A continuous nowhere differentiable function, by Rich Schwartz

These notes give a geometric example of a continuous function that is nowhere
differentiable. The example, which is a coordinate function of the standard
parametrization of the Koch snowflake, explains one geometric mechanism
behind continuous nowhere differentiable functions: self-similarity.

Subdivision and Refinement: The subdivision of an interval is the col-
lection of two intervals we get by cutting it into equal halves. If we have a
collection Z of k intervals, we produce a new collection J of 2k intervals by
subdividing each member of Z. We write Z — J. Let Z, = {Iy}, where
Iy =[0,1]. Now we iteratively define collections Zo — Z; — Z,.... Here Z,, is
the partition of [0, 1] into 2" intervals of length 27™. We order these intervals
from left to right.

The refinement of an obtuse isosceles triangle A is the collection of two
smaller and similar triangles Ay, Ay C A such that the long side of A;
coincides with the (j)th short side of A. If we have a collection T of k
obtuse isosceles triangles, we produce a new collection U of 2k obtuse isosceles
triangles by refining each member of 7. We write 7 — U.
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Figure 1: Iterated triangle refinement a
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Let To = {1y}, where Tj is a triangle whose horizontal base has length 1
and whose short sides have length 1/v/3. Now we iteratively define collections
To— T1— T2 — ... Here T, has 2" congruent triangles, all having long
side length (v/3)~". Figure 1 shows the triangles of T, for n = 0,1,2, 3,4, 5.
We order the triangles of 7, so that consecutive ones share a common vertex
and the first is leftmost.



A Continuous Map: Figure 2 shows the T, superimposed for n =0, ..., 9.
We can see a curve emerging. Figure 3 below makes this even more clear.

Figure 2: Superimposing the triangles

There is an exact correspondence between the intervals of Z, and the
triangles of 7 ,,. The triangles are nested precisely as the intervals are: Some
triangle of 7, is contained in a triangle of T, if and only if the corresponding
interval of Z,, is contained in the corresponding interval of Z,,.

Every ¢ € [0, 1] can be written as ¢t = (1 I,,, where I, is one of the intervals
of Z,,. This description is unique unless ¢ is an endpoint of one of the partition
intervals. In this case there are two such intersections t = N1, = N J,, and
for large n the common endpoint of I, and J,, is ¢.

Corresponding to I, is the triangle 7,,. We define f(t) = NT,. Since
we have a nested intersection of compact sets, the intersection is non-empty.
Also, the diameter of these triangles decays by a factor of v/3 each time, so
they have a unique intersection point. In case t is the endpoint of a partition
interval, the two corresponding nested intersections of triangles intersect at
the common vertex, and this common vertex is defined to be f(t). So, f is
defined in all cases. Figure 3 below gives another way to visualize f.

Here is why f is continuous: If s and ¢ are very nearby points in [0, 1]
they both lie either in the same interval I,, for a large value of n or they lie
in adjacent intervals I,, and J,, for some large n. But then the images f(s)
and f(t) either lie in a triangle of diameter (v/3)™" or they lie in adjacent
triangles of diameter (1/3)™™. In either case, they are close together in R
More formally, given € > 0 we choose n so that 2 x (v/3)™ < ¢ and then we
let 6 = 27". These choices establish the classic e-¢ definition of continuity.
(Indeed, these choices directly establish uniform continuity.) Since f is con-
tinuous, so are its coordinate functions.



Self-Similarity: A similarity of R? is a map which scales distances by
a constant factor and preserves orientation. We only care about the cases
d =1,2. Below, A; and A, respectively will denote similarities of R and R>.

The map f is self-similar in a way we now explain. Let I be an interval
of Z,,. Let T be the corresponding triangle of T,,. Let f|; be the restriction
of f to I. We have

f:A2°f’10A17 (1)

where A; is the similarity such that A;(ly) = I and As is the similarity such
that As(T) = To. This works because the subdivision process is compatible
with similarities. Note that A; shrinks distances by a factor of 27" and A,
expands distances by a factor of (v/3)".

Here is a useful reformulation of the self-similarity. We note first that A;
and A, are both invertible. Choose some ¢t € I and let t* = A;'(t). Note
that

Ayto f(t7) = Ayt o fo AT(t) = fli(t) = [f(1). (2)

As t ranges over I, the point ¢* ranges over all of [0, 1].

Nowhere Differentiability: We write f(t) = (x(¢),y(t)). Suppose for
the sake of contradiction that x(-) is differentiable at some ¢ € [0,1]. Let
C = max(1,|z'(t)|). There is an interval I of Z,, that contains t. Let s € I
be another point. We have |s — t| < 27", If n is sufficiently large then

|z(s) —x(t)| < 2C|s —t| <, = 2C x 27", (3)

Geometrically, Equation 3 says that the point f(s) is within a,, of the vertical
line L through f(t).

Let s* = A7'(s). By Equation 2, the point Ay* o f(s*) = f(s) is within
a, of L. Applying A, we see that f(s*) is within

Bn = (V3)"a,, = 2C x (v/3/2)"

of the line As(L). As s ranges over all of I, the point s* ranges over all of
[0,1]. Hence f([0,1]) is contained within 3, of Ay(L). We can make 3, as
close as we want to 0 by taking n large enough, and so the above situation
is only possible if f([0,1]) lies in a straight line. This contradiction finishes
the proof.



Pictures and Discussion: There is another way to think about the map
f defined above. We can define f,, to be the map of constant speed (4/3)"
which maps [0, 1] to R? in such a way that f,(I) is the long side of T, where
T is the triangle of T, corresponding to the interval I of Z,,. Figure 3
shows the images of f,, for n = 1,2,3,4,5. We could have defined f as a
limit of these maps, but the triangle definition makes the continuity of the
limit more clear.
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Figure 3: A sequence of maps

Notice that as n increases the map f, is moving increasingly fast and
also is getting increasingly wiggly. We might say, at least informally, that
the limit f is moving infinitely fast and wiggling in an infinitely crazy way.
This kind of behavior is not compatible with differentiability. Even though
the“infinitely fast and wiggly” idea is a bit vague, it gives some intuitive feel
for the breakdown of differentiability.



We could have started with a different shape obtuse isosceles triangle.
Figure 4 shows the analogue of Figure 2 with respect to a different shape.

Figure 4: Nested triangles again

Actually, if we took a little bit more care with the definitions, we could
base the construction on a triangle that is not isosceles. Figure 5 shows an
example.

Figure 5: Nested triangles again

The triangle refinement construction has a limit, for right triangles, and
the result is a continuous curve whose image is the entire initial right triangle.

The same proof as above shows, in all these cases, that the corresponding
coordinate functions are continuous but nowhere differentiable.



