
A continuous nowhere differentiable function, by Rich Schwartz

These notes give a geometric example of a continuous function that is nowhere
differentiable. The example, which is a coordinate function of the standard
parametrization of the Koch snowflake, explains one geometric mechanism
behind continuous nowhere differentiable functions: self-similarity .

Subdivision and Refinement: The subdivision of an interval is the col-
lection of two intervals we get by cutting it into equal halves. If we have a
collection I of k intervals, we produce a new collection J of 2k intervals by
subdividing each member of I. We write I → J . Let I0 = {I0}, where
I0 = [0, 1]. Now we iteratively define collections I0 → I1 → I2.... Here In is
the partition of [0, 1] into 2n intervals of length 2−n. We order these intervals
from left to right.

The refinement of an obtuse isosceles triangle ∆ is the collection of two
smaller and similar triangles ∆1,∆2 ⊂ ∆ such that the long side of ∆j

coincides with the (j)th short side of ∆. If we have a collection T of k
obtuse isosceles triangles, we produce a new collection U of 2k obtuse isosceles
triangles by refining each member of T . We write T → U .
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Figure 1: Iterated triangle refinement a

Let T 0 = {T0}, where T0 is a triangle whose horizontal base has length 1
and whose short sides have length 1/

√
3. Now we iteratively define collections

T 0 → T 1 → T 2 → ... Here T n has 2n congruent triangles, all having long
side length (

√
3)−n. Figure 1 shows the triangles of T n for n = 0, 1, 2, 3, 4, 5.

We order the triangles of T n so that consecutive ones share a common vertex
and the first is leftmost.
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A Continuous Map: Figure 2 shows the T n superimposed for n = 0, ..., 9.
We can see a curve emerging. Figure 3 below makes this even more clear.

Figure 2: Superimposing the triangles

There is an exact correspondence between the intervals of In and the
triangles of T n. The triangles are nested precisely as the intervals are: Some
triangle of T m is contained in a triangle of T n if and only if the corresponding
interval of Im is contained in the corresponding interval of In.

Every t ∈ [0, 1] can be written as t =
⋂
In, where In is one of the intervals

of In. This description is unique unless t is an endpoint of one of the partition
intervals. In this case there are two such intersections t =

⋂
In =

⋂
Jn, and

for large n the common endpoint of In and Jn is t.
Corresponding to In is the triangle Tn. We define f(t) =

⋂
Tn. Since

we have a nested intersection of compact sets, the intersection is non-empty.
Also, the diameter of these triangles decays by a factor of

√
3 each time, so

they have a unique intersection point. In case t is the endpoint of a partition
interval, the two corresponding nested intersections of triangles intersect at
the common vertex, and this common vertex is defined to be f(t). So, f is
defined in all cases. Figure 3 below gives another way to visualize f .

Here is why f is continuous: If s and t are very nearby points in [0, 1]
they both lie either in the same interval In for a large value of n or they lie
in adjacent intervals In and Jn for some large n. But then the images f(s)
and f(t) either lie in a triangle of diameter (

√
3)−n or they lie in adjacent

triangles of diameter (
√

3)−n. In either case, they are close together in R2.
More formally, given ε > 0 we choose n so that 2× (

√
3)−n < ε and then we

let δ = 2−n. These choices establish the classic ε-δ definition of continuity.
(Indeed, these choices directly establish uniform continuity.) Since f is con-
tinuous, so are its coordinate functions.
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Self-Similarity: A similarity of Rd is a map which scales distances by
a constant factor and preserves orientation. We only care about the cases
d = 1, 2. Below, A1 and A2 respectively will denote similarities of R and R2.

The map f is self-similar in a way we now explain. Let I be an interval
of In. Let T be the corresponding triangle of T n. Let f |I be the restriction
of f to I. We have

f = A2 ◦ f |I ◦ A1, (1)

where A1 is the similarity such that A1(I0) = I and A2 is the similarity such
that A2(T ) = T0. This works because the subdivision process is compatible
with similarities. Note that A1 shrinks distances by a factor of 2−n and A2

expands distances by a factor of (
√

3)n.
Here is a useful reformulation of the self-similarity. We note first that A1

and A2 are both invertible. Choose some t ∈ I and let t∗ = A−11 (t). Note
that

A−12 ◦ f(t∗) = A−12 ◦ f ◦ A−11 (t) = f |I(t) = f(t). (2)

As t ranges over I, the point t∗ ranges over all of [0, 1].

Nowhere Differentiability: We write f(t) = (x(t), y(t)). Suppose for
the sake of contradiction that x(·) is differentiable at some t ∈ [0, 1]. Let
C = max(1, |x′(t)|). There is an interval I of In that contains t. Let s ∈ I
be another point. We have |s− t| ≤ 2−n. If n is sufficiently large then

|x(s)− x(t)| ≤ 2C|s− t| ≤ αn = 2C × 2−n. (3)

Geometrically, Equation 3 says that the point f(s) is within αn of the vertical
line L through f(t).

Let s∗ = A−11 (s). By Equation 2, the point A−12 ◦ f(s∗) = f(s) is within
αn of L. Applying A2 we see that f(s∗) is within

βn = (
√

3)nαn = 2C × (
√

3/2)n

of the line A2(L). As s ranges over all of I, the point s∗ ranges over all of
[0, 1]. Hence f([0, 1]) is contained within βn of A2(L). We can make βn as
close as we want to 0 by taking n large enough, and so the above situation
is only possible if f([0, 1]) lies in a straight line. This contradiction finishes
the proof.
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Pictures and Discussion: There is another way to think about the map
f defined above. We can define fn to be the map of constant speed (4/3)n

which maps [0, 1] to R2 in such a way that fn(I) is the long side of T , where
T is the triangle of T 2n corresponding to the interval I of I2n. Figure 3
shows the images of fn for n = 1, 2, 3, 4, 5. We could have defined f as a
limit of these maps, but the triangle definition makes the continuity of the
limit more clear.

Figure 3: A sequence of maps

Notice that as n increases the map fn is moving increasingly fast and
also is getting increasingly wiggly. We might say, at least informally, that
the limit f is moving infinitely fast and wiggling in an infinitely crazy way.
This kind of behavior is not compatible with differentiability. Even though
the“infinitely fast and wiggly” idea is a bit vague, it gives some intuitive feel
for the breakdown of differentiability.
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We could have started with a different shape obtuse isosceles triangle.
Figure 4 shows the analogue of Figure 2 with respect to a different shape.

Figure 4: Nested triangles again

Actually, if we took a little bit more care with the definitions, we could
base the construction on a triangle that is not isosceles. Figure 5 shows an
example.

Figure 5: Nested triangles again

The triangle refinement construction has a limit, for right triangles, and
the result is a continuous curve whose image is the entire initial right triangle.

The same proof as above shows, in all these cases, that the corresponding
coordinate functions are continuous but nowhere differentiable.
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