
The Positive Dominance Algorithm

Richard Evan Schwartz ∗

August 10, 2014

1 Introduction

In this note I will explain a computational algorithm which I call the positive
dominance algorithm. The input is a polynomial F ∈ R[X1, ..., Xn] and a
polytope P ⊂ R

n. One version of the algorithm tries to verify that F > 0
on P . This version halts if and only if the the assertion is true.

Another version of the algorithm tries to verify that F ≥ 0 on P . This
case is more interesting, because it allows for sharper applications. In this
case, we have F ≥ 0 on P if the algorithm halts, but the converse is not
necessarily true. The algorithm will probably fail if F = 0 on some interior
points of the polytope.

The algorithms require that P has some triangulation into simplices, so
we will restrict our attention to the case when P is a simplex. In case F
is a rational polynomial and P is a rational simplex, the algorithm can be
implemented with exact rational arithmetic. Another useful case happens
when both P and F are defined over the same number field. Here, again, the
algorithm can be implemented using exact arithmetic.

I have used the algorithm in two diverse situations. In one situation [S1],
I proved some inequalities converning the Cayley-Menger determinant on the
space of tetrahedra, and in another situation [S2] I used it to analyze the
Julia set of a high degree rational map of 2 variables. I’m sure it has many
other applications. After presenting the algorithm, I’ll discuss the geometric
applications I have in mind.

∗ Supported by N.S.F. Research Grant DMS-1204471

1

2 Single Variable Case

2.1 Positive Dominance

I will concentrate on the (≥) case first, and explain the changes needed for the
(>) case at the end. As a warmup, we consider the situation for polynomials
in a single variable. Let

F (x) = a0 + a1x+ ...+ anx
n (1)

be a polynomial with real coefficients. Here we describe a method for showing
that F ≥ 0 on [0, 1],

Define
Ak = a0 + · · ·+ ak. (2)

We call F positive dominant (or PD for short) if Ak ≥ 0 for all k.

Lemma 2.1 Suppose F is positive dominant. Then F ≥ 0 on [0, 1]. More-

over, if F is positive dominant and nontrivial, then F > 0 on (0, 1).

Proof: The proof goes by induction on the degree of F . The case deg(F) = 0
follows from the fact that a0 = A0 ≥ 0. Let x ∈ [0, 1]. We have

F (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

a0x+ a1x+ a2x
2 + · · ·+ anx

n =

x(A1 + a2x+ a3x
2 + · · · anx

n−1) = xG(x) ≥ 0

Here G(x) is positive dominant and has degree n− 1.
Examining the proof, we see that the only way we could have F (x) = 0

for some x ∈ (0, 1) is if G(x) = 0 as well. So, the statement that F > 0 on
(0, 1) also follows from induction. ♠

Remark: If we had the stronger hypothesis that Ak > 0 for all k, then the
proof in Lemma 2.1 could be modified to show that F > 0 on [0, 1].

2

2.2 The Algorithm

Given a polynomial F , we define

F0(x) = F (x/2), F1(x) = F (1− x/2). (3)

Lemma 2.2 F ≥ 0 on [0, 1] iff F0 ≥ 0 on [0, 1] and F1 ≥ 0 on [0, 1].

Proof: Let A0(x) = x/2 and A1(x) = 1− x/2. Then A0 is a bijection from
[0, 1] to [0, 1/2] and A1 is a bijection from [0, 1] to [1/2, 1]. So, F ≥ 0 on
[0, 1/2] iff F0 ≥ 0 on [0, 1] and F ≥ 0 on [1/2, 1] iff F1 ≥ 0 on [0, 1]. ♠

The polynomial pair {F0, F1} is defined to be the subdivision of F . The
basic idea behind our technique is that the subdivision process tends to in-
crease the changes that a polynomial is positive dominant, because it tends
to put more weight on the earlier terms in the polynomial. With this in
mind, we define the basic algorithm.

The Positive Dominant Algorithm: Here is a recursive algorithm which
tries to show that a polynomial F is non-negative on [0, 1].

1. Start with a list LIST of polynomials. Initially LIST={F}.

2. Let G be the last polynomial on LIST. We delete G from LIST and
then test whether G is PD.

3. Suppose G is PD. We go back to Step 2 if LIST is nonempty, and
otherwise halt.

4. Suppose G is not PD. We append to LIST the two polynomials G0 and
G1 obtained by subdividing G, then go back to Step 2.

Remark: In our definition of the subdivision, we might have used the for-
mula F ′

1(x) = F (1/2+x/2) instead. This does not work as well. For instance,
if F (x) = (x− 1)2 then F ′

1(x) = F (x)/4. So, with this input, the algorithm
would run forever.

3

2.3 The Power of the Algorithm

Now we discuss what it means when the algorithm halts. We always assume
that our polynomials are nontrivial.

Lemma 2.3 If the positive dominance algorithm halts for F , then F ≥ 0 on

[0, 1] and all the roots of F in [0, 1] are dyadic rationals.

Proof: Suppose first that the algorithm halts. Then we have a partition
of [0, 1] into intervals I1, ..., In, together with affine maps Ak : [0, 1] → Ik so
that F ◦Ak is positive dominant for all k. But then F > 0 on the interior of
Ak for all k. Also, by construction, the endpoints of Ak are dyadic rational.
Hence, the only roots of F in [0, 1] lie in dyadic rationals. ♠

The converse is also true. We will build up to the converse result in
stages.

Lemma 2.4 Suppose that F > 0 on [0, 1] then there is some ǫ > 0 with the

following property: If I ⊂ [0, 1] is any interval whose length is less than ǫ,
and A is one of the two affine isomorphisms from [0, 1] to I, then F ◦ A is

positive dominant.

Proof: Since F > 0 on [0, 1], we have F = a0+a1x+ ... where a0 > 0. There
is some ǫ > 0 so that

a0 > ǫ(|a1 + ...+ |an|). (4)

The affine map A has the form

A(x) = c1x+ c2,

where |c1| < |I|, the length of I. But then, if |I| < ǫ, we have F ◦ A =
b0 + b1x+ ... where

b0 > |b1|+ ...+ ||bn|.

Such a polynomial is positive dominant. ♠

Corollary 2.5 If F > 0 on [0, 1] then the positive dominant algorithm halts

for F .

4

Proof: We can think of our algorithm as taking place on the level of inter-
vals. For each function G on LIST, there is some interval I and some affine
map A : [0, 1] → I so that G = F ◦A. There is also the constant ǫ > 0 from
the preceding result. By the preceding result, LIST will pass any polynomial
whose associated interval has length less than ǫ. Hence LIST will only con-
tain finitely many polynomials. Hence the algorithm halts. ♠

Lemma 2.6 If F > 0 on (0, 1] then the algorithm halts for F .

Proof: There is some k so that F (x) = xkG(x) where G > 0 in [0, 1]. The
algorithm runs the same for F and for G. Since the algorithm halts for F it
also halts for G. ♠

Lemma 2.7 If F > 0 on (0, 1) then the algorithm halts for F .

Proof: Let {F0, F1} be the subdivision of F . By construction, Fj > 0 on
(0, 1]. Hence, the algorithm halts for F0 and F1. Hence, the algorithm halts
for both functions together. ♠

Finally, we come to the main result.

Lemma 2.8 The positive dominance algorithm halts on F if and only if

F ≥ 0 on [0, 1] and if the roots of F are dyadic rationals.

Proof: We have already proved one direction. So, suppose that F ≥ 0 on
[0, 1] and the roots of F are all dyadic rationals. There exists a partition J of
I into dyadic intervals such that F > 0 on the interior of each interval. The
algorithm does a depth-first-search through the tree of dyadic intervals. If it
runs forever, it eventually produces an infinite list of intervals all contained
within a single interval of J . But this contradicts the preceding results: The
algorithm will halt on a polynomial associated to a sub-interval of an interval
of J . ♠

5

2.4 Variants

Positivity: There is a variant of the algorithm in which we test for strict
positivity. In this case, we test whether all the sums in Equation 2 are pos-
itive. The results above show that the “positive version” of the algorithm
converges if and only if F > 0 on [0, 1].

Alternate Subdivision Scheme: The polynomial F (x) = (x − 1/3)2 is
the simplest polynomial which defeats the algorithm. This polynomial is
non-negative on [0, 1] but the algorithm runs forever. The problem is that
the root of F is not a dyadic rational. One could imagine re-running the al-
gorithm based on a different subdivision rule, so as to pick additional roots.
For instance, if one uses Farey subdivision rather than dyadic subdivision,
the algorithm halts if and only if F ≥ 0 on [0, 1] and all roots are rational.

Detecting Negativity: Here is a variant of the algorithm which will also
halt (declaring failure) if F (x) < 0 for some x ∈ [0, 1]. The variant is the
same as the original, except that:

• At Step 2, we also test whether G(0) < 0, and halt if so.

• At Step 4 we prepend G0 and G1 to LIST rather than append them.

This version does a breadth first search (rather than a depth first search)
through the tree of dyadic intervals. So, it will find points of negativity
eventually. Thus, if F (x) < 0 for some x ∈ [0, 1], the above algorithm will
halt (with failure). The results about positivity are the same: The algorithm
will halt with success if and only if F ≥ 0 on [0, 1] and all the roots are
dyadic rationals.

6

3 The General Case

3.1 Positive Dominance

Now we go to the higher dimensional case. We consider real polynomials in
the variables x1, ..., xk. Given a multi-index I = (i1, ..., ik) ∈ (N ∪ {0})k we
let

xI = xi1
1 ...x

ik
k . (5)

Any polynomial F ∈ R[x1, ..., xk] can be written succinctly as

F =
∑

AIX
I , AI ∈ R. (6)

If I ′ = (i′1, ..., i
′
k) we write I ′ ≤ I if i′j ≤ ij for all j = 1, ..., k. We call F

positive dominant if
∑

I′≤I

AI′ ≥ 0 ∀I, (7)

Lemma 3.1 If F is positive dominant then F ≥ 0 on [0, 1]k. If F is non-

trivial and positive dominant, then F > 0 on (0, 1)k.

Proof: The 1 variable case is Lemma 2.1. In general, we write

F = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xk−1]. (8)

Let Fj = f0 + ... + fj. Since F is positive dominant, we get that Fj is
positive dominant for all j. By induction on k, we get Fj ≥ 0 on [0, 1]k−1.
But now, if we hold x1, ..., xk−1 fixed and let t = xk vary, the polynomial
g(t) = F (x1, ..., xk−1, t) is positive dominant.. Hence, by Lemma 2.1, we get
g ≥ 0 on [0, 1]. Hence F ≥ 0 on [0, 1]k.

If F is nontrivial, then there is some point p ∈ (0, 1)k where f(p) > 0.
But then, in Equation 8, at least one fj is a nontrivial polynomial. But
then, by induction on k, the function fj is positive on (0, 1)k−1. But then
the polynomial g(t) nontrivial and positive dominant for each choice of
x1, ..., xk−1 ∈ (0, 1)k−1. But then g(t) > 0 on (0, 1). This proves what
we want. ♠

7

3.2 The Algorithm

We can perform the same kind of divide-and-conquer algorithm as in the
1-dimensional case. We always take our domain to be [0, 1]k. Let P be a
polynomial. We define the kth subdivision of F to be the pair of polynomials
{F0, F1}, where

Fk,0(x1, ..., xn) = F (x1, ..., (xk/2), ..., xn),

Fk,1(x1, ..., xn) = F (x1, ..., (1− xk/2), ..., xn). (9)

The same argument as in the previous section shows that F ≥ 0 on [0, 1]n if
and only if F0 ≥ 0 on [0, 1]n and F1 ≥ 0 on [0, 1]n.

Now we will build up to the general version of our subdivision algorithm.
Say that a marker is a non-negative integer vector in R

k. Say that the
youngest entry in the the marker is the first minimum entry going from left
to right. The successor of a marker is the marker obtained by adding one to
the youngest entry. For instance, the successor of (2, 2, 1, 1, 1) is (2, 2, 2, 1, 1).
Let µ+ denote the successor of µ.

We say that a marked polynomial is a pair (F, µ), where F is a polynomial
and µ is a marker. Let k be the position of the youngest entry of µ. We
define the subdivision of (F, µ) to be the pair

{(Fk,1, µ+, (Fk,2, µ+)}. (10)

Geometrically, we are cutting the domain in half along the longest side, and
using a particular rule to break ties when they occur.

Positive Dominance Algorithm:

1. Start with a list LIST of marked polynomials. Initially, LIST consists
only of the marked polynomial (F, (0, ..., 0)).

2. Let (G, µ) be the last element of LIST. We delete (G, µ) from LIST
and test whether G is positive dominant.

3. Suppose G is positive dominant. we go back to Step 2 if LIST is not
empty. Otherwise, we halt.

4. Suppose G is not positive dominant. we append to LIST the two
marked polynomials in the subdivision of (G, µ) and then go to Step 2.

We call F Recursively Positive Dominant or (RPD) if the positive domi-
nance algorithm halts for F . If F is RPD then F ≥ 0 on [0, 1]k.

8

3.3 The Limitations of the Algorithm

The converse results are not as strong as in the one dimensional case. One
result which goes through easily is:

Lemma 3.2 If F > 0 on [0, 1]n then the positive dominant algorithm halts

on F .

Proof: Essentially the same as in the 1-dimensional case. ♠

When F is only non-positive on [0, 1]n, the situation is much trickier. The
polynomial

F (x, y) = (x− y)2 (11)

defeats the algorithm because F0 = 1/4F , and then F00 = 1/16F , etc. One
might expect problems with this function because it vanishes along the di-
agonal in R

2.
Here is a related example. The function

F (x, y) = (x− y)2 + x4 + y4 (12)

is positive on R
2 − (0, 0) but defeats the algorithm.

Here is another general source of failure in the non-negative case. The
algorithm has no chance of working if F ≥ 0 on [0, 1]n and the variety
{F = 0} intersects [0, 1]n in a non-linear set. The problem is that one cannot
completely eliminate polynomials which vanish at points in (0, 1)n. Such
polynomials cannot be positive dominant, by Lemma 3.1.

A simple example of the problematic kind of polynomial we are taking
about is:

F (x, y) = (x2 + y2 − 1)2. (13)

This function vanishes on the unit circle and otherwise is positive.
Some experience shows that the algorithm has a pretty good chance of

working (the example in Equation 12 notwithstanding) provided that it van-
ishes only along linear subsets contained in the boundary of [0, 1]n. The
example in Equation 12 vanishes “up to higher order” on the diagonal x = y,
which intersects the interior of [0, 1]2, and this is what causes the problem.
However, I don’t know a general criterion which describes exactly when the
algorithm halts.

9

3.4 Variants

Detecting Negativity: One can run the same variants as discussed in the
one dimensional case, in order to detect negativity.

Multiple Functions: One can also run a version of the algorithm which
works with a finite number of functions at the same time.

1. Let LIST denote a list of k-tuples of polynomial pairs. Initially LIST
has the one member (Π1, ...,Πk). Here Πj = (Fj, (0, ..., 0)).

2. Let α be the last member of LIST. Delete α from LIST and test whether
at least one member of α is positive dominant.

3. If some member of α is positive dominant and LIST is nonempty, return
to step 2. Otherwise halt.

4. If no member of α is positive dominant, append to LIST the two k-
tuples α0 and α1. Here α0 is obtained by replacing each member of α
by its 0th subdivision, and likewise α1. Then go to Step 2.

If this algorithm halts, it produces a partition of [0, 1]n into sets S1, ..., Sk

with the property that the restriction fj|Sj is non-negative for each j =
1, .., k. I will give a geometric application of this version below.

10

4 The Cube Transform

4.1 Main Definition

So far we have discussed how we show F ≥ 0 on [0, 1]k. But now we want to
explain how we deal with simplices.

Let Sn ⊂ R
n denote the simplex

{(x1, ..., xn)| 1 ≥ x1 ≥ · · · ≥ xn ≥ 0}. (14)

This simplex is the convex hull of the vectors

(0, ..., 0), (1, 0, ..., 0), (1, 1, 0, ..., 0), · · · , (1, ..., 1).

There is a surjective polynomial map U : [0, 1]n → Sn given by

U(x1, ..., xn) =
(

(x1), (x1x2), (x1x2x3), ..., (x1...xn)
)

. (15)

Let ∆n ⊂ R
n+1 denote the regular n-simplex in R

n+1 consisting of the
convex hull of the standard basis vectors. That is, ∆n consists of points
(x1, ..., xn+1) such that xj ≥ 0 for all j and

∑

xj = 1. There is an affine
isomorphism from Sn to ∆n:

V (x1, ..., xn) = (1− x1, x1 − x2, x2 − x3, ..., xn−1 − xn, xn). (16)

The easiest way to see that this works is to check it on the vertices of Sn.
Finally, let Σ denote an n-simplex in some Euclidean space. We form a

matrix WΣ whose columns are the vertices of Σ.
We define the cube transform of the pair (F,Σ) to be the composition

FΣ = F ◦WΣ ◦ V ◦ U. (17)

By construction, F ≥ 0 on Σ provided that FΣ ≥ 0 on [0, 1]n. So, if we
want to decide if some polynomial F is positive on some simplex Σ, we use
the positive dominance algorithm to show that FΣ ≥ 0 on [0, 1]n.

Integrality: If Σ is a simplex with integer vertices, then WΣ is represented
by an integer matrix. Thus, if (F,Σ) are both defined over Z, so is FΣ.
Similarly, if F and Σ are defined over a number ring (respectively field), then
FΣ is defined over the same number ring (respectively field).

11

4.2 Alternate Subdivision Schemes

One can combine the cube transform and the notion of positive dominance in
a different way. Let F be a polynomial and let T be a triangle. We say that
the pair (F, T) is positive dominant if FT is positive dominant. Here FT is
the cube transform of F with respect to T . That is, the positive dominance
algorithm halts immediately for the polynomial FT . To show that F ≥ 0 on
T we could apply the following algorithm.

1. Let LIST denote a list of pairs (G,U) where G is a polynomial and U
is a triangle. Initially, LIST={(F, T)}.

2. Let {G,U} be the last member of LIST. We delete (G,U) from LIST
and test whether this pair if positive dominant.

3. Suppose (G,U) is positive dominant. If LIST is not empty we return
to Step 2. Otherwise halt.

4. If (G,U) is not positive dominant, replace (G,U) by the 4 pairs

(G,U1), ..., (G,U4),

where {Uj} is some subdivision of U . Then return to Step 2.

If the algorithm halts, it means that F ≥ 0 on T . During the algorithm, we
are subdividing the triangle repeatedly but keeping the polynomial the same.
Of course, when we take the cube transform of F with respect to different
triangles we get different polynomials.

I took this alternate approach in [S2]. I used the obvious subdivision
scheme, where each triangle is broken into 4 congruent triangles all having
have the size, and the same shape, as the original. In higher dimensions, one
would need a convenient subdivision scheme for a simplex in order to take
this alternate approach. In the variant where we test for strict positivity, we
again have the result that the algorithm halts if and only F > 0 on T .

In the case of non-negativity, I’m not sure whether the approach outlined
in this section is better or worse than the the original approach. Probably
the approach here works better for some functions and worse for others.

12

5 Rational Maps and Polytopes

Now I will give some geometric applications of the positive dominance algo-
rithm. Really, these are applications of any algorithm which can certify that
a polynomial is non-negative or positive on a polyhedron.

5.1 The Confinement Test

Let Φ : Rn → R
n be a rational map, let X ⊂ R

n be a polytope, and let
Y ⊂ R

n be a convex polytope. In this section we will explain how to verify
that Φ(X) ⊂ Y .

The building block for the general method is the situation when Y is a
half-space. That is, there is some linear functional L : Rn → R such that
L(p) ≥ 0 if and only if p ∈ Y . The function L ◦ Φ is a rational function on
R

n. Let’s write
L ◦ Φ = F/G, (18)

where F and G are polynomials. We normalize so that G > 0 at some point
in X. If P ≥ 0 on X and G > 0 on X, then Φ(X) ⊂ Y .

Any convex polytope is the intersection of a finite union of half-spaces.
So, we may apply the above test finitely many times in order to show that
Φ(X) ⊂ Y . If Y is an open polytope we can perform the same tests, replacing
F ≥ 0 with F > 0.

5.2 The Exclusion Test

There is a variant of the test above, in which we try to show that Φ(X)
is disjoint from Y . Consider the case When X is a simplex. Let L1, .., Lk

denote linear functionals defining the faces of Y . We write

Lj ◦ Φ = Fj/Gj. (19)

We normalize so that Gj > 0 on some point of X, for each j = 1, ..., k. We
first try to show that Gj > 0 on X for all j. Next, we perform a the variant
of the algorithm discussed in §3.4.

If the algorithm halts, it means that we have a partition of X into k
piecesm say X = X1 ∪ ... ∪Xk so that Lj ◦ Φ < 0 on Xj. But then the jth
side of Y separates Φ(Xj) from Y . Hence Φ(X) is disjoint from Y .

13

The Exclusion Test is more versatile than the Confinement Test. Suppose
that we want to verify that Φ(X) ⊂ Y where Y is some complicated set, say a
smooth compact manifold with boundary. We could cover ∂Y by some finite
union of of convex polytopes, and then use the Exclusion Test repeatedly to
show that Φ(X) is disjoint from the covering. This would prove that Φ(X)
is disjoint from ∂Y . We then would check that Φ(p) ∈ Y for some p ∈ X.
We could then conclude that Φ(X) ⊂ Y . Similarly, if we had Φ(p) 6∈ Y for
some p ∈ X then we could conclude that Φ(X) is disjoint from Y .

6 References

[S1] R. Schwartz, Lengthening a Tetrahedron, preprint 2014
[S2] R. Schwartz, The Projective Heat Map on Pentagons , preprint 2014

14

