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1 The Proof Modulo some Analysis

1.1 Statement of the Result

Given any metric space (X, d), a map H : X → X is BL (bi-lipshitz) if there
is some constant K > 0 such that

d(H(x), H(y)) ∈ [K−1, K] d(x, y), ∀x, y ∈ X. (1)

Here is a limited form of Mostow Rigidity:

Theorem 1.1 (Mostow) Suppose that M1 and M2 are both compact hy-

perbolic 3-manifolds. If there is a BL map f : M1 → M2 then there is an

isometry g : M1 → M2.

One can press on the proof to yield the stronger statement that f and
g are homotopic maps. Also, if one is willing to work with quasi-isometries
in place of BL maps, one can just assume that the map f is a homotopy
equivalence. I’ll leave these matters to the interested reader. Note that if f
is a diffeomorphism then f is automatically BL. Hence

Corollary 1.2 If two closed hyperbolic 3 manifolds are diffeomorphic then

they are isometric. Hence, the hyperbolic structure on a compact hyperbolic

3-manifold is unique.

My proof is, in a certain sense, the standard one, but I figured out a good
way to do it which relies on a lot less real analysis. The rest of this chapter
assembles the ingredients of the proof and the last section of the chapter puts
them together. The second and third chapters do the needed analysis.
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1.2 QC Maps

Let S = C ∪ ∞ be the Riemann sphere. We often think of S as the ideal
boundary of H3, hyperbolic 3-space.

Precompact Triples: {(an, bn, cn)} denote a sequence of triples of points
in S. We call this sequence precompact if there are pairwise disjoint com-
pact subsets A,B,C ⊂ S such that an ∈ A and bn ∈ B and cn ∈ C for
all n. We say that a sequence {hn} of homeomorphisms of S is normal-

ized if there is a precompact sequence {(an, bn, cn)} such that the sequence
{(hn(an), hn(bn), hn(cn))} is also precompact.

Auxilliary Sequences: Given a single homeomorphism h : S → S, we
say that an auxilliary sequence based on h is a sequence of the form {hn}
where

hn = fnhgn, fn, gn ∈ PSL2(C). (2)

QC Maps: A homeomorphism h : S → S is QC if every normalized auxil-
liary sequence {hn} based on h converges, uniformly on a subsequence, to a
homeomorphism. We call such sequences subconvergent .

Asterisks: A point z ∈ C is an asterisk for h if the directional deriva-
tive Dvh(z) exists and is nonzero for every rational direction v.

The following results are proved in §2 and §3 respectively.

Theorem 1.3 A BL map of H3 extends continuously to a QC map of S.

Theorem 1.4 Every QC map of S has an asterisk.

Remarks:
(i) My definition of QC maps is nonstandard, though certainly known. The
Disk Theorem below relates my definition to the standard definition.
(ii) In e.g. Lehto and Virtanen, one proves the much stronger result that a
QC map is a.e. nonsingularly differentiable. However, the proof of Mostow
Rigidity here avoids the need for this hard analytic result.
(iii) Many readers will recognize that Theorem 1.3 remains true if H is just
a quasi-isometry.
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1.3 Zooming

Let h be a QC map. We write h → h′ if there is an auxilliary sequence {hn}
based on h such that hn → h′ on a subsequence. We insist that hn(∞) = ∞
as well. An easy exercise (“the diagonal trick”) shows that h′ is also QC. We
write h ⇒ h′ if we have a finite chain h = h0 → h1... → hm = h′.

We say that a line L is good for h if h(L) is a straight line. We say that
a direction is good for h if every line in that direction is good for h. We
make the following easy observation. Suppose a direction D is good for h
and h → h′. Then D is also good for h′.

Lemma 1.5 Suppose that k directions are good for h then h ⇒ h2, where

k + 1 directions are good for h2.

Proof: We rotate so that the horizontal direction is not one of the k good
directions for h. Theorem 1.4 tells us that h has an asterisk. Translating, we
can assume that 0 is an asterisk for h. We define

hn(z) = h(nz)/n. (3)

The constant sequence {(−1, 0, 1)} is precompact. Furthermore, the image
sequence {(hn(−1), hn(0), hn(1)} is also precompact because it converges to
(−z, 0, z), where z = ∂xh(0). Hence h → h1 for some h1.

Let L be some rational line through the origin. By the definition of
differentiability, h1|L is multiplication by the directional derivative in the
direction of L. In particular, h1(L) is a line. Hence, all rational lines through
the origin are good for h1. But then, by continuity, all lines through the origin
are good for h1.

Define
gn(z) = h1(z − n)− h1(−n). (4)

By construction gn(0) = 0 and the action of gn near 0 looks like the action
of h1 near n. When n is large, a large neighborhood of n is foliated by
nearly horizontal lines which are good for h1. Hence, when n is large, a large
neighborhood of 0 is foliated by nearly horizontal lines which are good for
gn. Note that the restriction of g to the x-axis is a linear map. Hence gn is
the same linear map on the x-axis for all n. Hence {gn} is subconvergent.
By construction the horizontal direction is good Hence h1 → h2, and the
horizontal direction is good for h2. From our observation above, the other k
directions remain good for h2. ♠

3



Lemma 1.6 Suppose that f : R2 → R
2 is a homeomorphism and 3 direc-

tions are good for f . Then f is real affine.

Proof: We compose with affine maps so that the directions (1, 0), (0, 1)
and (1, 1) are good and indeed preserved by f . Say that a special square

is a square with sides parallel to the coordinate axes. The conditions on f
guarantee that f maps special squares to special squares. But then f is a
similarity. ♠

Corollary 1.7 Suppose that h is QC. Then h ⇒ h6 where h6 is real affine,

orientation preserving, and fixes 0 and 1.

Proof: Applying Lemma 1.5 three times, we get h ⇒ h6, where three di-
rections are good for h6. Lemma 1.6 says that h6 is real affine. Now we can
normalize by similarities to get the remaining properties. ♠

1.4 Hausdorff Convergence

Let X be any metric space. Given compact K1, K2 ⊂ X, we define d(K1, K2)
to be the infimal ǫ such thatK1 is contained in the ǫ neighborhood ofK2, and
vice versa. This notion of distance is known as Hausdorff distance. We say
that a sequence of closed subsets {Sn} in X converges to S ⊂ X if, for any
compact K ⊂ X, we have d(Sn∩K,S ∩K) → 0. This notion of convergence
is called Hausdorff convergence.

For our application, we will take X to be PSL2(C) equipped with any
left-invariant metric and we will consider subsets Γ ⊂ PSL2(C) where Γ is
a lattice acting on H

3 with compact quotient. One basic fact we use is that
the sequence of lattices fnΓf

−1
n converges in the Hausdorff topology, on a

subsequence, no matter how fn ∈ PSL2(C) are chosen. Moreover, the limit
lattice is conjugate to Γ. The point simply is that we can always adjust by
elements of Γ so that fnΓf

−1
n = f ′

nΓ(f
′

n)
−1 where when {f ′

n} is bounded.

1.5 Equivariance

Suppose that Γ1 and Γ2 are hyperbolic lattices acting with compact quo-
tient. We say that a hmeomorphism F (on a suitable domain) is (Γ1,Γ2)-
equivavariant if FΓ1F

−1 = Γ2.
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Lemma 1.8 If h is (Γ1,Γ2)-equivariant and h → h′, then h′ is (Γ′

1,Γ
′

2)-
equivariant, where Γ′

j is conjugate to Γj.

Proof: Let {hn} be a convergent auxilliary sequence based on h. Then hn is
equivariant with respect to (Γ1,n,Γ2,n) such that Γj,n is conjugate to Γj. From
the remarks on Hausdorff convergence above, we may pass to a subsequence
so that Γj,n → Γ′

j, a lattice conjugate to Γj. Let g′1 ∈ Γ′

1 be some element.
There is some g1,n ∈ Γ1,n such that g1,n → g′n. Let g2,n = hg1,nh

−1. Since
everything in sight converges, the sequence {g2,n} converges to g′2 ∈ Γ′

2, and
g′2 = h′g′1(h

′)−1, as desired. Hence h′Γ′(h′)−1 ⊂ Γ2. Reversing the roles of
the two lattices, we get equality in the last containment. ♠

Lemma 1.9 The map h6 in Corollary 1.7 is the identity if it is equivariant.

Proof: Choose g1 ∈ Γ1 which does not fix ∞ and let g2 = h6g1h
−1
6 . We have

h6 = g−1
2 h6g1. Let L0 be some line so that L1 = g1(L0) is a circle. If h6 is

not the identity then L2 = h6(L1) is a non-circular ellipse and L3 = g−1
2 (L2)

is not a line. But L3 = h6(L0) is a line. Contradiction. ♠

1.6 The Main Argument

Suppose f : M1 → M2 is BL. Let Γj be the deck group for Mj. The map f
has a bilipshitz (Γ1,Γ2)-equivariant lift H : H3 → H

3. The QC extension h
guaranteed by Theorem 1.3 is likewise equivariant. We have h ⇒ h6 where h6

is as in Corollary 1.7. The map h6 is (Γ′

1,Γ
′

2)-equivariant (Lemma 1.8) with
respect to lattices which are conjugate to the originals. Hence, by Lemma
1.9, h6 is the identity. Since the identity map is (Γ′

1,Γ
′

2)-equivariant, Γ
′

1 = Γ′

2.
Hence Γ1 and Γ2 are conjugate. Hence M1 and M2 are isometric.
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2 Boundary Extensions

2.1 Bi-Lipschitz Paths

This chapter is devoted to proving Theorem 1.3. Let H : H3 → H
3 be a BL

map.

Lemma 2.1 Let γ1 be a geodesic in H
3. Then there is a unique geodesic γ2

such that H(γ1) stays within a bounded neighborhood of γ2. The size of the

neighborhood only depends on the BL constant of H.

Proof: Uniqueness follows immediately from existence and from divergence
properties of hyperbolic geodesics. So, it suffices to prove existence. Exis-
tence for the infinite geodesic follows from existence (with a uniform constant)
for geodesic segments.

Let K1 be the BL constant. Suppose that α1 is a segment of γ1 and
consider β = H(α1). Let γ2 be the geodesic through the endpoints of β. We
want to see that β lies in a uniformly small tubular neighborhood of γ2. We
will assume that this is false and derive a contradiction.

Let Nr denote the r-neighborhood of γ2. Assume r > 2. Let R = r2.
Suppose that β exits NR. Then there are points p, q ∈ β ∩Nr such that the
arc β′ of β joining p to q remains outside Nr and exits NR. The length L of
β′ is at least 2R− 2r, which exceeds R. In short L > r2.

Let π : H3 − Nr → γ2 be the radial contraction. Thanks to the ex-
ponentially divergent nature of geodesics in hyperbolic space, there is some
constant K2 so that π decreases distances by a factor of at least K2 exp(−r).
The length of π(β′) is at most K2 exp(−r)L. Hence, we can join p to q by
heading directly towards γ, using π(β′), then going directly out to q. This
path has length less than K2 exp(−r)L+ 2r.

Since β is a K1 bi-lipschitz path, our new path cannot be more than K2
1

times shorter than β′. That is

K2 exp(−r)L+ 2r ≥
L

K2
1

. (5)

Since L > r2, this is false for large r. ♠

6



2.2 The Extension

We use the ball model forH3 and normalize H so that H fixes the origin. Let
p ∈ S be some point on the boundary. Let γ1 be the geodesic ray connecting
the origin to p. We define h(p) to be the relevant endpoint of γ2, where γ2 is
such that H(γ1) stays within a bounded neighborhood of γ2.

Lemma 2.2 The extension map h is a homeomorphism.

Proof: Firt we show that h is continuous. Let {pn} be a sequence in S
which converges to p. Let γ1,n be the geodesic ray connecting the origin
to pn. Clearly γ1,n → γ1. Let γ2,n relate to γ1,n as γ2 relates to γ1. Let
K3 = 2K2 +K1, where K1 is the BL constant of H and K2 is the constant
from Lemma 2.1. By Lemma 2.1 and the fact that γ1,n → γ1 on compact
subsets, there is some Mn such that the K3-neighborhood of γ2,n contains
at least Mn units of γ2, and limMn = ∞. This forces γ2,n → γ2. Hence
h(pn) → h(p).

To show that h is a homeomorphism, we re-run the same argument for
H−1 to show that h−1 exists and is continuous. ♠

Lemma 2.3 The extension h is QC.

Proof: Let {hn} be a normalized auxilliary sequence based on h. We
have precompact sequences {(an, bn, cn)} and {(hn(a), hn(bn), hn(cn))}. Now,
passing to a subsequence and then adjusting by a convergent sequence in
PSL2(C), we can assume that hn fixes three points a, b, c independent of n.

By construction hn is the extension of some BL map Hn. Given Lemma
2.2, it suffices to prove that Hn converges to some new BL map of H3. Let
Γ be the ideal triangle in H

3 whose endpoints are a, b, c. For any K the set
of points which are within K units of points on all 3 sides of Γ is bounded in
H

3. Let O be any point of H3. By Lemma 2.1, and the triangle inequality,
there is a constant K such that Hn(O) remains K units from points on all
3 sides of Γ. Hence Hn(O) lies in a compact subset of H3, independent of
n. But this property, together with the uniform BL constant, implies that
{Hn} converges on a subsequence. ♠
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3 QC Maps

3.1 Reduction to a Technical Lemma

In this section we reduce Theorem 1.4 to the following lemma, which we then
prove in subsequent sections.

Lemma 3.1 Let Q be the unit square. Then there is a full measure subset

Ω1 ⊂ Q and a positive measure subset Ω2 ⊂ Ω1 such that the partial derivative

dh/dx exists on Ω1 and is nonzero on Ω2.

Corollary 3.2 There is a full measure subset Ω3 of the plane such that every

rational directional derivative exists in Ω3.

Proof: Applying Lemma 3.1 to the map z → h(z − v) we see that the unit
square with vertex v also has a full measure subset on which dh/dx exists.
Letting v range through all the Gaussian integers, we get see that dh/dx ex-
ists on a full measure subset of C. By symmetry, the directional derivative
in any given direction exists on a full measure subset of C. The intersection
Ω3 of the countably many subsets corresponding to the rational directions
has the desired properties. ♠

Corollary 3.3 There exists a point z ∈ C such that the directional deriva-

tive of h at z exists in all rational directions and dh/dx(z) 6= 0.

Proof: We just take any point in the intersection Ω2 ∩ Ω3. This intersec-
tion is nonempty because Ω2 has positive measure and Ω3 has full measure. ♠

We normalize by a complex affine map so that z = 0 and h(0) = 0 and
dh/dx(0) = 1. Here, of course, we are using complex notation, so that “1”
means the unit vector in the positive real direction.

Lemma 3.4 Dvh(0) 6= 0 for any rational direction v.

Proof: For ease of exposition, we will show that dh/dy(0) 6= 0. The general
case is the same. We will assume the contrary and derive a contradiction.
Let hn(z) = nh(z/n). By the definition of one-dimensional derivatives, the
triple {(hn(−1), hn(0), hn(1))} converges to (−1, 0, 1). Hence {hn} is subcon-
vergent. But then {hn(i)} converges to some nonzero point in C. This is not
compatible with dh/dy(0) = 0. ♠
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3.2 Absolute Continuity on Lines

The rest of these notes are devoted to proving Lemma 3.1. We use the
notation from Lemma 3.1.

Suppose f : [0, 1] → R is a continuous map. Let I = {I1, ..., In} denote
a finite list of intervals of [0, 1] having pairwise disjoint interiors. We call
I a partial partition. We define |I| =

∑
|Ik|, the total length of I. We de-

fine I ′k to be the interval bounded by the endpoints of f(∂Ik). We define
I ′ = {I ′1, ..., I

′

n} and |I ′| =
∑

|I ′k|. Note that the intervals in I ′ might overlap.
Here is a slightly nonstandard definition of what is meant by maps which are
absolutely continuous in measure.

Definition: The map f is AC if the following property holds. For all ǫ > 0
there is some δ > 0 such that |I| < δ implies that |I ′| < ǫ.

The following result relates our definition of QC maps to the standard
definition.

Theorem 3.5 (Disk) Let h be a QC map. There is a constant K, de-

pending only on h, with the following property. Let ∆ be any disk such

that h(∆) ⊂ C. There are disks D1, D2 so that D1 ⊂ h(∆) ⊂ D2 and

diam(D2)/diam(D1) < K.

Proof: Suppose {∆n} is a sequence where the best ratio for h(∆n) tends to
0. Composing with Mobius transformations, we get an auxilliary sequence
{hn} such that the best ratio tends to 0 on hn(∆), where ∆ is unit disk, and
hn(±1) = ±1. Note that {hn} cannot be subconvergent.

There is some point un ∈ ∆ such that |hn(un)−±1| ∈ [1, 3]. Let gn be the
Mobius transformation mapping (−1, un, 1) to (−1, i, 1). Let ĥn = hn ◦ g

−1
n .

Note that gn(∆) = ∆, and hence ĥn(∆) = hn(∆). Hence, we can replace
{hn} by {ĥn} and we still have sequence of counterexamples. But this latter
sequence is normalized and hence subconvergent. This is a contradiction. ♠

The following idea is in Lehto and Virtanen’s book. Suppose that Q is
the unit square and h : Q → C is QC. For each y ∈ [0, 1] let A(y) denote
the area of h([0, 1] × [0, y]). The function A is monotone and hence almost
everywhere differentiable. Let Ly ⊂ Q be the horizontal segment of height y.
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Theorem 3.6 Suppose that A′(y) exists. Let π : R2 → R be any linear

projection. Then π ◦ h is AC on Ly.

Proof: Let Q(ǫ) = [0, 1]×[y−ǫ, y+ǫ]. This set has area ǫ. SetK1 = 4|A′(y)|.
Once ǫ is sufficiently small,

area(h(Q(ǫ)) = A(y + ǫ)− A(y − ǫ) < K1ǫ. (6)

Let f = π ◦ h|Ly. Suppose f is not AC. Then we can scale the picture
so that there is a sequence of partial partitions {In} with |In| < 1/n and
|I ′n| ≥ 1.

We fix n for now and let I = In be one of these partial partitions. We can
subdivide the partition (without destroying the basic property) so that all the
intervals of I have the same size up to a factor of 2. We write I = {I1, ..., Ik}.
Here k depends on n in some way. Let ǫ = max |Ij|. Since ǫ < 2min |Ij|, we
have kǫ < 2|I|. Hence

ǫ < 2/(kn) (7)

Let ∆j be the disk having Ij as a diameter. We have ∆j ⊂ H(ǫ). Hence

k∑

j=1

area h(∆j) < area(h(Q(ǫ)) < K1ǫ <
2K1

kn
. (8)

Let K2 be the constant from the Disk Theorem. Let D1,j and D2,j be
disks such that D1,j ⊂ h(∆j) ⊂ D2,j and diam(D2,j)/diam(D1,j) < K2. We
have

k∑

j=1

diam(D2,j) ≥ 1,
k∑

j=1

diam(D1,j) ≥
1

K2

. (9)

The first equation, which comes from |I ′| ≥ 1, implies the second equation.
The sum of the areas of the disks {D1,j} would be minimized if they all

had the same size, namely some common radius r ≥ 1/(2K2k). Therefore,

2K1

kn
>

k∑

j=1

area h(Qk) ≥
k∑

j=1

area(D1,j) ≥ kπr2 ≥
π

4K2
2k

. (10)

This is a contradiction for large n. ♠
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3.3 Bounded Variation

Let f : [0, 1] → R be some continuous function. We say that f is BV
(bounded variation) if there is some N such that |I ′| < N for all choices of
partial partition I.

Lemma 3.7 If f is AC, then f is BV.

Proof: Suppose f is not BV. Then, for any N , there is a partition I such
that |I ′| > N . We can subdivide the intervals in I so that they all have the
same length up to a factor of 2, and all have length less than 1/N . This
subdivision does not decrease |I ′|. Now we can split I into partial partitions,
all having total length between 1/N and 2/N . There are at most N of these
partial partitions. Hence, one of these partitial partitions J will be such that
|J ′| > 1. In summary, |J | < 2/N and |J ′| > 1. Hence f is not AC. ♠

It is well known that BV functions are a.e. differentiable. For the sake of
completeness, I’ll include the proof

Lemma 3.8 If f is BV, then f = f+ − f−, where f+ and f− are monotone

increasing functions. Hence f is a.e. differentiable.

Proof: Let s ∈ (0, 1]. Given a partition I of [0, x], define |I ′|± =
∑

|I ′k|,
where the sum is taken over the intervals Ik such that ±f maps the endpoints
of Ik into R in order. In case I is a partition of [0, x], we have

f(x) = |I ′|+ − |I ′|−. (11)

Define f±(x) = sup |I ′|±, where the supremum is taken over all partitions of
[0, x]. These two functions are well defined (since f is BV) and monotone.

If we take a partition I and refine it, it does not decrease |I ′|±. For this
reason, we can find a single partition I of [0, x] such that f±(x)− |I ′|± < ǫ.
Plugging this into Equation 11, we get |f(x)− (f+(x)− f−(x))| < 2ǫ. But x
and ǫ are both arbitrary. Hence f = f+ − f−. ♠

Corollary 3.9 If f is AC, then f is a.e. differentiable.
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3.4 Nonzero Derivatives

Lemma 3.10 Suppose f : [0, 1] → R is AC and f(0) 6= f(1). Then there

is some positive measure subset C ⊂ [0, 1] such that f ′ exists and is nonzero

for all x ∈ C.

Proof: We suppose that the conclusion is false and derive a contradiction. If
f ′ = 0 a.e. then we have [0, 1] = A∪B where B has measure 0 and f ′(x) = 0
for all x ∈ A. Lemma 3.11 below shows that f(B) has measure 0.

Each point x ∈ A is the midpoint of an open interval U = Ux such that
diam(f(U)) < ǫ diam(U). We can choose Ux so that it has diameter 2−k.
So, {Ux} is a nice cover of A, in the sense of Lemma 3.12 below. By Lemma
3.12, there is some subcover of total length at most 2. But then f(A) has
measure less than 2ǫ. Since ǫ is arbitrary, f(A) has measure 0.

Since f(A) and f(B) both have measure 0, the connected set f([0, 1]) has
measure 0. But then f([0, 1]) is a single point. This is a contradiction. ♠

Now we take care of the unfinished business in Lemma 3.10.

Lemma 3.11 If f is AC and B ⊂ [0, 1] has measure 0, then f(B) has

measure 0.

Proof: We can find an open set U having length less than δ such that
B ⊂ U . The set U is a countable union of open intervals. Let Un denote the
union of the first n intervals of U .

There is a partition I = In of closure(Un) so that f(Un) ⊂
⋃
I ′k. The

idea is as follows. For each compact connected component K of closure(Un),
we include in In an interval connecting a point of K where where f |K takes
on a minimum value to a point of K where f |K takes on a maximum value.

By construction |In| < δ. Choosing δ small enough, we can guarantee
that |(In)′| < ǫ. Setting Bn = B ∩ Un, we see that f(Bn) ⊂

⋃
k(I

n
k )

′ has
measure less than ǫ. But f(B) =

⋃
f(Bn). Hence f(B) has measure at most

ǫ. But ǫ is arbitrary. ♠

Now we deal with the second half of the unfinished business. Say that a
nice cover of A ⊂ [0, 1] is a cover in which every point of A is the midpoint
of some interval in the cover, and each interval has length 2−k for some k
(depending possibly on the interval.)
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Lemma 3.12 Any nice cover has a subcover of total length at most 2.

Proof: This is essentially the Besicovich Covering Lemma. Let I∗ be the
interval obtained by shrinking an interval I by a factor of 2 about its mid-
point. We produce a sequence of intervals I1, I2, ... as follows. Assuming that
the first k of these intervals have been chosen, let Ik+1 be any largest interval
such that I∗k+1 is disjoint from I∗j for j = 1, ..., k. This algorithm produces a
countable (perhaps finite) list whose total length is at most 2.

We claim that A ⊂
⋃
Ij. If not, let x ∈ A be some uncovered point

and let J be an interval in the original cover that has x as a midpoint. By
construction, x is at least |I∗j | away from the endpoints of I∗j . But there are
only finitely many intervals I1, ..., Ik not smaller than J , and our algorithm
would have placed J on the list right after Ik, a contradiction. ♠

3.5 The End of the Proof

Now we prove Lemma 3.1. Let Y ⊂ [0, 1] be the full measure set where the
area function A is differentiable. Let π : C → R be any linear projection.
Let Ly ⊂ Q be the unit horizontal segment of height y. For each y ∈ Y , the
map π ◦ h|Ly is AC and hence a.e. differentiable on Ly.

Using real notation, we write h = (h1, h2). Taking π to be projection
onto the real and imaginary axes, we see that ∂hj/∂x exists at almost every
point of almost every Ly. So, by Fubini’s Theorem, ∂h/∂x exist a.e. in Q.
This gives us Ω1 in Lemma 3.1.

For any y ∈ Y , choose π so that π ◦ h does not identify the endpoints of
Ly. Lemma 3.10 tells us that π ◦ h|Ly has nonzero derivative on a positive
set Sy ⊂ Ly. But then ∂h/∂x is nonzero on Sy. The union Ω2 =

⋃
y Sy ∩ Ω1

has positive measure, by Fubini’s Theorem, and is the set in Lemma 3.1.
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