1

µ(Qi)− ε. (14)

Here µ denotes Lebesgue measure.
Now I’ll prove the result assuming that K is approximable by cubes. Once

ε is sufficiently small, we have Q ⊂ V . By compactness, there is some upper
bound C1 for the restriction of |f | to Q. Hence∣∣∣∣ ∫

Q
f −

∫
K
f
∣∣∣∣ < C1ε. (15)

Since F is a diffeomorphism and Q is compact, there exists some constant
C ′2 such that the restriction of F−1 to Q expands distances by a factor of C ′2
and hence volume by at most C2 = (C ′2)

n. Hence

µ(F−1(Q−K)) < C2ε. (16)
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By compactness again, there is a constant C3 so that the restriction of
| det(DF )| to F−1(Q) is at most C3. Hence

∣∣∣∣ ∫
F−1(Q)

(f ◦ F ) det(DF )−
∫
F−1(K)

(f ◦ F ) det(DF )
∣∣∣∣ < C1C2C3ε. (17)

Since the cubes Q1, ..., Qm are almost disjoint, we have

m∑
i=1

∫
Qi

f =
∫
Q
f. (18)

m∑
i=1

∫
F−1(Qi)

(f ◦ F ) det(DF ) =
∫
F−1(Q)

(f ◦ F ) det(DF ). (19)

Since Equation 11 is true for individual cubes, it is also true for finite
sums of cubes, as in the set Q. But then Equations 15 and 17 tell us that
Equation 11 holds for K up to an error of C4ε, where C4 = C1 + C1C2C3.
But ε is artibrary. Hence Equation 11 holds for K.

6.5 Step 5

Now we show that every compact K ⊂ V is approximable by cubes. With-
out loss of generality, we can assume that K ⊂ [0, 1]n. For notational con-
venience, set X = [0, 1]n. Say that a dyadic interval is an interval whose
endpoints are rational numbers of the form k/2m for integers k and m. Say
that a dyadic cube is the product of dyadic intervals which all have the same
length. The set of centers of dyadic cubes is dense in Rn and also the set
of possible diameters of such cubes is dense. For this reason, X −K is the
countable union of dyadic cubes.

Let P1, P2, P3, ... be this infinite collection. We have

∞∑
i=1

µ(Pi) = µ(X −K). (20)

Setting

P ` =
⋃̀
i=1

Pi, (21)

we have
lim
`→∞

µ(P `) = µ(X −K), K ⊂ X − P `. (22)
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Given ε, we can choose ` so that µ(X −K) < µ(P `) + ε. Using the fact
that

µ(K) + µ(X −K) = 1 = µ(P `) + µ(X − P `) (23)

we see that
µ(K) > µ(X − P `)− ε. (24)

But X − P ` is a finite union of almost disjoint cubes, say Q1, ..., Qm. The
way to see this is that we can scale up the whole picture by some power of 2
so that every cube in sight has integer coordinates. Then the set of interest
to us is tiled by integer cubes.
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7 Manifolds

The purpose of these notes is to define what is meant by a manifold , and
then to give some examples.

7.1 Topological Spaces

If you haven’t seen topological spaces yet, just skip this section.
The space underlying a manifold is traditionally taken to be a second-

countable Hausdorff topological space. To say that a space X is second
countable is to say that there is a countable collection of open subsets of X
such that every open subset of X is a union of members from the countable
collection – i.e., X has a countable basis . To say that X is Hausdorff is to
say that, for every two distinct points x, y ∈ X, there are disjoint open sets
Ux and Uy such that x ∈ Ux and y ∈ Uy.

That is all I’m going to say about topological spaces. Below I’m going to
define manifolds in terms of metric spaces. The definition I give is equivalent
to the definition that is given in terms of topological spaces, even though at
first glance it looks different.

7.2 Metric Spaces

A metric space is a set X together with a function d : X×X → R such that

• d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.

• d(x, y) = d(y, x) for all x, y ∈ X.

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

d is called the distance function on X.

Example 0: It almost goes without saying, but I’ll say explicitly that any
subset of a metric space is automatically a metric space, with the same met-
ric. This fact is frequently and implicitly used.

Example 1: The classic example of a metric space is a subset X ⊂ Rn

equipped with the distance function given by d(x, y) = ‖x− y‖, here ‖ · ‖ is
the Euclidean norm.

22



Example 2: This example is unrelated to the rest of the material in the
notes, but I like it. Choose a prime p and on Z define d(x, y) = p−k, where k
is the largest integer such that pk divides x− y. This is known as the p-adic
metric on Z. Geometrically, Z looks like a dense subset of points in a Cantor
set when it is equipped with the p-adic metric.

From now on, X denotes a metric space, and d the metric on X.

Balls: Given x ∈ X and some r > 0, we define

Br(x) = {y ∈ X| d(x, y) < r}. (25)

The set Br(x) is known as the open ball of radius r about x.

Open Sets: A subset U ⊂ X is open if, for every x ∈ U , there is some
r > 0 such that Br(x) ⊂ U .

Continuity: Given to metric spaces X and Y , a map f : X → Y is called
continuous if, for all open V ⊂ Y the inverse image U = f−1(V ) is open in
X. This definition is equivalent to the usual ε − δ definition of continuity.
From our definition, it is clear that the composition of continuous functions
is continuous. If f : X → Y and g : Y → Z are both continuous, then so is
g ◦ f : X → Z.

Homeomorphisms: A map f : X → Y is a homeomorphism if f is a
bijection and both f and f−1 are continuous. So, in particular, a homeomor-
phism from X and Y induces a bijection between the open subsets of X and
the open subsets of Y . To test your understanding, prove that the open ball
in Rn is homeomorphic to Rn but the closed ball in Rn is not.

Compactness: A covering of X is a collection of open sets whose union
equals X. A subcover of a covering is some subset of the covering which
is, itself, a covering. A subset of X is compact if every covering of X has a
subcovering with finitely many elements. It is a classic theorem that a subset
of Rn is compact if and only if it is closed and bounded.

σ-Compactness X is called σ-compact if X is a countable union of compact
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subsets. For instance, any closed subset of Rn is σ-compact, but only the
bounded closed subsets are compact.

7.3 Topological Manifolds

Coordinate Charts: Let M be a metric space. A coordinate chart in M is
an open set U ⊂M and a homeomorphism

h : Rk → U. (26)

We write this as (U, h). This coordinate chart is said to contain p if p ∈ U .
Here k could depend on the point – e.g. when M is the union of a line and
a plane – but we’re going to be interested in the case when k is the same for
all points.

Basic Definition: A topological k-manifold is a σ-compact metric space
M such that every point of M is contained in some coordinate chart.

Examples: Here are some examples of topological manifolds.

• Rn itself.

• Sn, the n-dimensional sphere.

• The surface of any polyhedron.

• The Koch snowflake.

• The square torus - i.e. the square with sides identified.

The simplest example of a σ-compact metric space which is not a topological
manifold is the union of the coordinate axes in R2.

Overlap Functions: Suppose that M is a topological manifold. Suppose
that (U1, h1) and (U2, h2) are two coordinate charts in M . Suppose that these
charts overlap. That is, the set V = U1 ∩ U2 is nonempty. Then we have a
map

h−12 ◦ h1 : h−11 (V )→ h−12 (V ). (27)

This map is a homeomorphism because it is the composition of homeomor-
phism. The function h−12 ◦ h1 is called an overlap function.
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7.4 Smooth Manifolds

Compatible Charts: Let M be a topological manifold. Two coordinate
charts U1, U2 ∈M are smoothly compatible if the overlap function defined by
these charts is not just a homeomorphism, but actually smooth.

Atlases: A smooth atlas A on M is a system of coordinate charts which
are all compatible with each other. We insist that every point of M is con-
tained in at least one chart of A. The atlas A is called maximal if there is
no additional coordinate chart, not in A, which is compatible with all the
coordinate charts in A. Zorn’s Lemma guarantees that every smooth atlas
on M is contained in a maximal smooth atlas.

Main Definition: A smooth manifold is a topological manifold equipped
with a maximal smooth atlas.

Example 1: Let F : Rn → Rm be a smooth map and let q ∈ Rm be
some point. We call q a regular value, if for every p ∈ F−1(q), the differential
dF (p) is surjective. In this situation, the Implicit Function Theorem gives a
coordinate chart about p, and this coordinate chart is smooth in the usual
sense. So, when q is a regular value, F−1(q) is a smooth manifold of dimen-
sion n−m assuming that it is nonempty.

Example 2: Take the unit cube in Rn and identify opposite sides in the
most direct possible way. Call the resulting space X. If you want to make
X into a metric space, define d(x, y) to be the length of the shortest path
joining x to y, where these paths are allowed to go through the identified
sides. You can find coordinate charts from X into Rn which are local isome-
tries i.e. distance preserving when restricted to small enough open sets. (Try
this for n = 2 first.) The overlap functions are again local isometries and
hence smooth. So, the unit cube in Rn with its sides identified is naturally
a smooth n-manifold. It is known as the square n-torus .

7.5 Maps between Smooth Manifolds

Main Definition: Suppose that M1 and M2 are smooth manifolds. A map
f : M1 →M2 is smooth if all compositions of the form

h−12 ◦ f ◦ h1 (28)
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are smooth, where h1 is a homeomorphism associated to a chart in M1 and
h2 is a homeomorphism associated to a chart in M2. What makes this a
good definition is that all the overlap functions are smooth. So, to verify
the smoothness of f , you don’t have to examine all the uncountably many
coordinate charts in the two maximal atlases. You just to verify it for some
pair of sub-atlases.

Diffeomorphisms: A map f : M1 → M2 is a diffeomorphism if f is a
bijection and both f and f−1 are smooth. It is easy to verify that the com-
position of smooth diffeomorphisms is again a diffeomorphism. In particular,
the set of diffeomorphisms from M to itself is a group! It is written Diff(M).

Exercise: Here is an interesting but somewhat difficult problem. Suppose
that M is any smooth manifold and p1, ..., pn ∈ M are some finite set of
points. Let π be some permutation of these points. Prove that there is a
diffeomorphism of M which agrees with π on these points. Try it first for R2,
and then for homeomorphisms of topological manifolds. Getting the map to
be smooth, on a smooth manifold, is additional work.

7.6 Riemann Surfaces

The same basic framework allows you to define other kinds of structures on
topological manifolds. I’ll just give one example, because it is especially im-
portant.

Complex Analytic Maps: Let U ⊂ C be an open set. A map f : U → C
is called complex analytic if it is continuously differentiable, and

df(p) =
[
A(p) B(p)
−B(p) A(p)

]
(29)

for all p ∈ U . The real valued functions A(p) and B(p) vary continuously
with p. Geometrically, df(p) is a similarity. When Equation 29 is written
out in terms of the matrix of partial derivatives, it is known as the Cauchy-
Riemann equations .

Alternate Formulation: It is an amazing fact that a complex analytic
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map is always smooth, and equal to a convergent power series

f(z) =
∞∑
i=0

cj(z − z0)j, cj ∈ C (30)

in a neighborhood of each point z0 ∈ U . You could take this as an alternate
definition of what it means for a map to be complex analytic.

Main Definition: A Riemann Surface is a 2-dimensional smooth manifold
such that all the overlap functions defined by its atlas are complex analytic.
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8 Tangent Spaces and Orientation

8.1 Smooth Curves

Let M be a smooth manifold and p ∈M be a point. A curve on M through
p is a smooth map

φ : (−ε, ε)→M (31)

with φ(0) = p. To say that φ is smooth in the neighborhood of some point s
is to say that h−1 ◦ φ is smooth at s, where (h, U) is a coordinate chart and
φ(s) ∈ U . This definition does not depend on the coordinate chart, because
the overlap functions are all diffeomorphisms.

Let φ1 and φ2 be two smooth curves through p. We write φ1 ∼ φ2 if

d(h−1 ◦ φ1)|0 = d(h−1 ◦ φ2)|0.

Again, this is independent of the choice of coordinate chart used. The equiv-
alence class of φ is denoted [φ], so we are saying that [φ1] = [φ2].

We say that a tangent vector at p ∈M is an equivalence class of regular
curves through p. We let Tp(M) be the set of tangent vectors at p.

8.2 Vector Space Structure

We would like to show that Tp(M) is a vector space, and not just a set.
Suppose that M is k-dimensional, so that our coordinate charts are maps
from Rk to M . Given a vector V ∈ Rk, let LV denote the parametrized
straight line through the origin whose velocity is V . That is LV (t) = tV .

Let (U, h) be a coordinate chart with h(0) = p. We define a map

dh : Rk → Tp(M)

by the rule
dh(V ) = [h ◦ LV ].

Lemma 8.1 dh is injective.

Proof: Suppose that dh(V ) = dh(W ). Then [h ◦ LV ] = [h ◦ LW ]. But we
can use the chart (h, U) to measure the equivalence. So,

d(h−1 ◦ h ◦ LV )|0 = d(h−1 ◦ h ◦ LW )|0.
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But then
V = d(LV )|0 = d(LW )|0 = W.

This completes the proof. ♠

Lemma 8.2 dh is surjective.

Proof: Let [φ] ∈ Tp(M) be some tangent vector. Let V be the velocity of
the curve h−1 ◦ φ. By construction dh(V ) ∼ φ. ♠

Now we know that dh is a bijection from Rk to Tp(M). We define the
vector space on Tp(M) in the unique way which makes h a vector space
isomorphism. That is,

dh(V ) + dh(W ) = dh(V +W ), r dh(V ) = dh(rV ).

Lemma 8.3 The vector space structure on Tp(M) is independent of the
choice of coordinate chart.

Proof: Suppose that h1 and h2 are two coordinate charts having the property
that h1(0) = h2(0) = p. Let

φ = h−12 ◦ h1
be the overlap function. Since φ is a diffeomorphism, dφ|0 is a vector space
isomorphism. We just have to check that

d(h2 ◦ φ) = dh2 ◦ dφ.

Choose some vector V ∈ Rk and consider the two curves

1. h2 ◦ φ(LV )

2. h2 ◦ LW , where W = dφ0(V ).

We want to show that these curves are equivalent. We can measure this
equivalence using the chart (U2, h2). We want to see that φ ◦ LV and LW
have the same velocity at 0. The velocity of LW at 0 is just W . The velocity
of φ ◦ LV at 0 is, by definition, dφ(V ). This is W . So, these two curves are
equivalent. ♠

Now we know that Tp(M) is a k-dimensional real vector space at each
point p ∈M .

29



8.3 The Tangent Map

Suppose M and N are smooth manifolds and f : M → N is a smooth map.
Given p ∈M let q = f(p). We have the differential map:

df |p : Tp(M)→ Tq(N),

defined as follows: Given any [φ] ∈ Tp(M) define

df([φ]) = [f ◦ φ].

Lemma 8.4 This definition is independent of all choices.

Proof: Suppose that φ1 and φ2 are two curves with φ1 ∼ φ2. We want to
see that f ◦φ1 ∼ f ◦φ2. Let (U, g) be a coordinate chart for M with p = g(0)
and let (V, h) be a coordinate chart for N with q = h(0). We are trying to
show that

d(h−1 ◦ f ◦ φ1)|0 = d(h−1 ◦ f ◦ φ2)|0.

Note that
h−1 ◦ f ◦ φj = (h−1 ◦ f ◦ g) ◦ (g−1 ◦ φj).

The maps on the right hand side are maps between Euclidean spaces, and
the chain rule applies. Since φ1 ∼ φ2, we know that

d(g−1 ◦ φ1)|0 = d(g−1 ◦ φ2)|0,

because φ1 ∼ φ2. The desired equality now follows from the chain rule. ♠

Let’s check that our new definition of df gives us the same definition in
cases we have already worked out.

Lemma 8.5 If M = Rk and N = Rm and f(0) = 0, then the definition of
df agrees with the usual one.

Proof: For Euclidean spaces, we can always use the identity coordinate
charts. There is a canonical isomorphism from Tp(M) and Rk which maps
[φ] to the velocity of φ at 0. Note that dfold maps V to the velocity of f ◦ φ.
But this is just the velocity of dfnew([φ]). ♠
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Lemma 8.6 If M = Rk and f : M → N is a coordinate chart, then df
agrees with the initial definition of df given in terms of straight lines.

Proof: The previous definition tells us that df(V ) = [f ◦ LV ]. But this
matches the new definition, since every tangent vector in Tp(M) can be rep-
resented by some LV . ♠

Now let’s talk about the Chain Rule.

Lemma 8.7 Smooth maps between manifolds obey the chain rule.

Proof: Suppose f12 : M1 →M2 and f23 : M2 →M3 are smooth maps. Then

d(f23 ◦ d12)

maps the tangent vector [φ] to [f23 ◦ f12 ◦ φ]. But this is clearly the same as
df23 ◦ df12[φ]. ♠

Even though we have established the chain rule, we don’t yet know that
df is a linear map. So, here’s this final result.

Lemma 8.8 df is a linear map.

Proof: Let g and h be coordinates for M and N , as above. Introduce the
map

ψ = h−1 ◦ f ◦ g.

Note that
f = h ◦ ψ ◦ g−1.

By the Chain Rule, we have

df |p = (dh) ◦ (dψ) ◦ (dg)−1.

Here dψ means dψ|0. All three of the maps on the right are linear maps, so
df is as well. ♠
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8.4 Orientations on Manifolds

Orientations on a Vector Space: Let V be a finite dimensional vector
space over R. Let {v1, ..., vn} and {w1, ..., wn} be two bases for V . We have
the transition matrix Tij which expresses the identity map I : V → V rela-
tive to these two bases. Call this matrix T . We call the two bases equivalent
if det(T ) > 0. By construction, this is an equivalence relation, and there are
precisely two equivalence classes. An orientation of V is a choice of one of
the equivalance classes.

Behavior under Linear Isomorphism: If V and W are vector spaces and
T : V → W is a vector space isomorphism, then T respects the equivalence
relations used to define orientations. So, T maps the set of two orientations
on V to the set of two orientations on W .

Pointwise Orientations: Let M be a smooth manifold and S ⊂ M be
some set. A pointwise orientation on S is a choice of orientation on Tp(M)
for each p ∈ S.

Suppose that M and N are smooth manifolds and f : M → N is a smooth
and injective map. Let S ⊂M be some set and let T = f(M). Let p ∈ S and
q = f(p) ∈ T . The differential dfp is linear, and hence induces a map from
the set of (two) orientations on Tp(M) to the set of (two) orientations on
Tq(N). So, df maps a pointwise orientation on M to a pointwise orientation
on N .

Constant Orientations: When M = Rk, there are two constant orien-
tations . In either case, we just identify all the tangent spaces of M by trans-
lation, and take the same orientation at each point. If U, V ⊂ Rn is an open
set and h : U → V is a diffeomorphism, then dh maps a constant orientation
on U to a constant orientation on V . The point is that the determinant of
dh never changes sign.

The result here is worth pondering. Even though dh could vary from
point to point, on the level of orientations it is always a constant map.

Local Orientations: Let M be a manifold and let U ⊂ M be an open
set. A pointwise orientation on U is a local orientation if the orientation
is the image of a constant orientation under a coordinate chart. It follows
from the chain rule, and from the facts already mentioned about constant
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orientations, that this definition is independent of coordinate chart.

Global Orientations: A global orientation on M is a pointwise orienta-
tion which is a local orientation relative to every coordinate chart. If M has
a global orientation, then M is said to be orientable/
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9 Tensor Transformations

Let V andW be vector spaces and letM : V → W be a linear transformation.
The map M gives a linear transformation

M∗ : T r(W )→ T r(V ). (32)

Note that V and W have switched. Let T : W r → R be a tensor of type r.
We have the tensor M∗T : V r → R defined by the equation

M∗(T )(V1, ..., Vr) = T (M(V1), ...,M(Vr)). (33)

In other words, we map V1, ..., Vr into W and then apply the tensor to them.
Everything involved is linear, so M∗ is a linear map. The goal of these notes
is to explain the action of M∗.

Let {v1, ..., vm} is a basis for V and {w1, ..., wn} is a basis for W . We have
the formula

M(vi) =
n∑
k=1

Mikwk. (34)

The goal is to express the map M∗ in terms of these coefficients.
There are three cases, the first of which is just a warm-up: the linear

functional case, the general case, and the alternating case.

9.1 Linear Functional Case

We are interested in M∗ : W ∗ → V ∗. We have the dual bases {v∗1, ..., v∗m}
and {w∗1, ..., w∗n}. Here v∗i (vj) = 1 if i = j and 0 otherwise. Same goes for
w∗i . The matrix for M∗ is just the transpose of the matrix for M .

To figure out the matrix for M∗, we just have to see that M∗(w∗j ) does
to vi. We compute

M∗(w∗j )(vi) =

w∗j (M(vi)) =

w∗j (
∑
k=1n

(Mikwk)) =

n∑
k=1

w∗j (Mikwk) =

Mij.
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In short,
M∗(w∗j )(vi) = Mij. (35)

But that means that

M∗(w∗j ) =
m∑
k=1

Mijv
∗
i (36)

This is why the matrix for M∗ is just the transpose of Mij.

9.2 General Case

Let’s introduce the multi-index notation. Let I = (i1, ..., ir) be an r-tuple of
numbers. We write

v∗I = v∗i1 ⊗ ...⊗ v
∗
ir . (37)

We write the same thing for w∗I . Also, we write

vI = (vi1 , ..., vir).

This is just an r-tuple of vectors. We have v∗I (vJ) = 1 if I = J and 0
otherwise.

We want to figure out what M∗(w∗J) does to vI . This gives the component
M∗

IJ of the giant matrix representing M∗.
We compute

M∗(wJ)(vI) =

wJ(M(vI)) =

wJ(M(vi1), ...,M(vir)) =

w∗j1 ⊗ ...w
∗
jr(M(vi1), ...,M(vir)) =

w∗j1(M(vi1))× ...× w∗jr(M(vir)) =

Mi1j1 ...Mirjr .

So, the bottom line is that

MIJ = Mi1,j1 ...Mirjr . (38)
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9.3 Alternating Case

The basis elements for ∧r(V ∗) are given by

[v∗I ] = A(v∗I ) = vi1 ∧ ... ∧ vir .

Sinilarly for ∧r(W ∗). The tensor M∗([wJ ]∗) is some linear combination of
the various [vI ]

∗. We want to find the coefficients. We have

[w∗J ] =
∑
σ

ε(σ)w∗σJ . (39)

Here σ is a permutation, and ε(σ) is the sign of σ, and σJ denotes the multi-
index you get when you permute the entries of J according to the action of
σ.

Now let’s take I to be an increasing multi-index: i1 < ... < ir. From the
previous case, and linearity, we have

M∗([w∗J ])(vI) =
∑
σ

ε(σ)MI,σJ =
∑
σ

ε(σ)Mi1σ(j1), ...,Mir,σ(jr)). (40)

This last expression is just the determinant of the r × r matrix you get by
taking I rows of M and the J columns.

9.4 Crucial Special Case

Suppose that V = W and r = n = dim(V ). Then the transformation law
tells us that M∗ is just multiplication by det(M). In particular, M∗ is the
identity map if det(M) = 1.
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10 Partitions of Unity

10.1 The Result

Let M be a smooth manifold. This means that

• M is a metric space.

• M is a countable union of compact subsets.

• M is locally homeomorphic to Rn. These local homeomorphisms are
the coordinate charts.

• M has a maximal covering by coordinate charts, such that all overlap
functions are smooth.

Let {Θα} be an open cover of M . The goal of these notes is to prove that
M has a partition of unity subordinate to {Θα}. This means that there is a
countable collection {fi} of smooth functions on M such that:

• fi(p) ∈ [0, 1] for all p ∈M .

• The support of fi is a compact subset of some Θα from the cover.

• For any compact subset K ⊂ M , we have fi = 0 on K except for
finitely many indices i.

• ∑ fi(p) = 1 for all p ∈M .

The support of fi is the closure of the set p ∈M such that fi(p) > 0.
These notes will assume that you already know how to construct bump

functions in Rn. Note: I deliberately picked a weird letter for the cover, so
that it doesn’t interfere with the rest of the construction.

10.2 The Compact Case

As a warm-up, let’s consider the case when M is compact. For every p ∈M
there is some open set Vp such that

• p ∈ Vp.

• Vp ⊂ Θα for some Θα from our cover.
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• Vp is contained in a coordinate chart.

Using the fact that we are entirely inside a coordinate chart, we can construct
a bump function f : M → [0, 1] such that f(p) > 0 and the support of f is
contained in a compact subset of Vp. Let Wp ⊂ Vp denote the set of points
where f > 0. Then Wp is an open set which contains p. Call Wp a nice open
set .

The set {Wp| p ∈M} is an open covering of M . Since M is compact, we
can find a finite number W1, ...,Wm of nice open sets such that M =

⋃
Wi.

Let g1, ..., gm be the functions associated to these open sets. By construction,
gi > 0 on Wi. This means that the sum

∑
gi is positive on M . Define

fi =
gi∑
gi
. (41)

Then f1, ..., fm make the desired partition of unity.
The rest of the notes deal with the case when M is not compact.

10.3 Fattening Compact Sets

We need two technical lemmas.

Lemma 10.1 Let p ∈ M be any point. For all sufficiently small ε, the ball
of radius ε has compact closure in M .

Proof: There is some neighborhood U of p which is homeomorphic to Rn.
Let φ : U → Rn be a homeomorphism. Choose some closed ball B ⊂ Rn

which contains φ(p). Consider φ−1(B). This is a compact subset of M , and
it contains the open set U ′ = φ−1(interior(B)). Any sufficiently small open ε
ball ∆ about p will be contained in U ′ and hence will have closure contained
in the compact set φ−1(B). A closed subset of a compact set is compact.
Hence, the closure of ∆ is compact. This is what we wanted to prove. ♠

Lemma 10.2 If X ⊂ M is compact, then there exists some compact subset
Y such that X is contained in the interior of Y .

Proof: For each p ∈ X, there is some ε ball ∆p whose closure in M is com-
pact. The union of such balls covers X. Since X is compact, we can take a
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finite subcover. That is, X ⊂ ∆1∪...∪∆m. Let Y be the union of the closures
of these balls. Since Y is a finite union of compact sets, Y is compact. The
interior of Y contains the union of these open balls, and hence contains X. ♠

10.4 Cleaning up the Compact Sets

Lemma 10.3 There exists a countable collection {Ki} of compact sets such
that Ki is contained in the interior of Ki+1 for all i, and M =

⋃
Ki.

Proof: We know already that M =
⋃
Ki, where Ki is compact and the

union is countable. Replacing Km by K1 ∪ ... ∪ Km, it suffices to consider
the case when K1 ⊂ K2 ⊂ K3....

Suppose we know already that Ki is contained in the interior of Ki+1

for i = 0, ...,m. By the preceding lemma, we can replace Km+2 by a larger
compact set Lm+2 which contains Km+2 in its interior. Now we redefine
Km+3 = Lm+2 ∪Km+3 and Km+4 = Lm+2 ∪Km+3 ∪Km+4, etc. The new col-
lection of compact sets has Ki ⊂ Ki+1 for all i = 0, ...,m+ 1. By induction,
we can get this property for all i. ♠

Lemma 10.4 We can write M =
⋃
Li, where Li is compact for all i, and

Li ∩ Lj = ∅ if j < i− 1.

Proof: We know that M =
⋃
Ki, where each Ki is compact, and Ki is

contained in the interior of Ki+1 for all i. Define

Li = Ki − interior(Ki−1). (42)

Note that Li is disjoint from Kj for j < i − 1. Hence Li is disjoint from Lj
for j < i − 1. By construction Li is a compact set minus an open set. In
other words, Li is the intersection of a compact set and a closed set. Hence
Li is compact. Also, M =

⋃
Li. ♠

10.5 The Main Construction

We keep the notation from the previous section. Consider Li. Each p ∈ Li
has an open metric ball U such that
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• U is disjoint from Lj for all j < i− 1. This uses the fact that there is
a minimum positive distance between Ui and Uj for all j < i− 1.

• U is contained in some Θα from our cover.

• U is contained in a coordinate chart.

As in the compact case, we can construct a bump function f such that
f(p) > 0 and the support of f is contained in a compact subset of U . Let
W ⊂ U denote the set where f > 0. Call W a nice set. Since Li is compact,
we can cover Li by finitely many nice sets, say Wi1, ...,Wimi

. (The number
depends on i.)

Now we consider the covering

W11, ...,W1i1 ,W21, ...,W2i2 , ...

We rename these sets X1, X2, X3, ... and let g1, g2, g3 be the associated func-
tions. These functions have the following properties.

• For every p ∈ M , there is some gi such that gi > 0. This comes from
the fact that p ∈ Lj for some j, and then p is contained in some nice
set on our list.

• Any compact set only intersects finitely many Xi. The point is that
any compact set is contained in the union of finitely many Li.

• The support of each gi is contained in some Θα from the original cover.
This comes from the fact that the support of gi is the closure of a nice
set.

Now we define fi = gi/
∑
gj, as in the compact case. The sum is locally

finite at each point. This gives us the partition of unity.

40



11 The Poincare Lemma

The purpose of these notes is to explain the proof of Poincare’s lemma from
the book in somewhat less compressed form.

11.1 De Rham Cohomology

Let U ⊂ Rn be any open set. Recall that Ωr(U) is the space of smooth
r-forms on U . On Ωr(U) we have the basic equation d2 = 0. We let

Zr(U) ⊂ Ωr(U)

denote the set of forms ω such that dω = 0. We let

Br(U) ⊂ Ωr(U)

denote the set of forms ω such that ω = dα for some α ∈ Ωr+1(U). Both
Zr(U) and Br(U) are vector spaces, and Br(U) ⊂ Zr(U). The space Zr(U)
is often called the set of closed forms on U and the set Br(U) is often called
the set of exact forms on U .

We define

Hr(U) =
Zr(U)

Br(U)
. (43)

Here we are taking the quotient of vector spaces. The vector space Hr(U) is
often called the r-th de Rham cohomology of U .

The de Rham Cohomology is a diffeomorphism invariant. Suppose that
f : U → V is a diffeomorphism. Then f ∗d = df ∗. This means that the
pullback f ∗ maps Zr(V ) into Zr(U) and Br(V ) into Br(U). So, f induces a
map f ∗ : Hr(V ) → HrU). Since f−1 is also smooth we see that f ∗ has an
inverse, namely (f−1)∗. Hence f ∗ is an isomorphism. In other words, if U
and V are diffeomorphic then Hr(U) and Hr(V ) are isomorphic.

11.2 The Main Result

A domain U ⊂ Rn is star shaped with respect to p ∈ Rn if, for each q ∈ U , the
entire segment pq lies in U . We say that U is star-shaped if U is star-shaped
with respect to some point. Here is the main result.

Lemma 11.1 (Poincare) If U ⊂ Rn is open and star-shaped then we have
Hr(U) = 0 for all r ≥ 0. In other words, every closed form on U is exact.
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First I will prove an algebraic result that works for any open subset of
Rn, star shaped or not, and then I’ll apply the result to the Poincare Lemma.

11.3 An Algebraic Result

Let U ⊂ Rn be any open set, not necessarily star-shaped. Let Û be an open
subset of Rn+1 which contains U × [0, 1]. We set xn+1 = t.

We define gj : U → U × {j} ⊂ Û by the formula

gj(p) = (p, j). (44)

here j = 0 and j = 1. Let g∗j : Ωr(Û)→ Ωr(U) be the pull-back operator.

We now construct a map J : Ωs+1(Û) → Ωs(U) for every value of s ≥ 0.
The map will have the property that

(−1)r
(
dJ − Jd

)
= g∗0 − g∗1. (45)

In the context of de Rham cohomology, the map J is called a chain homotopy .
To define J we just have to specify what it does to a form ω = fdxI and

then extend linearly. Here I = (i1, ..., ir+1) is an increasing multi-index. If
ir+1 < n+ 1 we define J(ω) = 0. If ir+1 = n+ 1 we define

J(ω) = FdxI′ , F (p) =
∫ 1

0
f(p, t) dt, I ′ = (i1, ..., ir). (46)

Here p = (x1, ..., xn). You might say that J “integrates out” the last coordi-
nate. Since both sides of Equation 45 are linear, it suffices to check Equation
45 on our form ω.

Case 1: Suppose that ir+1 < n+ 1. We note first that

g∗j (ω)|p = f(p, j)dXI .

All we are doing is restricting ω to the slice U × {j}. We already know that
J(ω) = 0. Hence dJ(ω) = 0 as well. We have

dω = (−1)r
∂f

∂t
dXI ∧ dt+ other terms.
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The other terms do not involve dt. This means that Jd(ω) only involves the
first term. By the Fundamental Theorem of Calculus,∫ 1

0

∂f

∂t
(p, t) = f(p, 1)− f(p, 0).

Therefore,

Jd(ω)|p = (−1)r(f(p, 1)− f(p, 0))dXI = (−1)r(g∗1(ω)− g∗0(ω)).

Combining this equation with the fact that dJ(ω) = 0 gives us Equation 45.

Case 2: Suppose that ir+1 = n + 1. Thus ω = fdXI′ ∧ dt. Note that
the image of Dgj(Tp(U)) is perpendicular to the t-direction. For this reason
g∗j (ω) = 0. So, in this case we just need to establish that dJ(ω) = Jd(ω).

We have

dJ(ω) = d(F ∧ dxI′) =
n∑
i=1

∂F

∂xj
dxi ∧ dxI′ .

We do not have a term in the n + 1-th coordinate because we would get
dt ∧ dt = 0 in this case. At the same time

dω =
n∑
i=1

∂f

∂xi
∧ dxj ∧ dxI′ ∧ dt. (47)

Differentiating under the integral sign, we have∫ 1

0

∂f

∂xi
(p, t) dt =

∂F

∂xj
(p). (48)

Combining Equations 47 and 48 with the definition of J , we see that

Jd(ω) =
n∑
i=1

∂F

∂xj
dxi ∧ dxI′ = dJ(ω).

11.4 The Application

Now we prove the Poincare Lemma as an application of Equation 45. We
return to the case when U is a star-shaped domain. By symmetry, it suffices
to consider the case when U is star-shaped with respect to 0. Let Û ⊂ Rn+1

be the set of all pairs (p, t) such that tp ∈ U . Here we are just scaling p to t.
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Since U is open, the set Û is open. Since U is star-shaped with respect to 0,
the set Û contains U × [0, 1].

We introduce a map Φ : Û → U given by

Φ(p, t) = tp. (49)

Let g0 and g1 be the maps from the previous subsection. The composition
g0 ◦Φ is the 0-map and the composition g1 ◦Φ is the identity map. This gives
us

g∗0Φ∗(ω) = 0, g∗1Φ∗(ω) = ω (50)

for any ω ∈ Ωr(U).
Suppose that ω ∈ Ωr(U) satisfies dω = 0. We define

α = (−1)rJΦ∗(ω). (51)

Note that
JdΦ∗(ω) = JΦ∗(dω) = 0.

Therefore
dα = (−1)rdJΦ∗(ω) =

(−1)r
(
dJΦ∗(ω)− JdΦ∗(ω)

)
=

g∗1Φ∗(ω)− g∗0Φ∗(ω) = ω − 0 = ω.

This proves the Poincare Lemma.
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12 The Brouwer Fixed Point Theorem

The purpose of these notes is to explain the proof of Brouwer’s fixed point
theorem using differential forms. This proof is similar to what is in Browder’s
book, but it emphasizes different points.

12.1 No Retraction Theorem

Let M be a smooth compact oriented n-manifold-with-boundary. Let ∂M be
the boundary, oriented so that Stokes’ Theorem is true for M . Just for fun,
I will prove the no retraction theorem in more generality than I did in class.
Say that a map g : ∂M → ∂M is nice if there are (relatively) open subsets
U, V ⊂ ∂M such that g : U → V is a diffeomorphism and g−1(V ) = U .

Theorem 12.1 There is no smooth map f : M → ∂M such that the restric-
tion of f to ∂M is nice.

Proof: We suppose f exists and derive a contradiction. Using a bump-
function construction, we can choose a smooth (n − 1)-form α on M which
is supported in U such that

∫
∂M α = 1. Let β = f ∗(α). We have

dβ = df ∗(α) = f ∗(dα) = f ∗(0) = 0.

Hence
∫
M dβ = 0. By Stokes’ Theorem,

∫
∂M β = 0. But, by the change

of variables formula for diffeomorphisms, and the properties of f , we have∫
∂M β =

∫
∂M α = 1. This is a contradiction. ♠

Since the identity map is nice, we see that there is no smooth map f :
M → ∂M which restricts to the identity on ∂M .

12.2 Brouwer’s Theorem for Smooth Maps

Let Bn be the n-ball.

Theorem 12.2 If g : Bn → Bn is a smooth map then Then g(p) = p for
some p ∈ Bn.
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Proof: We suppose that this is false and derive a contradiction. If it never
happens that g(p) = p then we can define f(p) ∈ ∂Bn to be the point
where the ray from f(p) through p intersects ∂Bn. This map is smooth on
the interior of Bn because you find the point f(p) by solving a quadratic
equation whose coefficients vary smoothly with p.

The map f : Bn → ∂Bn seems to violate the no-retraction theorem.
However, we have not really shown that f is smooth at points on ∂Bn. The
issue is that the extension idea does not necessarily work for points outside
Bn. The ray from f(p) to p might not hit ∂Bn at all. (In the book, Browder
does not worry about this.) Here is a trick to deal with this.

Define a new function h : Rn−{0} → ∂Bn to be radial projection. Also,
choose some emall ε > 0 and define a bump function β which is 1 on the ball
of radius 1− 2ε centered at the origin and 0 outside the ball of radius 1− ε.
Consider the new function

φ(p) = h(β(p)f(p) + (1− β(p))h(p)).

This is a smooth function which maps Bn into ∂Bn provided that ε is small
enough so that the chord connecting f(p) and h(p) does not contain the
origin when ‖p‖ ≥ 1− 2ε.

By construction φ = h on ∂Bn. Hence the restriction of φ to ∂Bn is the
identity. Using φ (rather than f) we get a map which is smooth on all of Bn.
This contradicts the no retraction theorem. ♠

12.3 Convolution

Our final goal is to prove Brouwer’s Theorem for continuous maps. As a pre-
lude, we explain how to approximate a bounded continuous function, defined
on a bounded open subset U of Rn by a smooth function.

Let f : U → R be a continuous bounded function. Let g be any smooth
function. We define

f ∗ g(x) =
∫
U
f(y)g(x− y) dy. (52)

Here x, y ∈ Rn.
Given some standard basis vector ei we compute

f ∗ g(x+ tei)− g∗(x)

t
=
∫
U
f(y)

g(x+ tei − y)− g(x− y)

t
dy =
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∫
U
f(y)

∂g

∂xi
(x− y) dy +

∫
U
f(y)Et(x− y) dy

Here Et is an “error function” which uniformly tends to 0 on U as t → 0.
So, taking a limit, we see that the ith partial derivative of f ∗ g exists and

∂(f ∗ g)

∂xi
= f ∗ ∂g

∂xi
. (53)

Iterating this result and using the smoothness of g we see that f ∗ g has
partial derivatives of all orders and therefore is smooth.

For any N we can choose gN so that
∫
Rn gN = 1 and so that the support

of gN is contained in the 1/N neighborhood of the origin. In this case f ∗ gN
is smooth and quite close to f . More precisely f ∗ gN converges uniformly to
f on U as N →∞.

12.4 Brouwer’s Theorem for Continuous Maps

Suppose now that g : Bn → Bn is a continuous map. We first extend g so
that it is continuous and defined an an open neighborhood U of Bn. Applying
the convolution trick to each coordinate function of g we produce a sequence
{gN} of smooth maps from Bn to Bn which converge uniformly to g.

By the smooth version of Brouwer’s Theorem there are points pN ∈ Bn

such that gN(pN) = pN . Let p be any accumulation point of {pN}. If g(p) 6= p
then, by continuity, gN(pN) 6= pN for N sufficiently large. Hence g(p) = p.
This proves Brouwer’s fixed point theorem for continuous maps.
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13 Integrating Functions on Manifolds

These notes deal with integrating functions on (Riemannian) manifolds. We
already know how to integrate k-forms on a k-manifold but the topic here is
how to deal with functions. The purpose of these notes is to clarify what is
going on by explaining things in terms of abstract manifolds.

The general way it works is that one can integrate functions on a Rieman-
nian manifold , because the Riemannian metric defines a canonical volume
form locally. The canonical form is defined everywhere, up to a sign. The
sign can’t work out globally if the manifold is non-orientable, but there is a
trick using partitions of unity to make use of these local volume forms even
in the non-orientable case.

When one has a submanifold in Rn, there is a canonical Riemannian
metric which just comes from the restriction of the dot product. So, you can
use the abstract theory to integrate functions submanifolds of Rn. The final
theory turns out to be equivalent to what is done in the book.

13.1 Inner Products and Volume Forms

Let V be a finite dimensional real vector space. An inner product on V is a
map Q : V × V → R such that

1. Q is a symmetric 2-tensor.

2. Q(w,w) > 0 for all w 6= 0.

Lemma 13.1 There exists an orthonormal basis for Q.

Proof: Given a basis {v1, ..., vn} for V we can perform the usual Gram-
Schmidt process for creating an orthonormal basis with respect to Q. The
procedure works like this.

• Replace v1 by

w1 = v1/
√
Q(v1, v1)

so arrange that Q(w1, w1) = 1.

• Assuming that w1, ..., wk have been constructed, let

w′k+1 = vk+1 −
k∑
i=1

Q(vk+1, wi)wi.
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This guarantees that Q(w′k+1, wi) = 0 for all i = 1, ..., k.

• Replace w′k+1 by

wk+1 = w′k+1/
√
Q(w′k+1, w

′
k+1).

This produces w1, ..., wn such that Q(wi, wj) = 1 if i = j and 0 otherwise. ♠

Remark: Notice that each wj varies smoothly as a function of v1, ..., vn.
That is, we can think of wj as a function from V n to V , and it is a smooth
function.

Lemma 13.2 Assume that Rn is equipped with the dot product. There is a
linear transformation T : Rn → V which is an isometry between Rn and V .

Proof: Let e1, ..., en be the standard basis for Rn and let w1, ..., wn be an
orthonormal basis for V . The map T (ej) does the trick. ♠

Definition: The adapted volume forms on V are the two forms

±(T−1)∗(dx1 ∧ ... ∧ dxn).

If V also has an orientation, we can “prefer” one of these over the other.

13.2 Riemannian Manifolds

A Riemannian metric on a smooth manifold M is a smoothly varying choice
of inner product Qp on each tangent space Tp(M). The smoothness has the
following explanation. If α : Rn → M is any smooth coordinate chart, then
the pullback inner product α∗(Q) is given by a symmetric matrix at each
point of Rn. We want the entries of this matrix to be smooth functions.
This is the usual way we talk about smooth tensor fields on manifolds.

Suppose that M has a Riemannian metric Q. For each p ∈ M there are
two adapted volume forms associated to Qp, and they differ only by sign.
Call these two volume forms ±ωp. Let V be a coordinate patch in M . Note
that V has one of two local orientations, regardless of whether or not M is
orientable. We say that the assignment p→ ωp is continuous if ωp defines the
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same orientation at each p ∈ V . In other words, ωp is either always positive
or always negative when evaluated on a positively oriented basis, as p varies
throughout V . Notice that there are exactly 2 continuous adapted volume
forms on each coordinate chart.

If M is orientable, we can make a consistent choice of a continuous
adapted volume form on M . Otherwise, we have to be content with a system
of continuous adapted volume forms, one per coordinate chart.

13.3 Integration of Functions

Let’s continue with the same notation. Suppose that V ⊂M is a coordinate
chart. Suppose that f : M → R is a non-negative Borel measurable function
whose support is contained in V .

We choose an orientation on V , as well as the corresponding adapted
volume form ω. We then define∫

M
f =

∫
M
fω.

Notice that this is a non-negative number, and strictly positive if f > 0
on some open set. Were we to pick the opposite orientation, we would be
integrating −fω with respect to an oppositely oriented coordinate chart, and
we would get the same answer. So, the integral is completely well defined.

Now suppose that f : M → R is any non-negative Borel function whose
support is compact. (This is automatic if M is a compact manifold.) We
choose a partition of unity {φi} subordinate to some open cover by coordinate
charts, and we define ∫

M
f =

∑∫
M
φif.

The compactness guarantees that this is just a finite sum. The same argu-
ment as for the integration of forms shows that this definition is independent
of the choice of partition of unity.

Remark: If you don’t like working with Borel measurable functions, you
can restrict your attention to continuous functions. This is all we really need
for applications in the book. For continuous functions, the integrals involved
can be done by the usual Riemann integral.
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Suppose now that f : M → R is a compactly supported function We can
write f = f+ − f−, where f+ = max(f, 0), and f− = f − f+. Then we define∫

M
f =

∫
M
f+ −

∫
M
f−.

13.4 Euclidean Submanifolds

Suppose now that M is an n-dimensional submanifold of RN . There is a
canonical Riemannian metric on M , namely

Qp(V,W ) = V ·W, ∀V,W ∈ Tp(M).

We then integrate functions on M with respect to the system of volume forms
adapted to M on coordinate charts.

It is worth pointing out why these volume forms are smooth. Let V ⊂M
be a coordinate patch on M and let α : Rn → V be a coordinate map. We
can get a basis at each point p ∈ V using α∗(e1), ..., α∗(en). This basis varies
smoothly. We can then perform Gram-Schmidt to get a smoothly varying
orthonormal basis. The matrix entries of the adapted quadratic form are
rational-function entries of the coefficients of the orthonormal bases, to they
vary smoothly as well.

13.5 Reconciling with the Book

Suppose that f : M → R is a positive function whose support is contained
in the coordinate patch V . Let α be a coordinate chart whose image is V .
Then the expression √

det(AtA), A = Dα

computes the infinitesimal volume multiplier under the action of α. That is,
in each tangent space, the differential map A multiplies volume by det(AtA),
as explained in the book.

But that means that

α∗(ω) =
√

det(AtA)dx1 ∧ ... ∧ dxn.

Hence
α∗(fω) = f

√
det(AtA)dx1 ∧ ... ∧ dxn.
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So, ∫
M
f =

∫
M
fω =

∫
Rn α

∗(fω) =
∫
Rn f

√
det(AtA) dx1...dxn.

This last expression is what is in the book.

13.6 Another Perspective

Suppose specifically that M is a hypersurface in Rn. Let ν denote a unit
normal field along M . Let ιν denote the contraction operator. Let

ω = dx1 ∧ ... ∧ dxn

be the standard volume form on Rn. Then ιν(ω) is the volume form along
M . Here

ιν(V1, ..., Vn−1) := ω(ν, V1, .., Vn).

The point here is that when V1, ..., Vn−1 is an orthonormal basis at a tangent
space of M then ν, V1, ..., Vn−1 is an orthonormal basis for Rn. In this case
ινω(V1, ..., Vn−1) = ±1, and the sign choice varies continuously.
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14 Harmonic Functions and Hodge Star

The purpose of these notes is to cover the Hodge star operator, the divergence
form of Stokes’ Theorem, and foundational results about harmonic functions.
These notes also have 6 HW exercise in them.

14.1 The Hodge Star Operator

We’ll start out by defining the Hodge star operator as a map from ∧k(Rn)
to ∧n−k(Rn). Here ∧k(Rn) denotes the vector space of alternating k-tensors
on Rn.

Let I = (i1, ..., ik) be some increasing multi-index of length k. That is
i1 < i2 < i3 < .... Let J = (j1, ..., jn−k) be the complementary increasing
multi-intex. For instance, if n = 7 and I = (1, 3, 5) then J = (2, 4, 6, 7). Let
K0 denote the full multi-index (1, ..., n).

We first define ∗ on the usual basis elements:

∗(dxI) = ±dxJ , (54)

where the sign is chosen so that

dxI ∧ ∗(dxI) = dx1 ∧ ... ∧ dxn. (55)

We often write ∗dxI in place of ∗(dxI). In general, we define

∗
(∑

aI dxI

)
=
∑

aI (∗dxI). (56)

Exercise 1: For any ω ∈ ∧k(Rn) prove that ∗ ∗ ω = (−1)k(n−k)ω. Hint:
Show this on a basis and use the anti/commutative properties of the wedge.

14.2 Rotational Symmetry

Let O(n) denote the set of orthogonal transformations of Rn. These are
the transformations which preserve the dot-product. Note that we have
det(M) = ±1 for M ∈ O(n). The subgroup SO(n) consists of those ma-
trices having determinant equal to 1. Our next goal is to prove that

M∗(∗ω) = det(M)(∗(M∗(ω)), ∀M ∈ O(n). (57)
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In particular,

M∗(∗ω) = ∗(M∗(ω)), ∀M ∈ SO(n). (58)

These are meant to hold for all ω ∈ ∧k(Rn) regardless of the values of k and
n. Equation 58 is the main equation we are interested in, but for the proof
it is useful to sometimes consider maps in O(n) that are not in SO(n).

Exercise 2: Fix some k ∈ {1, ..., n − 1} and let M be the map such that
M(ek) = ek+1 and M(ek+1) = ek and otherwise M(ej) = ej. So, in other
words, M just swaps two of the coordinates. Prove Equation 57 for M . Hint:
check the equation on a basis. Also, conclude that Equation 57 holds for any
permutation matrix.

Lemma 14.1 Let M be the element of SO(n) which has the following action:

• M(ej) = ej for j = 3, 4, 5, ....

• M(e1) = e1 cos(θ) + e2 sin(θ),

• M(e2) = −e1 sin(θ) + e2 cos(θ).

In other words, M rotates by θ in the e1, e2 plane and fixes the perpendicular
directions. The Equation 57 holds for M .

Proof: It suffices to check this on a basis. Consider dxI . Let J be the
complementary index. We will prove our result when ∗dxI = dxJ (rather
than −dxJ .) The other case has the same kind of treatment.

Suppose first that I contains neither 1 nor 2. Then M∗(dxI) = dxI .
Also, the complementary multi-index J contains both 1 and 2. Using the
transformation law for forms, we have

M∗(dxJ) = dxJ . (59)

We compute
M∗(∗dxI) = M∗(dxJ) = dxJ = ∗dxI .

The case when I contains both 1 and 2 has the same proof.
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Suppose that I contains 1 but not 2. Then dxI = dx1 ∧ dxI′ . Here I ′ is
obtained from I by omitting 1. Similiarly, we have the equations

∗(dx1 ∧ dxI′) = ∗dxI = dxJ = dx2 ∧ dxJ ′ , ∗(dx2 ∧ dxI′) = −dx1 ∧ dxJ ′ .

Here J ′ is obtained from J by omitting 2. The sign change in the second
calculation comes from the fact that

dx2∧dxI′∧(−dx1)∧dxJ ′ = dx1∧dxI′∧dx2∧dxJ ′ = dxI∧dxJ = dx1∧...∧dxn.

We set C = cos(θ) and S = sin(θ). An easy computation shows that

M∗(dx1) = Cdx1 − Sdx2, M∗(dx2) = Sdx1 + Cdx2.

These calculations tell us that

∗M∗(dxI) = ∗
(
(Cdx1 − Sdx2) ∧ dxI′

)
=

∗
(
Cdx1 ∧ dxI′

)
− ∗

(
Sdx2 ∧ dxI′

)
= Cdx2 ∧ dxJ ′ + Sdx1 ∧ dxJ ′ .

Similarly
M∗(∗dxI) = M∗(dx2 ∧ dxJ ′) =

(Sdx1 + Cdx2) ∧ dxJ ′ = Sdx1 ∧ dxJ ′ + Cdx2 ∧ dxJ ′ .

The two expressions agree.
There is one more case, when I contains 2 but not 1. This case is sim-

ilar to the last case, and actually follows from the last case and Exercise 1. ♠

Exercise 3: Verify Equation 59. Hint: Use basic linearity properties of the
wedge product.

Exercise 4: Let G ⊂ O(n) denote the subgroup generated by the per-
mutation matrices and the elements M (for all θ) considered in the previous
lemma. Prove that G = O(n). (Hint: Starting with an arbitrarily element
T ∈ O(n) try to find an element g ∈ G such that g ◦T fixes e1 and hence e⊥1 .
Then use induction on on n.) Deduce Equation 57 from this Exercise, and
Exercise 2, and the previous lemma.

Now we deduce an important consequence of Equation 58. Suppose that
w1, ..., wn is any orthonormal basis of Rn. We assume that this is a positively
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oriented basis so that there is some M ∈ SO(n) such that M(wj) = ej for
j = 1, ..., n. This means that M∗(dxI) = dwI . We compute

∗dwI = ∗M∗(dxI) = M∗(∗dxI) = M∗(±dxJ) = ±dwJ .

The sign works out whether or not ∗dxI = dxJ or ∗dxI = −dxJ . What we
are saying here is that we can define ∗ with respect to any positively oriented
orthonormal basis and we get the same answer as when we use the standard
basis. This beautiful symmetry will help us in the next section.

14.3 Divergence Form of Stokes’ Theorem

Now suppose that M is the unit ball in Rn and Sn−1 = ∂M is its boundary.
Let V be a vector field on M , say V = (V1, ..., Vn). We have the usual

associated 1-form ω =
∑
Vidxi. Note that ∗ω is an (n − 1) form on M and

d(∗ω) is an n-form on M . Stokes’ theorem, applied to ∗ω, tells us that∫
M
d(∗ω) =

∫
∂M
∗ω. (60)

We’re going to re-interpret each half of this equation.

The Left Side: A direct calculation shows that

d(∗ω) =
∑

∂Vi/∂xi dx1 ∧ ... ∧ dxn = div(V ) dx1 ∧ ... ∧ dxn.

So, the left hand side of Equation 60 equals∫
M

div(V ) dx1...dxn,

the usual integral of the divergence of a vector field.

The Right Side: Now let’s consider the right hand side of Equation 60.
Consider the form ∗ω at a point p of ∂M . We can find an oriented orthonor-
mal basis for Rn at p, say w1, ..., wn, so that

• w1, ..., wn−1 is an oriented orthonormal basis for Tp(∂M).

• ν = (−1)n−1wn is the normal vector that is compatible with Stokes’
theorem.
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Since ω is a 1-form, we can write in our corresponding basis of 1 forms
(where dwi = w∗i .)

ω =
∑

bidwi.

Note that the restriction of ∗dwi to ∂M at p is 0 unless i = n. Therefore the
restriction of ∗ω to ∂M at p equals bn(∗dwn). That is

∗ω|∂M = bn(∗dwn).

But
bn = ω(wn) = (−1)n−1ω(ν) = (−1)n−1V · ν.

Finally,
∗dwn = (−1)n−1dw1 ∧ ... ∧ dwn−1.

Putting these three equations together, we get

∗ω|∂M = V · ν dw1 ∧ ... ∧ dwn−1.

Our theory of integrating functions on manifolds tells us that the right hand
side of Equation 60 is ∫

∂M
V · ν.

The Interpretation: Putting everything together, we have∫
M

div(V ) =
∫
∂M

V · ν. (61)

On the left hand side, we are integrating with the usual volume measure on
Euclidean space, and on the right hand side we are integrating a function on
an oriented manifold according to the theory explained in the class. This is
a classical n-dimensional generalization of Gauss’s law of electrostatics.

Really, there is nothing special we used about spheres. This result also holds
when M is any compact n-dimensional manifold in Rn. In particular, this
result holds when M is a region bounded by two concentric spheres. This is
the case of interest to us.
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14.4 Green’s Identity

Our argument works for any compact n-dimensional manifold M ⊂ Rn. The
point is that all we need here is for the divergence form of Stokes’ Theorem
to work.

Let ∇f stand for the gradient of a function f and let δf stand for the
Laplacian of f . That is

∇f =
(
∂f

∂x1
, ...,

∂f

∂xn

)
, ∆f =

∑ ∂2f

∂2xi
. (62)

To say that f is harmonic is to say that δf = 0.
Let f and g be two smooth functions in M . Then∫

∂M
(f∇g · v − g∇f · ν) =

∫
M

(f∆g − g∆f). (63)

Here is the derivation. Consider vector fields V1 = g∇f and V2 = f∇g.
We compute

div(V1) =
∑ ∂

∂xi

(
g
∂f

∂xi

)
=
∑ ∂g

∂xi

∂f

∂xi
+
∑

g
∂2f

∂x2i
=

∇g · ∇f + g∆f.

A similar calculation gives

div(V2) = ∇f · ∇g + f∆g.

Combining these equalities with Equation 61, we get∫
M
g∆f − f∆g =

∫
M

div(V1)− div(V2) =

∫
∂M

(V1 · ν − V2 · ν) =
∫
∂M

(g∇f · ν − g∇f · ν).

This completes the derivation.

There are two special cases of Green’s Identity worth mentioning. When
f is harmonic, we get∫

∂M
(f∇g · ν − g∇f · ν) =

∫
M
f∆g. (64)
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When f and g are both harmonic, we get∫
∂M

g∇f · ν =
∫
∂M

f∇g · ν. (65)

Taking g = 1 gives ∫
∂M
∇f · ν = 0. (66)

14.5 Averaging over Spheres and Balls

Exercise 5: Suppose M is the unit ball in Rn. Apply Green’s Identity to
the case when g(p) = ‖p‖2 − 1 to deduce that∫

∂M
2f =

∫
M

2nf. (67)

In particular, when f = 1 show that this implies

vol(∂M) = n vol(M).

Hint compute ∇g and ∆g. Finally, combine these results to show that

1

vol(∂M)

∫
∂M

f =
1

vol(M)

∫
M
f. (68)

The average of a harmonic function over the unit ball is the same as the
average of the function over the unit sphere!

By scaling and translation, the same result holds for any ball in Rn.

Exercise 6: Define g(p) = ‖p‖2−n on Rn−{0} for n ≥ 3 and g(p) = log ‖p‖
on R2−{0}. Prove that g is harmonic on Rn−{0}. First hint: Use symmetry
as much as possible. Second hint: If you don’t want to make a brute-force
calculation (even with symmetry) then flesh out the details of the following
argument: Let S(r) denote the sphere of radius r centered at the origin and
let ν be the outward unit normal. First verify using symmetry and scaling
that the integral ∫

S(r)
∇g · ν

is independent of the radius r > 0. Conclude that the integral of ∆f on any
region bounded by concentric spheres centered at the origin is 0. Use this
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fact, and symmetry, to deduce that ∆f = 0 everywhere.

Now let M be the region in Rn bounded by two concentric spheres, S1

and S2. Let g be the function from Exercise 6 and let f be some other
harmonic function. Both f and g are harmonic on Rn − {0}, so we have∫

∂M
f∇g · ν =

∫
∂M

g∇f · ν. (69)

Consider the right hand side of the integral. Let S be one of spheres
bounding ∂M . Suppose S has radius r. On S, the function g is constant.
Hence ∫

S
g∇f = C

∫
S
∇f = 0

by Equation 66. So, the right hand side of Equation 69 vanishes. This means
that ∫

S1

f∇g · ν =
∫
S2

f∇g · ν,

when both components S1 and S2 are oriented the same way. Noting that

∇g · ν = −r1−n

on the sphere of radius r, we get

1

rn−11

∫
S1

f =
1

rn−12

∫
S2

f. (70)

Since S1 and S2 are arbitrary spheres centered at the origin, this last equation
says that the average value of f is the same on all the spheres centered at
the origin.

As r → 0, we see that the average value of f on Sr tends to f(0). This
gives us the following result: f(0) equals the average value of f on any sphere
centered at the origin, which in turn equals the average value of f on any
ball centered at the origin. More generally, the value of f at the center of a
ball is equal to the average of f on that ball.

14.6 Corollaries

Theorem 14.2 (Liouville) A bounded harmonic function on Rn is con-
stant.
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Proof: I’ll give the proof when n = 2. The general case is proved in the
same way, using balls instead of disks. Let f be a bounded harmonic function
on R2. We can scale so that |f | ≤ 1.

Let B(r, p) denote the ball of radius r about p. Let X(r, a, b) denote the
set of points in B(r, a) ∪ B(r, b) which are not in B(r, a) ∩ B(r, b). In other
words X(r, a, b) is the symmetric difference of the two balls. The area of
X(r, a, b) grows linearly in r. (Draw a picture!)

f(a)− f(b) =
1

πr2

∫
B(r,a)

f − 1

πr2

∫
R(r,b)

f =

1

πr2

∫
B(r,a)−B(r,b)

f − 1

πr2

∫
B(r,b)−B(r,a)

f.

But this means that

|f(a)− f(b)| ≤ 1

πr2

∫
X(r,a,b)

|f | ≤ π area X(r, a, b)

r2
.

Letting r → ∞ gives |f(a) − f(b)| = 0. Since a and b are arbitrary, f is
constant. ♠

Theorem 14.3 (Maximum Principle) Suppose f is a non-constant har-
monic function defined on an open subset U of Rn. Then f cannot have a
maximum at a point p in the interior of U .

Proof: If this is false then we can find points p, q ∈ U and a ball B such
that

• f achieves a max a p.

• p is the center of B and B ⊂ U .

• q ∈ B and f(q) < f(p).

In this case f(q′) < f(p) for all q′ sufficiently close to q. But then the average
of f on B is less than f(p). This is a contradiction. ♠
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