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The Farey sum of two rational numbers a/b and c/d is

a

b
⊕ c

d
=
a+ c

b+ d
. (1)

At first glance this operation looks unpromising: It seem to be a mistaken
way to add fractions. However, Farey addition is a well-studied concept
in number theory. See e.g. [HW, §III]. Farey addition has connections to
such topics as continued fractions and the modular group. It is also the
basic structure underpinning the recently created and celebrated quantum
rationals [MO].

In this note I will give two interpretations of Farey addition, one in terms
of an operation on certain pairs of disks and one in terms of Pappus’s theo-
rem, a famous theorem from projective geometry. The disk interpretation is
extremely well known. See for instance [W, pp. 88-89]. For all I know, the
Pappus interpretation has also previously been discovered, but I am pretty
certain that the deeper connections between Pappus’s Theorem and the mod-
ular group originated in my paper [S1]. My recent paper [S2] gives a nice
exposition of [S1] and also goes more deeply into the topic. At the end of this
note, I will briefly indicate how the elementary material here leads naturally
into deeper waters.

Farey Partners: To make the connections work perfectly I will always
work with reduced fractions a/b. This is to say that a, b are coprime. Also, I
will only apply Farey addition to pairs a/b and c/d such that |ad− bc| = 1. I
will call such fractions Farey partners . This is the usual constraint one sees
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when working with continued fractions and the modular groups.

The Disk Interpretation: Let’s interpret the fraction a/b as the disk
D(a/b) having center (

a

b
,

1

2b2

)
(2)

and radius 1/(2b2). These disks lie in the upper half plane and are tangent
to the x-axis.

Lemma 0.1 D(a/b) and D(c/d) are tangent when a/b and c/d are Farey
partners.

Proof: The square distance between the centers of the disks is

d2 =
(

1

2b2
− 1

2d2

)2

+
(
a

b
− c

d

)2

=
(

1

2b2
− 1

2d2

)2

+
1

b2d2
.

At the same time, the square of the sum of the radii is

s2 =
(

1

2b2
+

1

2d2

)2

.

When you expand out the expressions you see that d2 = s2. Since d, s > 0
we have d = s. ♠

Note that e/f := a/b ⊕ c/d is a Farey partner with both a/b and c/d.
This means that the disk D(e/f) is mutually tangent to the D(a/b) and
D(c/d) and the x-axis. Thus, If we start with two disks which are Farey
partners, then Farey addition amounts to inserting the unique disk that lies
in the intersticial region above the x-axis and between the two disks. Figure
1 shows this in action.

a/b

c/d

e/f

Figure 1: The disk interpretation of Farey addition
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The Pappus Interpretation: Many geometry textbooks discuss Pappus’s
famous theorem. See e.g. [H]. On [HC, p 103], D. Hilbert and S. Cohn-
Vossen refer to the configuration underlying Pappus’s Theorem, namely the
one in Figure 2, as “the most important configuration in all of geometry”.

Figure 2: Pappus’s theorem.

Theorem 0.2 (Pappus) If the black points are collinear and the white points
are collinear then so are the grey points.

Proof: Here is a sketch of a direct computational proof. We can encode
the point (x, y) as the scale equivalence class of the vector (x, y, 1) in R3.
Likewise we can encode the line ax+ by+1 = 0 as the scale equivalence class
of the vector (a, b, 1). These coordinates are known as homogeneous coordi-
nates . In homogeneous coordinates, the intersection of two lines is given by
the cross product. Likewise, the line through a pair of points is given by the
cross product. Three vectors represent collinear points if and only if, when
you put them as columns in a 3 × 3 matrix, you get a matrix with zero de-
terminant. Equipped with these computational tools, you just coordinatize
the white and black points, take a bunch cross products, and then see that
one final determinant vanishes. ♠

Now we take a very special case of Pappus’s Theorem. (In this special
case, the conclusion of Pappus’s theorem just follows from symmetry.) We
represent a/b by the vertical line segment L(p/q) whose length is 1/b and
whose midpoint is (a/b, 0). We think of the endpoints and the midpoint
as the three special points on L(a/b). This, L(a/b) is really a marked line
segment , meaning a line segment with 3 distinguished points. Here is the
statement parallel to Lemma 0.1
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Lemma 0.3 Suppose a/b and c/d are Farey partners. When we perform
Pappus’s Theorem starting with L(a/b) and L(c/d) the new marked line seg-
ment created is L(e/f).

Proof: This is a direct calculation, best done in homogeneous coordinates.
The marked points of L(a/b) are represented by vectors V−1, V0, V1, where
Vj = (a/b, j/b, 1) The marked points of L(c/d) are represented by vectors
W−1,W0,W1, where Wj = (c/d, j/d, 1)

Let L′ be the marked segment produced by our operation. We want to
see that L′ = L(e/f). By symmetry, L′ is a vertical line segment centered
on the x-axis. The middle point of L′ is represented by the vector

(V−1 ×W1)× (V1 ×W−1) =
ad− bc
b2d2

(a+ c, 0, b+ d).

This vector represents (e/f, 0). The top point of L′ is represented by the
vector

(V0 ×W1)× (V1 ×W0) =
ad− bc
b2d2

((a+ c, 1, b+ d).

This vector represents (e/f, 1/f). The calculation for the bottom point of L′

follows from the top-point calculation and symmetry. ♠

Figure 3 shows Lemma 0.3 in action for a/b = 1/3 and c/d = 1/2.

1/3 1/22/5

0

1

Figure 3: Pappus Interpretation of Farey Addition
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For the sake of drawing nice pictures, we point out an extra symmetry
in the Pappus interpretation. We might have chosen an arbitrary λ > 0 and
then defined L(a/b) to be the line segment whose length is λ/b and whose
center is (a/b, 0). Doing this has the effect of vertically stretching or com-
pressing the picture, and it has no effect on the essential properties of the
construction. When it comes time to show our big picture below, we will
compress the picture in this way, so that everything fits nicely on the page.

Constructing the Rationals: Both the disk interpretation and the Pappus
interpretation lend themselves to a recursive construction of all the rationals
between 0 and 1. To use disks, start with D(0/1) and D(1/1) and then re-
cursively fill in the interstitial regions. To use Pappus’s Theorem, start with
L(0/1) and L(1/1) and then recursively apply Pappus’s Theorem. Figure 4
shows the two constructions, one on top of the other. They line up perfectly.

Figure 4. Pappus Interpretation of Farey Addition
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The top part of Figure 4 has some extra stuff in it. I have joined Farey
partners by semi-circular arcs. These arcs go through the tangency points of
the grey disks.

Deeper Waters: The circular arcs in Figure 4 are geodesics in the upper
half plane model of the hyperbolic plane. See e.g. [K] and [T] for extensive
discussions of the hyperbolic plane and see e.g. [Se2] for a drawing of these
geodesics in the disk model of the hyperbolic plane. (In the disk model you
can grasp the whole pattern more easily.) These geodesics are the edges of
the Farey tesselation, a totally symmetric tiling of the hyperbolic plane by
ideal triangles.

At the same time, the pattern of disks extends outside the portion shown
in Figure 4 to fill up the entire hyperbolic plane. This extended pattern of
disks is often referred to as the horodisk packing dual to the Farey tesselation.
Concretely, you get the extension from (the fully filled-in version of) the top
half of Figure 4 by first translating the whole picture to the left and right by
all integer translations and then adding in the “infinite horodisk” consisting
of the set of all points above the line y = 1. In this extension, the disks and
the geodesics are everywhere related just as in Figure 4: Each geodesic goes
through a tangency point between a pair of disks.

In the upper half-plane model, the Farey tesselation and the dual horodisk
packing are simultaneously preserved by the action of the modular group,
PSL2(Z). (This is the group of 2 × 2 integer matrices of determinant 1
modulo the relation that M ∼ −M .) So, the circle interpretation above fits
in naturally with hyperbolic geometry and modular group symmetry. See
e.g. [Se1] and [Se2] for a discussion of how the modular group, continued
fractions, and hyperbolic geometry are related.

What about the Pappus interpretation? First of all, one can also extend
the construction “outwards”. This will produce a larger pattern of points
and lines. This pattern, properly understood, lives in the flag variety over
the projective plane. The flag variety is the space of pairs (p, `) where p is a
point in the projective plane and ` is a line in the projective plaene containing
p. The natural group of symmetries here is the group of isometries of the
5 dimensional symmetric space X = SL3(R)/SO(3). So, once we make the
extension, we get an isomorphic copy of the modular group sitting inside the
isometry group of X.

But this is just the beginning! The thing about Pappus’s Theorem is
that it applies to many different starting configurations and not just the
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one I chose. You can change the initial conditions, using some other pair of
“marked line segments” in place of L(0/1) and L(1/1). When you do this,
you see interesting things emerge. Figure 5 shows the same kind of iterative
construction starting from a different “seed” of 2 × 3 points. I have taken
some liberties with the coloring to get a striking image. What happens when
you change the initial conditions is that some of the segments tilt and their
distinguished midpoints move up and down.

As with the “symmetric case” shown in Figure 4, the picture here extends
outwards. The set of midpoints of the segments turn out to be dense in a
continuous fractal loop. There is still a group of symmetries of the whole pat-
tern. It is algebraically isomorphic to the modular group but geometrically
quite different. It is known as a deformation of the modular group inside the
isometry group of X. Even the geodesics in Figure 4 have an interpretation
here: They form a certain pattern of geodesics in X with the same kind of
asymptotic properties as the Farey pattern in the hyperbolic plane, except
that somehow they are bent inside X. The picture is very simular to what
is called a pleated surface.

Figure 5. An iteration of Pappus’s Theorem with a different seed.
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What I am saying is that you can start with the hyperbolic geometry
picture suggested by the top of Figure 4, then switch interpretations to the
Pappus picture. Then you can perturb the initial conditions and extend
outward. When you do this, and suitably interpret the construction, the
whole thing pops out into a kind of pleated and yet totally symmetric pattern
of geodesics sitting inside the 5 dimensional space X. It is hard to picture
these patterns directly, but I imagine a being gifted with the right kind higher
dimensional sight would find them quite beautiful. If you want to know the
details, see [S2].

Let me close this note with a question. The iterated Pappus construction
and the quantum rational construction both give enhanced extensions of
the same kinds of mathematics – rational numbers, continued fractions, the
modular group, etc. Is there some way to marry these two ideas?
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