The Goal: The purpose of these notes is to explain the outer automorphism of the symmetric group S_6 and its connection to the Steiner (5, 6, 12) design and the Mathieu group M_{12} . In view of giving short proofs, we often appeal to a mixture of logic and direct computer-assisted enumerations.

Preliminaries: It is an exercise to show that the symmetric group S_n admits an outer automorphism if and only if n = 6. The basic idea is that any automorphism of S_n must map the set of transpositions bijectively to the set of conjugacy classes of a single permutation. A counting argument shows that the only possibility, for $n \neq 6$, is that the automorphism maps the set of transpositions to the set of transpositions. From here it is not to hard to see that the automorphism must be an inner automorphism – i.e., conjugation by some element of S_n . For n = 6 there are 15 transpositions and also 15 triple transpositions, permutations of the form (ab)(cd)(ef) with all letters distinct. This leaves open the possibility of an outer automorphism.

The Steiner Design: Let $P_1(\mathbf{Z}/11)$ denote the projective line over $\mathbf{Z}/11$. The group $\Gamma = SL_2(\mathbf{Z}/11)$ consists of those transformations

$$x \to (ax+b)/(cx+d)$$

with $ad - bc \equiv 1 \mod 11$. There are $660 = (12 \times 11 \times 10)/2$ elements in this group. Let

$$B_{\infty} = \{1, 3, 4, 5, 9, \infty\} \subset P_1(\mathbf{Z}/11)$$

be the 6-element subset consisting of the squares mod 11 and the element ∞ . Let $\Gamma_{\infty} \subset \Gamma$ be the stabilizer of B_{∞} . Let \mathcal{B} be the orbit of B_{∞} under the action of Γ .

Lemma 0.1 Γ_{∞} has order 5 and stabilizes ∞ . At the same time \mathcal{B} has 132 members.

Proof: Let N be the order of Γ_{∞} and let M be the size of \mathcal{B} . We have MN = 660. The element

$$\beta(x) = \frac{5x+0}{0x+9} = 3x$$

belongs to Γ_{∞} and generates an order 5 subgroup. A direct enumeration shows that this is all of Γ_{∞} . Hence N = 5 and M = 132.

The 132 elements of \mathcal{B} are called *blocks*. Together they comprise the Steiner (5, 6, 12) design.

Lemma 0.2 Every 5 element subset of $P_1(\mathbf{Z}/11)$ is contained in a unique block.

Proof: A direct enumeration shows that no distinct block has 5 members in common with B_{∞} . By symmetry, no two blocks have 5 elements in common. Hence, each 5-element subsets lies in at most one block. There are 792 5-element subsets. At the same time, the number of 5-element subsets contained in blocks is $6 \times 132 = 792$. This accounts for all of them.

Lemma 0.3 The complement of a block in $P_1(\mathbf{Z}/11)$ is also a block.

Proof: Let I(x) = -1/x. This element belongs to Γ . We compute that $I(B_{\infty})$ is the subset $B_0 = \{0, 2, 6, 7, 8, 10\}$. This is the complement of B_{∞} and hence also a block. The general case now follows from symmetry.

The Mathieu Group By construction, the elements of Γ are automorphisms of \mathcal{B} . Amazingly, \mathcal{B} has additional automorphisms.

Lemma 0.4 The permutation

$$\pi = (1, \infty)(0, 7)(2, 8)(6, 10)$$

preserves \mathcal{B} .

Proof: This is a direct computer-assisted enumeration.

Note that π preserves both B_0 and B_∞ and acts as a transposition on B_∞ and as a triple cycle on B_0 .

Let M_{12} denote the group generated by Γ and π . This group is known as a *Mathieu group*. We can work out the exact order of M_{12} . Given that π acts on B_{∞} as a transposition swapping 1 and ∞ , and Γ_{∞} is generated by a 5-cycle which fixes ∞ , we see that the stabilizer of B_{∞} in M_{12} is S_6 . This is much bigger than Γ_{∞} . The orbit of B_{∞} under M_{12} is \mathcal{B} . Therefore M_{12} has order

 $6! \times 132 = 95040 = 12 \times 11 \times 10 \times 9 \times 8.$

This is 720/5 = 144 times as large as the order of Γ .

Lemma 0.5 Given any two ordered 5-tuples, there is a unique element of M_{12} mapping the one to the other. That is, M_{12} acts sharply transitively on the set of ordered 5-tuples in $P_1(\mathbb{Z}/11)$.

Proof: Suppose that X and Y are two 5-element subsets of $P_1(\mathbb{Z}/11)$. There are unique blocks B_X and B_Y which contains X and Y respectively. There is an element $\gamma \in M_{12}$ such that $\gamma(B_X) = B_Y$. Since the stabilizer of each block in \mathcal{B} is S_6 , we can choose γ so that $\gamma(X) = Y$. In other words, M_{12} acts transitively on the 5-element subsets of $P_1(\mathbb{Z}/11)$. But there are precisely 95040 such subsets. Therefore, M_{12} acts sharply transitively on these subsets.

Lemma 0.6 Every element of M_{12} is the product of at least 4 transpositions.

Proof: Consider an element of M_{12} which, hypothetically, is the product of at most 3 transpositions. Such an element would only move at most 6 members of $P_1(\mathbf{Z}/11)$ and hence would fix some ordered 5-tuple. This contradicts sharp transitivity.

The Outer Automophism: Let S_6 be the stabilizer of B_{∞} in M_{12} . Note that S_6 is simultaneously the stabilizer of B_0 . Therefore, conjugation by I is an automorphism of S_6 . By construction π acts as a transposition on B_{∞} but $I\pi I^{-1}$ acts as a triple transposition on B_{∞} . Hence, conjugation by I is an outer automorphism of S_6 . The previous lemma shows that this calculation is not just a crazy accident.

A Cell Complex: Let me elaborate a bit on Lemma 0.2. Two Steiner blocks can intersect in 4 elements. One can make a cell complex K in which the vertices are Steiner blocks and the k-simplices are (k+1)-tuples of blocks which mutually intersect in sets of size 4. The group M_{12} automatically acts on this complex K. I computed that K respectively has

 $66 \times (2, 45, 300, 675, 432, 12)$

k-simplices for k = 0, 1, 2, 3, 4, 5, and no 6-simplices. This space has Euler characteristic 132. Each 5-simplex is such that the blocks corresponding to the vertices have 5 elements in common with a unique 6-element subset which is not a block. (Call these *unblocks*.) Therefore, there is a canonical bijection between the set of 5-simplices and the set of unblocks.