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Preface

This book is based on notes I wrote when teaching an undergraduate

seminar on surfaces at Brown University in 2005. Each week I wrote

up notes on a different topic. Basically, I told the students about

many of the great things I have learned about surfaces over the years.

I tried to do things in as direct a fashion as possible, favoring concrete

results over a buildup of theory. Originally, I had written 14 chapters,

but later I added 9 more chapters so as to make a more substantial

book.

Each chapter has its own set of exercises. The exercises are em-

bedded within the text. Most of the exercises are fairly routine, and

advance the arguments being developed, but I tried to put a few

challenging problems in each batch. If you are willing to accept some

results on faith, it should be possible for you to understand the mate-

rial without working the exercises. However, you will get much more

out of the book if you do the exercises.

The central object in the book is a surface. I discuss surfaces

from many points of view: as metric spaces, triangulated surfaces,

hyperbolic surfaces, and so on. The book has many classical results

about surfaces, both geometric and topological, and it also has some

extraneous stuff that I included because I like it. For instance, the

book contains proofs of the Pythagorean Theorem, Pick’s Theorem,

xiii



xiv Preface

Green’s Theorem, Dehn’s Dissection Theorem, the Cauchy Rigidity

Theorem, and the Fundamental Theorem of Algebra.

All the material in the book can be found in various textbooks,

though there probably isn’t one textbook that has it all. Whenever

possible, I will point out textbooks or other sources where you can

read more about what I am talking about. The various fields of math

surrounding the concept of a surface—geometry, topology, complex

analysis, combinatorics—are deeply intertwined and often related in

surprising ways. I hope to present this tapestry of ideas in a clear

and rigorous yet informal way.

My general view of mathematics is that most of the complicated

things we learn have their origins in very simple examples and phe-

nomena. A good way to master a body of mathematics is to first

understand all the sources that lead to it. In this book, the square

torus is one of the key simple examples. A great deal of the the-

ory of surfaces is a kind of elaboration of phenomena one encounters

when studying the square torus. In the first chapter of the book, I

will introduce the square torus and describe the various ways that

its structure can be modified and generalized. I hope that this first

chapter serves as a good guide to the rest of the book.

I aimed the class at fairly advanced undergraduates, but I tried

to cover each topic from scratch. My idea is that, with some effort,

you could learn the material for the whole course without knowing

too much advanced math. You should be perfectly well prepared for

the intended version of the class if you have had a semester each of

real analysis, abstract algebra, and complex analysis. If you have just

had the first 2 items, you should still be alright, because I embedded

a kind of mini-course on complex analysis in the middle of the book.

Following an introductory chapter, this book is divided into 6

parts. The first 5 parts have to do with different aspects of the theory

of surfaces. The 6th part is a collection of several topics, loosely

related to the rest of the book, which I included because I really like

them. Here is an outline of the book.
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Part 1: Surfaces and Topology. In this part, we define such

concepts as surface, Euler characteristic, fundamental group, deck

group, and covering space. We prove that the deck group of a surface

and its fundamental group are isomorphic. We also prove, under some

conditions, that a space has a universal cover.

Part 2: Surfaces and Geometry. The first 3 chapters in this

part introduce Euclidean, spherical, and hyperbolic geometry, respec-

tively. (In the Euclidean case, which is so well known, we concentrate

on nontrivial theorems.) Following this, we discuss the notion of a

Riemannian metric on a surface. In the final chapter, we discuss

hyperbolic surfaces, as special examples of Riemannian manifolds.

Part 3: Surfaces and Complex Analysis. In this part, we give a

rapid primer on the main points taught in the first semester of com-

plex analysis. Following this, we introduce the concept of a Riemann

surface and prove some results about complex analytic maps between

Riemann surfaces.

Part 4: Flat Surfaces. In this part, we define what is meant by

a flat cone surface. As a special case, we consider the notion of a

translation surface. We show how the “affine symmetry group” of a

translation surface, known as the Veech group, leads right back to

complex analysis and hyperbolic geometry. We end this part with an

application to polygonal billiards.

Part 5: The Totality of Surfaces. In this part, we discuss the

basic objects one considers when studying the totality of all flat or

hyperolic surfaces, namely moduli space, Teichmüller space, and the

mapping class group. As a warmup for the flat-surface case, we discuss

continued fractions and the modular group in detail.

Part 6: Dessert. In this part, we prove 3 classic results in geometry.

The Banach – Tarski Theorem says that—assuming the Axiom of

Choice—you can cut up a ball of radius 1 into finitely many pieces

and rearrange those pieces into a (solid) ball of radius 2. Dehn’s

Theorem says that you cannot cut up a cube with planar cuts and

rearrange it into a regular tetrahedron. The Cauchy Rigidity Theorem

says roughly that you cannot flex a convex polyhedron.





Chapter 1

Book Overview

1.1. Behold, the Torus!

The Euclidean plane, denoted R2, is probably the simplest of all

surfaces. R2 consists of all points X = (x1, x2) where x1 and x2 are

real numbers. One may similarly define Euclidean 3-space R3. Even

though the Euclidean plane is very simple, it has the complicating

feature that you cannot really see it all at once: it is unbounded.

Perhaps the next simplest surface is the unit sphere. Anyone who

has played ball or blown a bubble knows what a sphere is. One way

to define the sphere mathematically is to say that it is the solution

set, in R3, to the equation

x2
1 + x2

2 + x2
3 = 1.

The sphere is bounded and one can, so to speak, comprehend it all

at once. However, one complicating feature of the sphere is that it

is fundamentally curved. Also, its most basic definition involves a

higher-dimensional space, namely R3.

The square torus is a kind of compromise between the plane and

the sphere. It is a surface that is bounded like the sphere yet flat

like the plane. The square torus is obtained by gluing together the

opposite sides of a square, in the manner shown in Figure 1.1.

1
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Figure 1.1. The square torus

We will not yet say exactly what we mean by gluing , but we say

intuitively that a 2-dimensional being–call it a bug–that wanders off

the top of the square would reappear magically on the bottom, in the

same horizontal position. Likewise, a bug that wanders off the right

side of the square would magically reappear on the left side at the

same vertical position. We have drawn a continuous curve on the flat

torus to indicate what we are talking about. In §3.1 we give a formal

treatment of the gluing construction.

At first it appears that the square torus has an edge to it, but this

is an illusion. Certainly, points in the middle of the square look just

look like the Euclidean plane. A myopic bug sitting near the center

of the square would not be able to tell he was living in the torus.

Consider what the bug sees if he sits on one of the horizontal

edges. First of all, the bug actually sits simultaneously on both hori-

zontal edges, because these edges are glued together. Looking “down-

ward”, the bug sees a little half-disk. Looking “upward”, the bug sees

another little half-disk. These 2 half-disks are glued together and

make one full Euclidean disk. So, the bug would again think that he

was sitting in the middle of the Euclidean plane. The same argument

goes for any point on any of the edges.

The only tricky points are the corners. What if the bug sits

at one of the corners of the squares? Note first of all that the bug

actually sits simultaneously at all 4 corners, because these corners are
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all glued together. As the bug looks in various directions, he sees 4

little quarter-disks that glue together to form a single disk. Even at

the corner(s), the bug thinks that he is living in the Euclidean plane.

Modulo a ton of details, we have shown that the square torus has

no edges at all. At every point it “looks locally” like the Euclidean

plane. In particular, it is perfectly flat at every point. At the same

time, the square torus is bounded, like the sphere.

The torus is such a great example that it demands a careful and

rigorous treatment. The first question that comes to mind is What do

we mean by a surface? We will explain this in Chapter 2. Roughly

speaking, a surface a space that “looks like” the Euclidean plane in

the vicinity of each point. We do not want to make the definition of

“looks like” too restrictive. For instance, a little patch on the sphere

does not look exactly like the Euclidean plane, but we still want the

sphere to count as a surface. We will make the definition of “looks

like” flexible enough so that the sphere and lots of other examples all

count.

1.2. Gluing Polygons

In Chapter 3 we give many examples of surfaces and their higher-

dimensional analogues, manifolds. One of the main tools we use is

the gluing construction. The square torus construction above is the

starting point for a whole zoo of related constructions.

3

2

1

3

1
2

Figure 1.2. Another torus
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Imagine, for example, that we take the hexagon shown in Figure

1.2 and glue the sides in the pattern shown. What we mean is that

the 2 edges labelled 1 are glued together, according to the direction

given by the arrows, and likewise for the edges labelled 2 and 3. We

can think of Figure 1.2 as a distorted version of Figure 1.1. The

hexagon has a left side, a right side, a top, and a bottom. The top

is made from 2 sides and the bottom is made from 2 sides. The left

and right sides are glued together and the top is glued to the bottom.

The resulting surface retains some of the features of the flat torus:

a bug walking around on it would not detect an edge. On the other

hand, consider what happens when the bug sits at the point of the

surface corresponding to the white dots. Spinning around, the bug

would notice that he turns less than 360 degrees before returning

to his original position. What is going on is that the sum of the

interior angles at the white dots is less than 360 degrees. Similarly,

the bug would have to spin around by more than 360 degrees before

returning to his original position were he to sit at the point of the

surface corresponding to the black points. So, in general, the bug

would not really feel like he was living in the Euclidean plane. Our

general definition of surfaces and gluing will be such that the example

we gave still counts as a surface.

Figure 1.3 shows an example based on the regular octagon, in

which the opposite sides of the octagon are glued together.

3

4

1

2

3

4

1

2

Figure 1.3. Gluing an octagon together
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This example is similar to the square torus, except that this time

8 corners, rather than 4, are glued together. A myopic bug sitting

anywhere on the surface except at the point corresponding the 8 cor-

ners might think that he was sitting in the Euclidean plane. However,

at the special point, the bug would have to turn around 720 degrees

(or 6π radians) before returning to his original position. We will an-

alyze this surface in great detail. One can view it as the next one in

the sequence that starts out sphere, torus, . . . . At least for this intro-

ductory chapter, we will call it the octagon surface. (It is commonly

called the genus 2 torus .) We can construct similar examples based

on regular 2n-gons, for each n = 5, 6, 7 . . . .

1.3. Drawing on a Surface

Once we have defined surfaces and given some examples, we want

to work with them to discover their properties. One natural thing

we can do is divide a surface up into smaller pieces and then count

them. Figure 1.4 shows 2 different subdivisions of the square torus

into polygons. We have left off the arrows in the diagram, but we

mean for the left/right and top/bottom sides to be glued together.

Figure 1.4. Dividing the torus into faces

In the first subdivision, there are 4 faces, 8 edges, and 4 vertices.

It first appears that there are more edges, but the edges around the

boundary are glued together in pairs. So each edge on the bound-

ary only counts for half an edge. A similar thing happens with the
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vertices. We make the count

faces− edges + vertices = 4− 8 + 4 = 0.

In the second example, we get the count

faces− edges + vertices = 8− 14 + 6 = 0.

The same result holds for practically any subdivision of the square

torus into polygons. This result is known as the Euler formula for

the torus . We discuss this formula in more detail in §3.4.
You can probably imagine that you would get the same result for

a torus based on a rectangle rather than a square. Likewise, we get

the same result for the surface based on the hexagon gluing in Figure

1.2. All these surfaces have an Euler characteristic of 0.

Things turn out differently for the sphere. For instance, thinking

of the sphere as a puffed-out cube, we get the count

faces− edges + vertices = 6− 12 + 8 = 2.

Thinking of the sphere as a puffed-out tetrahedron, we get the count

faces− edges + vertices = 4− 6 + 4 = 2.

Thinking of the sphere as a puffed-out icosahedron, we get the count

faces− edges + vertices = 20− 30 + 12 = 2.

The Euler formula for the sphere says that the result of this count

is always 2, under very mild restrictions. You can probably see that

we would get the same result for any of the “sphere-like” surfaces

mentioned above.

Were we to make the count for any reasonable subdivision of the

octagon surface, we would get an Euler characteristic of −2. Can

you guess the Euler characteristic, as a function of n, for the surface

obtained by gluing together the opposite sides of a regular 2n-gon?

Another thing we can do on a surface is draw loops—meaning

closed curves—and study how they move around. The left side of

Figure 1.5 shows 3 different loops on the square torus.
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Figure 1.5. Loops on the torus

One of the loops, the one represented by the thick vertical line,

is different from the others. Imagine that these loops are made from

rubber bands, and are allowed to compress in a continuous way. The

first 2 loops can shrink continuously to points, whereas the third loop

is “stuck”. It can’t make itself any shorter no matter how it moves.

Such a loop is commonly called essential . There are many essential

loops on the torus. The right side of Figure 1.5 shows another essential

loop. In contrast, the sphere has no essential loops at all.

We will see in Chapter 4 that there is an algebraic object we can

associate to a surface (and many other kinds of spaces) called the fun-

damental group. The fundamental group organizes all the different

ways of drawing loops on the surface into one basic structure. The

nice thing about the fundamental group is that it links the theory

of surfaces to algebra, especially group theory. Beautifully, it turns

out that 2 (compact) surfaces have the same Euler characteristic if

and only if they have the same fundamental group. The Euler char-

acteristic and the fundamental group are 2 entry points into the vast

subject of algebraic topology.

For the most part, studying algebraic topology is beyond the

scope of this book, but we will study the fundamental group and

related constructions, in great detail. After defining the fundamental

group in Chapter 4, we will compute a number of examples in Chapter

5.
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1.4. Covering Spaces

There is a nice way to unwrap the essential loops on a torus. The

idea is that we remember that the square torus is made from a square,

which we think of as the unit square with vertices (0, 0), (0, 1), (1, 0)

and (1, 1). We draw a line segment in the plane that starts out at

the same point as the loop and has the same length. We think of this

path starting at the point (0, 0). Figure 1.6 shows an example. In

this example, the unwrapped path joins (0, 0) to (3, 2).

The process can be reversed. Starting with a line segment that

joins (0, 0) to (m,n), a point with integer coordinates, we can wrap the

segment around the torus so that it makes an essential loop. In fact,

the essential loops that start at (0, 0) are, in the appropriate sense, in

one-to-one correspondence with the points of Z2, the integer grid in

the plane. The basic result is that any 2 essential loops L1 and L2,

corresponding to points (m1, n1) and (m2, n2), can be continuously

moved, one into the other, if and only if (m1, n1) = (m2, n2).

(3,2)

(0,0)

Figure 1.6: Unwrapping a loop on the torus

As we will explain in Chapter 6 and Chapter 7, this unwrapping

construction can be done for any surface. In the case of the torus, we

see that the (equivalence classes of) essential simple loops are in exact

correspondence with the points of the integer grid in the plane. One

might wonder if a similarly nice picture exists in general. The answer

is “yes”, and in fact the picture becomes more interesting when we
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consider surfaces, such as the octagon surface. However, in order to

“see” the picture in these cases, you have to draw it in the possibly

unfamiliar world of hyperbolic geometry. The idea is that hyperbolic

geometry does for the octagon surface (and most other surfaces as

well) what Euclidean geometry does for the square torus and what

spherical geometry does for the sphere.

We will discuss Euclidean, spherical, and hyperbolic geometry in

Chapter 8, Chapter 9, and Chapter 10 respectively. Our main goal is

to understand how these geometries interact with surfaces, but we will

also take time out to prove some classical geometric theorems, such as

Pick’s Theorem (a relative of the Euler formula) and the angle-sum

formula for hyperbolic and spherical triangles.

The Euclidean, spherical, and hyperbolic geometries are the 3

most symmetrical examples of 2-dimensional Riemannian geometries .

To put the 3 special geometries into a general context, we will discuss

Riemannian geometry in Chapter 11.

1.5. Hyperbolic Geometry and the Octagon

Now let us return to the question of unwrapping essential loops on

the octagon surface. The octagon surface looks a bit less natural than

the square torus, thanks to the special point. However, it turns out

that the octagon surface “wears” hyperbolic geometry very much in

the same way that the square torus “wears” Euclidean geometry.

We already mentioned that we will study hyperbolic geometry in

detail in Chapter 10. Here we just give the barest of sketches, in order

to give you a taste of the beauty that lies in this direction. One of the

many models for the hyperbolic plane is the open unit disk. There is

a way to measure distances in the open unit disk so that the shortest

paths between points are circular arcs that meet the boundary at

right angles. These shortest paths are known as geodesics . The left-

hand side of Figure 1.7 shows some of the geodesics in the hyperbolic

plane. The boundary of the unit disk is not part of the hyperbolic

plane and the lengths of these geodesics are all infinite. A bug living

in the hyperbolic plane would see it as unbounded in all directions.
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Figure 1.7. Gluing the octagon together

The hyperbolic plane shares many features with the Euclidean

plane. There is a unique geodesic joining any 2 distinct points, and

any 2 distinct geodesics meet in at most one point. Furthermore,

the hyperbolic plane is totally symmetric, in the sense that every

point and every direction looks exactly the same. A bug living in an

otherwise empty hyperbolic plane would not be able to tell where he

was.

On the other hand, the hyperbolic plane and the Euclidean plane

have some important differences. For instance, the sum of the angles

of a hyperbolic triangle, a shape bounded by 3 geodesic segments, is

always less than 180 degrees, or π radians. (When we discuss angles

in radians, we will often leave off the word “radians”.) Similarly,

the individual interior angles of a regular octagon can take on any

value less than 3π/8, which is the value in the Euclidean case. The

right hand side of Figure 1.4 shows a regular hyperbolic octagon. We

decrease the interior angles by making the octagon larger and we

increase the interior angles by making the octagon smaller.

In particular, we can adjust the size of the regular octagon so that

the interior angles are exactly π/8. We can then cut the resulting

octagon out of the hyperbolic plane and glue the sides together just

as in Figure 1.3. From the hyperbolic geometry point of view, the

resulting surface would be completely seamless: a myopic bug living

on the surface could not tell that he was not living in the hyperbolic

plane. With the chosen interior angles, the 8 corners fit together like
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8 slices in a pizza to make a perfect hyperbolic disk. We will consider

this construction in detail in Chapter 12.

A similar construction can be made for the surfaces obtained

by gluing together the opposite sides of a regular 2n-gon, for each

n = 5, 6, 7 . . . . All these surfaces “wear” hyperbolic geometry in a

seamless way, just like the square torus “wears” Euclidean geometry.

Now, we can tile the Euclidean plane by copies of the unit square.

The vertices of this tiling are precisely the integer grid points. In the

same way, we can move our hyperbolic octagon around the hyperbolic

plane and tile the hyperbolic plane with copies of it. When drawn in

the disk model, the picture looks like the drawings in M. C. Escher’s

Circle Woodcut series. To our Euclidean eyes, the octagons appear

to get smaller as they move out toward the boundary of the disk.

However, in the hyperbolic world, the various octagons all have the

same size.

The vertices of this tiling are a kind of hyperbolic geometry ver-

sion of the integer grid. These points are in one-to-one correspon-

dence with the equivalence classes of essential loops on the octagon

surface. The same kind of thing works for the surfaces corresponding

to the (2n)-gons for n = 4, 5, 6 . . . . In fact, such a construction works

for all surfaces that have negative Euler characteristic: one always

gets a grid of points in the hyperbolic plane that names the different

essential loops on the surface. We will explore this in detail in §12.

1.6. Complex Analysis and Riemann Surfaces

It turns out that there is a single kind of geometry which unifies

Euclidean, spherical, and hyperbolic geometry. This geometry, called

Möbius or conformal geometry, takes place in the Riemann sphere.

The Riemann sphere is the set C ∪∞, where C is the complex plane

and ∞ is an extra point that is added. For starters,

• The Euclidean plane is identified with C.

• The hyperbolic plane is identified with the open disk {z ∈
C| ‖z‖ < 1}.
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• The sphere is identified with all of C ∪∞, via stereographic

projection

(x1, x2, x3) →
(

x1

1− x3

)
+

(
x2

1− x3

)
i, (0, 0, 1) → ∞.

See §9.5 for details on stereograpic projection.

Once these identifications are made, the symmetries of the rele-

vant objects are all given by maps of the form

(1.1) z → az + b

cz + d
, a, b, c, d ∈ C, ad− bc = 1.

We will discuss these maps in more detail in §10.1. The point ∞
is added so that when the expression in equation (1.1) looks like

“something over 0”, we define it to be ∞. Various conditions are

placed on the coefficients a, b, c, d to guarantee that the relevant set–

e.g., the unit disk–is preserved by the map.

These kinds of transformations are called linear fractional , or

Möbius , transformations. The Möbius transformations are prototyp-

ical examples of complex analytic functions. These are continuous

maps from C to C which have the additional property that their

matrix of partial derivatives, at each point, is a similarity–i.e., a rota-

tion followed by a dilation. This constraint on the partial derivatives

leads to a surprisingly rich family of functions and this is the subject

of complex analysis. In Chapter 13, we will give a rapid overview of

basic complex analysis, with a view towards its application to sur-

faces. In Chapter 14 and Chapter 15 we will discuss some special

complex analytic functions in detail.

Going back to our polygon gluing construction, we can view sur-

faces as being made out of pieces of C that have been glued together.

This point of view leads to the notion of a Riemann surface, as we

explain in Chapter 16. One can think of a Riemann surface as a sur-

face that “wears” C in the same seamless way that the square torus

“wears” Euclidean geometry or the octagon surface “wears” hyper-

bolic geometry. Once we have the notion of a Riemann surface, we

can “do complex analysis on it” in much the same way that one can

do complex analysis in C or in C ∪∞.
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The complex analysis point of view on a surface at first seems

rather remote from the geometric point of view discussed above, but in

fact they are quite similar. The close connection comes from the fact

that the Möbius transformations play a distinguished role amongst

the complex analytic functions. One example of this is the following

result, known as the Schwarz–Pick Theorem:

Theorem 1.1. Let f be a complex analytic function from the unit

disk to itself. If f is one-to-one and onto, then f is a Möbius trans-

formation (and hence a hyperbolic isometry).

Theorem 1.1 is part of a larger theorem, called the Poincaré

Uniformization Theorem. The Uniformization Theorem gives a com-

plete equivalence between the Euclidean/spherical/hyperbolic geom-

etry points of view of surfaces and the Riemann surface point of view.

The proof of this result is beyond the scope of our book, but in Chap-

ter 16 we will at least explain the result and its ramifications.

1.7. Cone Surfaces and Translation Surfaces

We have mentioned several times that the octagon surface does not

“wear” Euclidean geometry as well as the square torus does, and we

have taken some pains to explain how one can profitably view the

octagon surface with hyperbolic geometry eyes. However, in Chapter

17 we come full circle and consider the octagon surface and related

surfaces from the Euclidean geometry point of view.

Suppose, as in Figure 1.2 above, we glue together the sides of

a polygon in such a way that the sides in each pair of glued sides

have the same length. The resulting surface has the property that

it is locally indistinguishable from the Euclidean plane, except at

finitely many points. At these finitely many points, a bug living in the

surface would notice some problem related to spinning around, as we

discussed above. These special points are cone points . A Euclidean

cone surface is a surface that is flat except at finitely many cone

points.

When we discussed the “torus-like” surface defined in connection

with Figure 1.2, we mentioned the spinning-around problem a bug

would face when sitting at the 2 special points. At one of the special
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points, the bug needs to spin more than 2π, say 2π + δ1, before re-

turning to his original position. At the other special point, the bug

needs to spin less than 2π, say 2π−δ2, before returning to his original

position. The numbers δ1 and −δ2 might be called the angle error at

the special points.

The numbers δ1 and δ2 depend on the hexagon in question. As

one can see by adding up the interior angles of a hexagon, we have

δ1 = δ2. That is, the total angle error is 0. This result holds for any

Euclidean cone surface with Euler characteristic 0. More generally,

on a surface with Euler characteristic χ, the total angle error is 2πχ.

This result, known as the combinatorial Gauss–Bonnet Theorem is

one of the main results of Chapter 17.

Another topic in Chapter 17 is the application of Euclidean cone

surfaces to polygonal billiards. It turns out that the contemplation of

rolling a frictionless, infinitesimally small billiard ball around inside a

polygonal shaped billard table, whose angles are all rational multiples

of π, leads naturally to a certain Euclidean cone surface. One can

profitably study this surface to get information about how billiards

would work out in the polygon.

The Euclidean cone surfaces associated to polygonal billiards have

a special structure. They are called translation surfaces . A transla-

tion surface is a Euclidean cone surface, all of whose angle errors are

integer multiples of π. The square torus is the prototypical example

of a translation surface, but it is a bit too simple of an example in

this case. The octagon surface provides a better example. The oc-

tagon surface, considered from the Euclidean geometry perspective,

is a translation surface. This surface has a single cone point, and

the angle error there is 4π. Translation surfaces are nicer than gen-

eral Euclidean cone surfaces for a variety of reasons. One reason is

that, as it turns out, it is possible to speak about directions (such as

due north) on a translation surface without any ambiguity. We will

discuss these surfaces in detail in Chapter 18.

1.8. The Modular Group and the Veech Group

We have wandered away from hyperbolic geometry and complex anal-

ysis, but actually hyperbolic geometry and complex analysis are very
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closely related to the subject of translation surfaces. Once again, let

us consider the square torus. A linear transformation of the form

(1.2)

T (x, y) = (ax+ by, cx+ dy), a, b, c, d ∈ Z, ad− bc = 1.

acts as transformation of the square torus, via the following 4-step

process:

(1) Start with a point p in the square torus.

(2) Choose a point (x, y) such that p represents the collection

of points glued to (x, y).

(3) Subtract off integer coordinates of T (x, y) until the result

(x′, y′) lies in the unit square.

(4) The image of the map is p′, the point that names the col-

lection of points glued to (x′, y′).

Any ambiguity in the process that takes us from p to p′ is absorbed

by the gluing process.

So, any integer 2 × 2 matrix with determinant 1 gives rise to

a transformation of the square torus that, on small scales, is indis-

tinguishable from a linear transformation. The set of all such maps

forms a group known as modular group. The maps in equation (1.2)

have the same form as the Möbius transformations discussed above.

Interpreting the maps in Equation 1.2 as Möbius transformations in-

stead of linear transformations, we can interpret the modular group

as a group of symmetries of the hyperbolic plane.

The modular group is an object of great significance in mathe-

matics, and we cannot resist exploring some of its properties that are

not, strictly speaking, directly related to surfaces. For instance, in

Chapter 19 we will discuss continued fractions and their connection

to the modular group and hyperbolic geometry. In Chapter 22 we will

see that the modular group is the main ingredient in the proof of the

Banach–Tarski Theorem. The Banach–Tarski Theorem says in par-

ticular that, assuming the axiom of choice, one can cut the unit ball

in R3 into finitely many pieces and rearrange these pieces so that they

make a solid ball of radius 100000. Though this result seems a bit far

removed from the theory of surfaces, it is quite beautiful and it shows

how objects such as the modular group pop up all over mathematics.



16 1. Book Overview

Getting back to translation surfaces, we will see in Chapter 18

that one can associate to any translation surface a group of symme-

tries of the hyperbolic plane. This group is known as the Veech group

of the translation surface. It often happens that the Veech group is

trivial, or very small, but for many special examples the Veech group

is large and beautiful. For instance, the Veech group associated to the

regular octagon surface is closely related to a tiling of the hyperbolic

plane by triangles having angles 0, 0, and π/8. One of the highlights

of Chapter 18 is a discussion of (essentially) this example.

1.9. Moduli Space

The square torus is not the only translation surface without any cone

points. In Chapter 20 we consider the family M unit area parallelo-

gram, in the same pattern as in Figure 1.1. Essentially the same anal-

ysis we made in connection with Figure 1.1 can be made in connection

with any surface in our family. All these surfaces are seamlessly flat

at each point. A myopic bug on any of these surfaces would not be

able to tell that he was not in the Euclidean plane.

On the other hand, these various surfaces are typically not the

same geometrically. For instance, a surface made from a long thin

rectangle obviously has diameter greater than the diameter of the

square torus. Similarly, such a surface has a very short essential loop

whereas all essential loops on the square torus have length at least 1.

We can consider the family M as a space in its own right. Each point

of M corresponds to a different flat torus. This space M is known as

the moduli space of flat tori. We will discuss M and related objects

in Chapter 20.

Amazingly, M turns out to be a surface in its own right, and

(with the exception of 2 special points) this surface is modelled on

hyperbolic geometry! Just to repeat: the space of all tori made by

gluing together unit area parallelograms turns out to be a surface that

naturally wears hyperbolic geometry (away from 2 special points).

One of the special points in M corresponds to the square torus, and

the other one corresponds to the surface obtained by gluing together

the opposite sides of a rhombus made from 2 equilateral triangles.

Referring to the discussion of covering spaces above, we can consider
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the grid in the hyperbolic plane associated to M. It turns out that

the modular group acts as a group of symmetries of this grid. So,

when we consider the moduli space M of unit area flat tori, we get

right back to the modular group.

We can play a similar game for the octagon surface. As we dis-

cussed above, we can create the octagon surface using a suitable cho-

sen regular octagon. However, we can also glue together other hyper-

bolic octagons to produce a surface that “looks hyperbolic” at each

point and has the same Euler characteristic. When we consider the

totality of such surfaces, we arrive at a higher-dimensional generaliza-

tion of M, also called moduli space. This higher-dimensional space

is not a surface, but it does share some features in common with a

hyperbolic surface.

In Chapter 20 we also discuss Teichmüller space, the space that

relates to the higher-dimensional version of M in the same way that

the hyperbolic plane relates to M. Teichmüller space shares some

features with the hyperbolic plane, but is much more mysterious and

somewhat less symmetric. We will discuss the group of symmetries

of Teichmüller space, called the Mapping class group. The mapping

class groups relate to the surfaces of negative Euler characteristic in

the same way that the modular group relates to the square torus. We

will further explore Teichmüller space in Chapter 21.

1.10. Dessert

There are a few topics in this book that I simply threw in because

I like them. Chapter 22 has a proof of the Banach- Tarski Paradox.

One nice thing about the proof is that it involves the modular group

in an essential way. So, in a strange way, the Banach–Tarski Paradox

has some connection to hyperbolic geometry.

Chapter 23 has a proof of Dehn’s Dissection Theorem, which says

that one cannot cut a cube into finitely many pieces, using planar

cuts, and rearrange the result into a regular tetrahedron. This result

serves as a kind of foil for the decomposition methods we use to

prove the combinatorial Gauss–Bonnet Theorem and other results.

Polyhedral decomposition is quite robust in 2 dimensions, but not in

higher dimensions.
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Chapter 24 has a proof of the Cauchy Rigidity Theorem. This

result says that there at most one way to snap together a given collec-

tion of convex polygons to produce a convex polyhedron. The proof

involves some spherical geometry and also the combinatorial Gauss–

Bonnet Theorem.
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Surfaces and Topology





Chapter 2

Definition of a Surface

We discussed surfaces informally in the previous chapter, and now

the time has come to give a formal definition of a surface. Here is the

main definition.

Definition 2.1. A surface is a metric space X such that every point

in X has a neighborhood which is homeomorphic to the plane.

Don’t worry if you don’t know what some of the words in the above

definition mean. The point of this chapter is to explain what they

mean. At the end of the chapter, we will say a few words about

higher-dimensional surfaces, called manifolds.

2.1. A Word about Sets

A set is an undefined notion for us. Informally, a set is a collection

of things, called elements . A book on set theory, such as [DEV], will

tell you all about sets. You should be familiar with such sets as

• Z, the integers.

• N = {1, 2, 3, . . . }, the natural numbers.

• R, the real numbers.

21
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A map between sets A and B is a rule, say f , which assigns to each

element a ∈ A, an element b = f(a) ∈ B. This is usually written

as f : A → B. The map f is one-to-one if f(a1) = f(a2) implies

that a1 = a2. The map f is onto if the set {f(a)| a ∈ A} equals B.

The map f is a bijection if it is both one-to-one and onto. Two sets

are bijective if there is some bijection between them. All the sets we

consider will be bijective to either a finite set, or N, or R.

The product A× B of sets is the set of ordered pairs (a, b) with

a ∈ A and b ∈ B. In particular, R2 = R×R is the plane.

2.2. Metric Spaces

A metric space is a set X together with a map d : X × X → R

satisfying the following properties:

• Nondegeneracy . d(x, y) ≥ 0 for all x, y, with equality iff

x = y.

• Symmetry . d(x, y) = d(y, x) for all x, y.

• Triangle Inequality d(x, z) ≤ d(x, y) + d(z, y) for all x, y, z.

d is called a metric on X. Note that the same set can have many

different metrics.

Here is the most boring example of a metric space. Given any set

X define d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y. This is called

the discrete metric on X.

Exercise 1. Let X = R2, the plane. Define the dot product

V ·W = v1w1 + v2w2.

Here V = (v1, v2) and W = (w1, w2). Also define

‖V ‖ =
√
V · V .

Finally, define d(V,W ) = ‖V −W‖. Prove that d is a metric on R2.

The metric in this exercise is known as the Euclidean metric on R2,

or else the standard metric.

If X is a metric space and Y ⊂ X is a subset, then the metric on

X automatically defines a metric on Y , by restriction. For instance,

any subset of the plane automatically can be interpreted as a metric
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space, using the metric from Exercise 1.

Exercise 2. On Z define d(m,n) = 2−k, where k is such that 2k

divides |m − n| but 2k+1 does not. Also define d(m,m) = 0. For

instance, d(3, 7) = 2−2 = 1/4 because 22 divides 4 but 23 = 8 does

not. Prove that d is a metric on Z. This metric is called the 2-adic

metric. It is quite different from the usual metric on the integers.

2.3. Open and Closed Sets

Let X be a metric space with metric d. An open ball in X is a subset

of the form

{x| d(x, c) < r}.
Here c is the center of the ball and r is the radius. Say that a sub-

set U ⊂ X is open if for every point x ∈ U there is some open ball

Bx such that x ∈ Bx and Bx ⊂ U . Note that open balls are open sets.

Exercise 3. Prove that the intersection of two open sets is open.

Prove also that the arbitrary union of open sets is open.

Here is some vocabulary, which will be familiar to you if you have

had a real analysis class:

• The notation X − A means the complement of A in X,

namely the set of points in X which are not in A.

• Given a point x ∈ X, a neighborhood of x is any open subset

U ⊂ X such that x ∈ U . For instance, the ball of radius r

about x is a perfectly good neighborhood of x.

• The interior of a set A ⊂ X is the union of all open subsets

of A. By Exercise 3, the interior of a set is open. Sometimes

the interior of A is denoted as Ao. Put another way Ao is

the largest open set contained in A.

• A set C ⊂ X is closed if X − C is open.

• The closure of a set A is the set

A = X − (X −A)o.
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Put another way, A is the smallest closed set which contains

A.

• The boundary of A is the set

∂A = A−Ao.

• A set A ⊂ X is dense if A = X. For instance, the set of

rational numbers is dense in the set of real numbers.

2.4. Continuous Maps

A map between metric spaces is just a map in the set theoretic sense.

There are two equivalent definitions of continuity for maps between

metric spaces. The first one is much cleaner but the second one is

probably more familiar.

Definition 2.2. The map f : X → Y is continuous if it has the

following property: For any open V ⊂ Y the set

U = f−1(V ) := {x| f(x) ∈ V }

is an open set of X.

Definition 2.3. First, f is continuous at x ∈ X if, for any ǫ > 0, there

is some δ > 0 such that dX(x, x′) < δ implies that dY (f(x), f(x
′)) < ǫ.

Here dX is the metric on X and dY is the metric on Y . Then f is

continuous on X if f is continuous at each point of X.

Exercise 4. Show that the two definitions of continuity coincide.

Now let X,Y, Z all be metric spaces. Let f : X → Y be a map,

and let g : Y → Z be map. The composition h = g ◦ f is defined as

h(x) = g(f(x)). So h is a map from X to Z.

Lemma 2.1. The composition of continuous maps is continuous.

Proof. Definition 2.2 works much better for this. Let W be an open

subset of Z. Our goal is to show that h−1(W ) is open in X. Note

that h−1(W ) = f−1(V ), where V = g−1(W ). Since g is continuous,
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V is open. Since f is continuous and V is open, U is open. This

works for any choice of open W , so we are done. �

Exercise 5. Give an example of metric spaces X and Y , and f :

X → Y such that

• f is a bijection.

• f is continuous.

• f−1 (the inverse map) is not continuous.

This is a classic problem.

2.5. Homeomorphisms

Let X and Y be two metric spaces. A map h : X → Y is a home-

omorphism if h is a bijection and both h and h−1 are continuous.

Compare Exercise 5. The spaces X and Y are said to be homeomor-

phic if there is some homeomorphism from X to Y . Intuitively, two

sets are homeomorphic if one can be “warped” into the other one.

Often we do not care exactly which metric we are using, but we just

bring in the metric to be able to talk about things like continuity and

open sets. Another way to “throw out the metric” is to introduce

the notion of a topological space. In some ways topological spaces are

easier to work with than metric spaces and more flexible, but they

are more abstract. If you are interested in this, check out a book on

point-set topology, such as [MUN].

Even though sets might look very different to the eye, they might

be homeomorphic. The next exercise gives some examples of this.

Exercise 6. Prove that the following subsets of the plane (with

the standard metric) are all homeomorphic to each other:

• An open ball.

• The interior of a (filled-in) triangle.

• The plane itself.

Exercise 7. We can give R the standard metric d(x, y) = |x − y|.
Prove that R is not homeomorphic to R2, with its standard metric.
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Exercise 8 (Challenge). You can imitate the construction in Ex-

ercise 1 to put a metric on R3, 3-dimensional space. Prove that R2

is not homeomorphic to R3. As it turns out Rm and Rn are homeo-

morphic if and only if m = n. When you try to prove something like

this, you start getting into algebraic topology.

2.6. Compactness

We will sometimes use the notion of compactness . Say that an open

covering of a metric space X is a collection {Uα} of open sets in X

whose union is X. Say that a subcovering of a given covering is a sub-

collection that still covers X. Say that a finite subcover is a subcover

that only has finitely many elements in it.

Definition 2.4. A metric space X is compact if every covering of X

has a finite subcover.

The notion of compactness is easier to understand for subsets

of Euclidean space. When X is a subset of Euclidean space, X is

compact if and only if X is closed and contained in some ball. This

result is known as the Heine–Borel Theorem.

The original definition of compactness is perfectly adapted to the

notion of continuous maps. Suppose thatX and Y are homeomorphic.

Then X is compact if and only if Y is compact. Here we prove one

result which indicates the power of the definition of compactness.

Lemma 2.2. Suppose that f : X → R is a continuous function. If

X is compact, then f is bounded.

Proof. Let Un = f−1(−n, n). Since f is continuous, the set Un is

open. Evidently, the collection {Un} covers X. Since X is compact,

there is some finite list of these sets which also covers X. Letting

UN be the largest of these finitely many sets, we see that |f | ≤ N on

X. �
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2.7. Surfaces

Now let’s go back to Definition 2.1. Let X be a surface. This means,

first of all, that X is a metric space. So, it makes sense to talk about

open and closed sets on X and also continuous functions from X

to other metric spaces. What makes X a surface is that each point

x ∈ X has an open neighborhood U such that U is homeomorphic to

R2. You should picture U as a little open disk drawn around x. So X

has the property that, around every point, it “looks like” the plane.

This is how we make sense of the discussion at the end of §1.1.

Exercise 9. The unit sphere S2 in R3 is the set {(x, y, z)| x2 +

y2 + z2 = 1}. This set inherits a metric from R3. Prove that S is

a surface, according to our definition. So, for each point x ∈ S you

need to find an open subset Ux ⊂ S and also a map fx : Ux → R2

which is a homeomorphism. (Hint : Try to use symmetry to reduce

the problem to showing that just one point in S2 has the desired

neighborhood.)

Exercise 10. Consider the following subset of R4:

T 2 = {(x, y, z, w)| x2 + y2 = 1; z2 + w2 = 1}.

This set inherits a metric from R4. You might recognize T 2 as the

product of two circles. Prove that T 2 is a surface. This surface is

known as a torus . (Hint : Again, try to use symmetry.) Once we

make sense of the gluing construction, we will see that T 2 is homeo-

morphic to the square torus discussed in the previous chapter.

Figure 2.1: A torus

In the coming chapters, we will construct many more examples

of surfaces besides the ones in Exercises 9 and 10.
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2.8. Manifolds

A manifold is essentially a higher-dimensional surface. Though this

book is about surfaces, I am including a section about manifolds in

case you are curious about them. If you just want to learn about

surfaces, you can safely skip this section.

Definition 2.5: An n-dimensional manifold is a metric space, such

that every point has a neighborhood which is homeomorphic to Rn.

Technical Comment. This definition of a manifold is slightly non-

standard. The usual definition replaces metric space with Hausdorff

topological space. However, in most cases the metric space definition

singles out the same objects as manifolds. The reason we are using

the metric space definition is that it is more concrete.

I will give a nice example of a manifold at the end of this section,

but first I will introduce a general tool for producing manifolds. The

tool is the Implicit Function Theorem, a classic result from multi-

variable calculus. The full Implicit Function Theorem and its proof

can be found in practically any book on advanced calculus; e.g., see

[SPI]. We will prove a special case below, a case that is fairly easy

to prove yet still produces nice examples.

Let f : Rn+1 → R be a continuous function. Assume also that

the partial derivatives of f exist and are continuous functions. This

means that the gradient ∇f exists and is continuous. Say that 0 is a

regular value for f if it never happens that both f(x1, . . . , xn+1) = 0

and ∇f(x1, . . . , xn+1) = 0 at the same point.

Theorem 2.3. If 0 is a regular value for f , then f−1(0) is an n

dimensional manifold.

Proof. Let S = f−1(0). First of all, S is a metric space: The distance

between any two points in S is defined to be their Euclidean distance

in Rn. It remains to check that every point in S has a neighborhood

that is homeomorphic to Rn.
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Let p = (x1, . . . , xn+1) ∈ S be an arbitrary point. We know that

∇f(p) is nonzero. If we rotate and scale space and replace f by a

constant multiple of f , we do not change S at all. So, without loss of

generality, we can assume that

p = (0, . . . , 0); ∇f(p) = (0, . . . , 0, 1).

Let P = Rn × {0}. We think of (0, . . . , 0, 1) as the vertical direction

and P as the horizontal directions. See Figure 2.2 below.

Let Q denote the open cube of diameter ǫ centered at (0, . . . , 0).

We call a line segment special if it has one endpoint on the bottom

face of Q and one endpoint on the top face of Q. Since ∇f varies

continuously, we can choose ǫ small enough so that f increases along

any special segment, if we move along it from the bottom to the top.

Let U = Q∩S. Then U is an open neighborhood of p in S. It suffices

to show that U is homeomorphic to an open cube in Rn, since an

open cube in Rn is homeomorphic to Rn itself.

(0,0,0)

Q
S

P

Figure 2.2. Putting a cube around S

Now, Q ∩ P is an open cube, and the map h(x1, . . . , xn+1) =

(x1, . . . , xn, 0) ss a map from U to Q∩P . We just have to show that

h is a homeomorphism. Here are the main points.

• h is a distance decreasing map so (using the ǫ− δ definition

of continuity) h is continuous.

• Each vertical line intersects S at most once, because f in-

creases as we move upward along a vertical line. Hence, h

is one-to-one.

• We can connect any point on the top face of Q to (0, . . . , 0)

by “half” of a special segment. Since f(0, . . . , 0) = 0, and f
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increases along special segments, f is positive on the top face

of Q. Similarly, f is negative on the bottom face of Q. Since

f increases along vertical segments, we have f = 0 some-

where on each vertical segment, by the intermediate value

theorem. So, every vertical segment intersects S. Hence h

is onto.

• Suppose that X1 and X2 are two points in Q ∩ P that are

very close together. Consider the last coordinates z1 and z2
of h−1(X1) and h−1(X2), respectively. If z1 and z2 are too

far apart, then we can join the points (X1, z1) and (X2, z2)

by part of a special segment. Since both these points lie in

S, we have a contradiction. This shows, a bit informally,

that h−1 is continuous.

We have succeeded in showing that an arbitrary point of S has a

neighborhood which is homeomorphic to Rn. �

Now we give a nice example of a 3-dimensional manifold. You

can think of the set of 2 × 2 (real valued) matrices as a copy of R4.

There is a nice map from this space into R, namely the determinant

(minus 1):

f

([
a b

c d

])
= ad− bc− 1.

Exercise 11. Show that 0 is a regular value for f .

In the above example, f−1(0) is usually denoted by SL2(R).

Thus SL2(R) is the set of unit determinant real 2 × 2 matrices. By

Theorem 2.3, the space SL2(R) is a 3-dimensional manifold. A sim-

ilar argument shows that SLn(R), the set of unit determinant n× n

matrices, is a manifold of dimension n2 − 1. The space SLn(R) is

an example of a manifold which is also, and in a compatible way, a

group. Such objects are called Lie groups . The book [CHE] is a

classic reference on this subject; see also [TAP].



Chapter 3

The Gluing
Construction

The purpose of this chapter is to explain the gluing construction dis-

cussed informally in Chapter 1. This construction is usually done for

topological spaces, but it can be done for metric spaces as long as we

are a bit careful. The advantage to using topological spaces is that

the construction always works. The disadvantage to using topological

spaces is that it takes a long time to figure out what the construction

actually means. For metric spaces, things don’t always work out, but

whatever happens is more understandable. Also, for our purposes,

things always work out.

3.1. Gluing Spaces Together

Before we start, we need to recall the notion of the infimum from

real analysis. Let S ⊂ R be a set consisting entirely of non negative

numbers. Then x = inf S denotes the smallest member of the closure

of S. Such a number always exists and is unique. The existence (and

uniqueness) of the infimum is known as the completeness axiom for

the reals.

Let X be a set and let δ : X ×X → R be a map which satisfies

the equation δ(x, y) = δ(y, x) ≥ 0. Note that δ need not satisfy the

31
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triangle inequality. The purpose of this section is to show how to

replace δ by a new function which sometimes remembers some of the

structure of δ and yet satisfies the triangle inequality.

Let x, y ∈ X be two points. Say that a chain from x to y is a

finite sequence of points x = x0, x1, . . . , xn = y. Let us call this chain

C. We define

δ(C) = δ(x0, x1) + δ(x1, x2) + · · ·+ δ(xn−1, xn).

Certainly, δ(C) ≥ 0 as long as x 6= y. Next, we define

d(x, y) = inf
C

δ(C).

The infimum is taken over the set of all possible values δ(C), where

C is a chain from x to y.

This probably looks like an insane definition, but we will try to

make it intuitive. Think of δ(x, y) as the cost of flying from city x to

city y—let’s say from Providence to Tahiti. Now, you’re really desper-

ate to get to Tahiti, and have tons of free time but little money. So,

you look on the Internet and try to find all possible flights. You are

willing to take any conceivable chain of connecting flights, as long as

you start in Providence and end in Tahiti. After searching through all

the possiblities, you select the most economical flight. This is d(x, y).

The difference between this scenario and the idealized one we’re talk-

ing about is that X could be an infinite metric space. So, there could

be infinitely many chains, and you need to take the infimum rather

than just a minimum (which may not exist.) The function d is some-

times called the pathification of δ.

Exercise 1. Show that d satisfies the following axioms:

• d(x, y) ≥ 0.

• d(x, y) = d(y, x).

• d(x, y) ≤ d(x, z) + d(z, y).

So it looks like d is a metric. However, note that we are leaving off

the part that would say d(x, y) = 0 iff x = y. In fact give an example

of a δ on X = R2 which satisfies the first two axioms for a metric,

whose pathification is the zero map.
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Again, let X be a set. An equivalence relation on X is a relation

of the form ∼, which satisfies three properties:

• x ∼ x for all x.

• x ∼ y iff y ∼ x.

• x ∼ y and y ∼ z imply x ∼ z.

An equivalence class is a subset S = {y ∈ X| y ∼ x}. So, S is the

set of all elements which are equivalent to x. Note that every two

equivalence classes are either disjoint or identical. Thus, it makes

sense to talk about the set of equivalence classes. This set is denoted

X/∼.

Now let’s see how ∼ interacts with a metric. Let d′ be a metric

on X. As above, let X/∼ denote the set of equivalence classes of X.

Let us define, for S1, S2 ∈ [X], the function

δ(S1, S2) = inf d′(s1, s2).

The infimum is taken over all possibilities where s1 ∈ S1 and s2 ∈
S2. In other words the “distance” from S1 to S2 is the “minimum”

distance between a member of S1 and a member of S2.

Let d be the pathification of δ. We call X/∼ a good quotient if d

is a metric on X/∼. We think of X/∼ as the result of gluing certain

points of X together. Moreover, if x ∼ y and x′ is near x and y′ is
near y, then the pathification process forces x′ to be near y′. So, at

least in the case when we get a good quotient, the operation of gluing

two points together sort of drags the rest of X along, like a rubber

sheet. Before we give concrete examples, we point out that sometimes

the gluing process leads to a horrible mess.

Exercise 2. Let X = R and write x = y iff x − y is rational.

Show that R/∼ is not a good quotient.

3.2. The Gluing Construction in Action

In this section, which is mainly a series of exercises, we give you a

chance to work through lots of concrete examples of the abstract con-

struction given in the previous section.
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Exercise 3. Let X = X1 ∪X2, where X1 and X2 are each copies of

the unit disk, equipped with the standard metric, and d(p1, p2) = 1 if

p1 ∈ X1 and p2 ∈ X2. You should picture two disks hovering, one on

top of the other. Define p1 ∼ p2 if and only if either p1 = p2 or else

p1 and p2 are corresponding points in the boundaries of X1 and X2.

Prove that the space X/∼ is a good quotient, and is homeomorphic

to the 2-sphere.

Exercise 4. The projective plane is the quotient of the sphere S2

by the equivalence relation p ∼ −p. The points p and −p are called

antipodal points . Prove that the projective plane is a surface.

Exercise 5. Let X = S1 × [0, 1] be a cylinder. Define an equiv-

alence relation by the rule that (x, 0) ∼ (x, 1) and also (x, y) ∼ (x, y).

Prove that X/ ∼ is a good quotient, and also a surface, and also

homeomorphic to the torus. See Figure 2.1.

Exercise 6. Let X be a metric space of the form

T × {1, 2, 3, 4, 5, 6, 7, 8}.

So, X is the disjoint union of 8 triangles. Define an equivalence rela-

tion on X so that the resulting space is a surface and homeomorphic

to a sphere.

Exercise 7. Describe how to glue a finite number of triangles to-

gether to make the octagon surface discussed in Chapter 1.

Exercise 8. We have already discussed the square torus in §1.1. Here
is another desciption of the same space. On R2 define the equivalence

relation (x1, y1) ∼ (x2, y2) iff x1 − x2 and y1 − y2 are both integers.

Prove that both quotients we have described are good quotients and

homeomorphic to each other. Prove also that the resulting space is

homeomorphic to the surface of a donut, as in Figure 2.1.

Now we mention the cylinder and the Möbius band. Technically,

these are surfaces with boundary. Both surfaces are obtained by
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gluing together one pair of opposite sides of a rectangle, as shown in

Figure 1.

Figure 3.1 The cylinder and the Möbius band

The Möbius band has some amazing properties. First of all, it

only has one boundary component. Second of all, consider a bug

embedded in the Möbius band that travels from top to bottom. When

the bug gets back to its original position, its notions of left and right

are reversed.

We call a compact surface orientable if it does not contain a

Möbius band. Otherwise, we call the surface nonorientable. Figure

3.2 shows two prototypical examples of nonorientable surfaces, the

projective plane (left) and the Klein bottle (right). We have drawn

in Möbius band subsets in both cases.

Figure 3.2. The projective plane and the klein bottle
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Exercise 9. Prove that the version of the projective plane shown

on the left-hand side of Figure 3.2 is homeomorphic to the version

described in Exercise 4.

3.3. The Classification of Surfaces

Suppose that S1 and S2 are two compact surfaces. Let D1 and D2

be small open disks in S1 and S2. We assume that the lengths of the

boundaries of D1 and D2 are the same. We cut out D1 and D2 from

S1 and S2 to produce two new spaces. Finally, we glue the boundary

of S1 −D1 to the boundary of S2 −D2 by an isometric map. We call

the result S1♯S2. Technically, the result depends on the choice of D1

and D2, but any choice of D1 and D2 leads to the same surface up

to homeomorphism. Figure 3 shows an example of the connect-sum

operation applied to two tori.

Figure 3.3 The Connected Sum

Exercise 10. Prove that S1♯S2 is a surface. (Hint: The main diffi-

culty is finding coordinate charts along the “seam”.)

Letting T 2 stand for the torus, the surface

T2♯ · · · ♯T2,

made from g connected sum operations, is called the surface of genus

g. In general, the genus of a compact surface is the integer g such

that χ(S) = 2 − 2g. A surface of genus g is sometimes denoted Σg.

We say “it”, because any g-fold connected sum of g tori gives rise

to the same surface up to homeomorphism. This fact is part of the

classification of surfaces.
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Theorem 3.1 (Classification of Surfaces). Let X be a compact sur-

face. If X is orientable, then there is some g such that X is homeo-

morphic to Σg. If X is nonorientable, then there is some g such that

Σ is homeomorphic to Σg♯P . Here P is the projective plane.

If we assume that X is made from gluing together finitely many

triangles according to the construction above, then the proof of the

Theorem 3.1 is elementary. Roughly speaking, you cut X open into

one big polygon and analyze the way the sides are glued together.

The book [KIN] has a proof along these lines. The proof of the Euler

formula that we give in the next section is quite similar to the proof

of Theorem 3.1.

The proof for an arbitrary compact surface is to reduce to the

special case where X is built from triangles. In other words, one

shows that X is homeomorphic to a surface built from triangles. We

say in this case that X has a triangulation. It turns out that every

compact surface does have a triangulation, but the result is quite

difficult to prove.

3.4. The Euler Characteristic

We will establish Euler’s formula for orientable surfaces. Suppose

that Σg is decomposed into polygons. We will prove that

(3.1) χ(Σg) := faces− edges + vertices = 2− 2g.

The sum in equation (3.1) defines χ(Σg), and the result is the formula

for χ(Σg).

First of all, we reduce to the case when the decomposition has

just a single face. Suppose that Σg is decomposed into more than

one face. We can find faces F1 and F2 joined together along an edge

e. We can remove e and set F = F1 ∪e F2. By this we mean that

we stick F1 and F2 together along e and call the union F . We have

created a new decomposition with one fewer face and one fewer edge.

In particular, we have not changed the Euler characteristic.

It remains to consider the case when there is just one face whose

boundary edges are paired in some way. We call this a gluing pattern

for Σg. We say that the gluing pattern has a cross if we can find two
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pairs of glued edges (e1, e2) and (f1, f2) such that any line segment

connecting e1 to e2 crosses any line segment connecting f1 to f2, as

shown in Figure 3.4. In other words, the edges e1, e2 separate the

edges f1, f2 from each other on the boundary of P .

2

e e

f

f

1

1

2

Figure 3.4. A crossing pattern of edges

Lemma 3.2. If the gluing pattern for Σg does not have a cross, then

it has a pair of consecutive edges that are glued together.

Proof. We will assume that the gluing pattern has neither a cross

nor a pair of consecutive edges and derive a contradiction. Say that

a special segment is a line segment in the interior of F that joins

the midpoints of a glued pair of edges. Let L1 be a special segment.

We rotate so that L1 is vertical. Since L1 does not join consecutive

segments, and there are no crosses, we can find a special segment L2

that lies to the left of L1. Since L2 does not join consecutive segments,

we can find a special segment L3, separated from L1 by L2. Next, we

can find a special segment, L4, separated from L1 and L2 by L3. And

so on. In this way, we produce an infinite list L1, L2, . . . of distinct

special segments. This contradicts the fact that F only has finitely

many edges. �

Lemma 3.3. If the gluing pattern for Σg has a cross, then Σg is not

a sphere.

Proof. Let (e1, e2) and (f1, f2) be two pairs of edges participating in

a cross, as shown in Figure 3.5. Without loss of generality, it suffices
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to consider the case when the e and f edges are contained in the edges

of the unit square. Figure 3.5 below shows the situation. The thick

segments between the e edges and the f edges each represent a finite

union of edges of F . Though we have not drawn things this way, one

more of these segments could be empty.

H

Figure 3.5. A torus with flaps.

Were we to glue the opposite sides of the unit square, we would

get a torus, as shown on the left hand-side of Figure 3.5. To obtain Σg

from this picture, we delete the white “flaps” from the torus, and then

glue together the edges of the corresponding boundary, according to

the original gluing pattern. The relevant boundary is drawn thickly.

It is convenient to draw the torus in a different way, this time

with the handle drawn on the inside. Rather than draw the handle,

we have just added the letter H, to denote that the drawn disk is

really a disk with a handle attached. The right-hand side of Figure

3.5 shows this. Were we to draw the “flaps”, they would be on the

outside of the shaded region.

The right-hand side of Figure 3.5 realizes Σg as the connected

sum of another oriented surface and a torus. In particular, Σg cannot

be a sphere. �

Lemma 3.4. Euler’s formula is true for a sphere.

Proof. Our proof goes by induction on the number of edges of F .

In case F just has 2 edges, the decomposition of Σ has 1 edge and 2
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vertices. We have

χ(Σ0) = 2− 1 + 1 = 2.

This takes care of the base case. In general, some pair of consecutive

edges of F is glued together. Since F is orientable, these edges point

in opposite directions, as shown in Figure 3.6.

Figure 3.6. Gluing consecutive edges

In this case, we glue up the edges and erase the vertex between

them. The result is a gluing pattern for Σg that is based on a polygon

with 2 fewer edges. This is the induction step. �

Now we consider the general case. Our result goes by induction

on g. We have already taken care of Σ0. In light of Lemma 3.4, the

converse of Lemma 3.3 is true: If Σg is not a sphere, then the gluing

pattern for Σg does have a cross. Otherwise, we could just “zip up”

Σg one pair of edges at a time and produce a sphere.

So, we start with a cross and reproduce the construction made in

the proof of Lemma 3.3. That is, we arrive at the picture in Figure

3.5. When we replace our disk-with-handle with a disk, we produce

a gluing diagram, based on a polygon F ′, for the surface Σg−1. Here

F ′ has 4 fewer edges than F does. At the same time, F and F ′ have
the same set of vertices, and they are glued together in the same way.

By induction, Euler’s formula holds for Σ′. Hence

f ′ − e′ + f ′ = 2− 2(g − 1).

Here f ′ = 1 is the number of faces in the decomposition and e′ is the
number of edges, and v′ is the number of vertices. By construction
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f ′ = f and e′ = e− 2 and v′ = v. So, we get

f − e+ v = 2− 2g,

as desired.

Exercise 11. Prove Euler’s formula for nonorientable surfaces.





Chapter 4

The Fundamental Group

The purpose of this chapter is to define the fundamental group, an ob-

ject we discussed briefly in §1.3. In the next chapter, we will compute

some examples. As we mentioned in §1.3, the fundamental group is an

object that organizes all the different loops on a surface (or any topo-

logical space, for that matter). In this chapter, I will first talk about

groups in general, then groups will disappear from the discussion for

a while; then they will come back in a really surprising way. For a

more formal treatment of the fundamental group, see, e.g., [HAT].

4.1. A Primer on Groups

If you haven’t had any group theory, you can find a treatment in

any number of abstract algebra books; see, for instance, [HER]. A

group is a set G, together with an “operation” ∗, which satisfies the

following axioms:

• g1 ∗ g2 is defined and belongs to G for all g1, g2 ∈ G.

• g1 ∗ (g2 ∗ g2) = (g1 ∗ g2) ∗ g3 for all g1, g2, g3.

• There exists a (unique) e ∈ G such that e ∗ g = g ∗ e = g for

all g ∈ G.

• For each g ∈ G there is a (unique) element h such that

g ∗ h = h ∗ g = e. This element is called “g inverse” and is

usually written as h = g−1.

43
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The group G is called Abelian if, additionally, g1 ∗ g2 and g2 ∗ g1 are

always equal. A subgroup of a group is a subset H ⊂ G which is closed

under the group law. So, if h ∈ H then h−1 ∈ H and if h1, h2 ∈ H

then h1 ∗ h2 ∈ H.

Here are some examples of groups:

• Z, with the + operation, forms an Abelian group.

• If G1 and G2 are groups, then G1×G2 can be made a group

using the law (g1, g2) ∗ (h1, h2) = (g1 ∗ h1, g2 ∗ h2).

• The set SLn(Z) of n × n integer matrices with determi-

nant 1 forms a non-Abelian group. The group law is matrix

multiplication.

• Let A be a collection of n things, for instance A = {1, ..., n}.
Say that a permutation is a bijection f : A → A. There are

n! different permutations, and they form a finite group. The

∗ operation is composition of maps. This group is called Sn.

Let G1 and G2 be groups. A map f : G1 → G2 is a homomor-

phism if

f(a ∗ b) = f(a) ∗ f(b)

for all a, b ∈ G1. Here the ∗ on the left-hand side is the rule for G1

and the ∗ on the right-hand side is the one for G2. The map f is

called an isomorphism if f is a bijection and also a homomorphism.

Here is a nice example. Let G be a finite group, and let n be the

number of elements in G. We’re going to produce a homomorphism

from G into Sn, the permutation group on n things. The n things

are just the elements of G. So, given an element g ∈ G, how do we

permute the elements of G? We define the map fg : G → G using

the rule fg(h) = gh. It turns out that fg is a bijection, and fg1 = fg2
only if g1 = g2. The map g → fg is a one-to-one homomorphism from

G into Sn. We have essentially given the proof of Cayley’s theorem:

every finite group is isomorphic to a subgroup of a permutation group.
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4.2. Homotopy Equivalence

Now we go back to metric spaces. Let X and Y be metric spaces. Let

I = [0, 1] be the unit interval. Two maps f0, f1 : X → Y are said to

be homotopic if there is a continuous map F : X × I → Y such that

• F (x, 0) = f0(x) for all x ∈ X.

• F (x, 1) = f1(x) for all x ∈ X.

To explain the intuitive idea, it is useful to define ft : X → Y by the

formula ft(x) = F (x, t). Then the map ft interpolates between f0
and f1, with ft being very close to f0 when t is near 0 and ft being

very close to f1 when t is near 1. The map F is called a homotopy

from f0 to f1.

If is useful to write f0 ∼ f1 if these maps are homotopic. Let

C(X,Y ) denote the set of all continuous maps from X to Y . One can

think of ∼ as a relation on the set C(X,Y ).

Exercise 1. Prove that ∼ is an equivalence relation on C(X,Y ).

Exercise 2. Prove that every two elements of C(X,Rn) are ho-

motopic. (Hint : Prove that any map f : X → Rn is homotopic to

the zero-map f0 defined by the property f0(x) = 0 for all x. Then,

use the fact that ∼ is an equivalence relation.)

Exercise 3 (Challenge). Let P be a polynomial

P (x) = xn + an−1x
n−1 + · · ·+ a0.

Let Q be the polynomial Q(x) = xn. So, P and Q have the same

leading term. We can think of P as a map from C to C. Here C

is the complex plane. For any R we can let X ⊂ C be the circle of

radius R centered at 0. That is

X = {z ∈ C| |z| = R}.

First of all, prove that 0 6∈ P (X) if R is sufficiently large. This means

that we can think of P and Q as maps from X to Y = C−{0}. Prove
that P,Q : X → Y are homotopic if R is sufficiently large.
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4.3. The Fundamental Group

From now on we are going to take X = I, the unit interval, and we

are going to study the space Y by looking at the maps from I into

Y . For this entire discussion we choose a special “reference point”

y0 ∈ Y , which we call the basepoint .

Say that a loop in Y is a continuous map f : I → Y such that

f(0) = f(1) = y0.

The reason for the terminology should be pretty clear. Say that two

loops f0 and f1 are loop homotopic if there is a homotopy F from

f0 to f1 such that ft is a loop for all t ∈ [0, 1]. This is to say that

F (0, t) = F (1, t) = y0 for all t. We write f0 ∼ f1 in this case.

Figure 4.1 shows an example. Just as in Exercise 1, this relation is

an equivalence relation. Note that the equivalence relation here is

slightly different than the one in the previous section, because of the

added constraint that F (0, t) = F (1, t) = y0 for all t.

Y

Y

Figure 4.1. homotopic loops

As a set, π1(Y, y0) is the set of equivalence classes of loops. The

really interesting thing is that we can make π1(Y, y0) into a group.

Here is the construction. Suppose that we have two elements [f ]

and [g] of π1(Y, y0). We can let f and g be representatives of the

equivalence classes [f ] and [g], respectively. That is, f : [0, 1] → Y is

a loop and g[0, 1] → Y are both loops.
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g
f

Figure 4.2. Composing loops

We define the new loop h = f ∗ g by the following rule.

• If x ∈ [0, 1/2], we define h(x) = f(2x). That is, the first

half of h traces out all of f , but twice as fast.

• If x ∈ [1/2, 1], we let x′ = x − 1/2 and then we define

h(x) = g(2x′). That is, the second half of h traces out g,

but twice as fast.

We write h = f ∗ g. See Figure 4.2.

Exercise 4. Suppose that f̂ and ĝ are different representatives for

[f ] and [g]. That is, f and f̂ are equivalent loops and g and ĝ are

equivalent loops. Let ĥ = f̂ ∗ ĝ. Prove that [ĥ] = [h]. In other words,

prove that h and ĥ are equivalent loops. This exercise is pretty easy,

but quite tedious.

Given Exercise 4, we can define

(4.1) [f ] ∗ [g] = [f ∗ g],
and this definition is independent of the equivalence class representa-

tives we used to make the definition.

Exercise 5. Show, for any three loops, f, g, h, that (f ∗ g) ∗ h is

equivalent to f ∗(g∗h). This means that ([f ]∗[g])∗[h] = [f ]∗([g]∗[h]).
This is the associative law for groups.

Exercise 6. Let e be the loop defined by the rule e(x) = y0 for

all x ∈ I. Show that [e] ∗ [g] = [g] ∗ [e] = [g] for all loops g. This
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means that [e] plays the role of the identity element in π1(Y, y0).

Exercise 7. Let g be any loop. Define the loop g∗ so that it satisfies

the equation g∗(x) = g(1−x). In other words, g∗ traces out the same

loop as g, but in the opposite direction. Prove the following result:

If g1 and g2 are equivalent, then g∗1 and g∗2 are equivalent. Finally,

prove that [g] ∗ [g∗] = [e] and [g∗] ∗ [g] = [e]. In other words, the

inverse of [g] is given by [g∗].

Combining Exercises 5, 6, and 7, we see that π1(Y, y0) is a group.

So, to each space Y we can pick a basepoint y0 and then define the

group π1(Y, y0). This group is known as the fundamental group of Y .

(We will see below that the group you get does not really depend on

the basepoint.)

4.4. Changing the Basepoint

Say that two points y0, y1 are connected by a path if there is a con-

tinuous map f : I → Y such that f(0) = y0 and f(1) = y1. Say that

Y is path connected if every two points in Y can be connected by a

path. For instance Rn is path connected whereas Z is not.

Lemma 4.1. Suppose that y0, y1 ∈ Y are connected by a path. Then

π1(Y, y0) and π1(Y, y1) are isomorphic groups. In particular, if Y is

path connected, then the (isomorphism type of the) group π1(Y, y) is

independent of the choice of basepoint y and we can just write π1(Y ).

Proof (Sketch). Let d be a path which joins y0 to y1. Let d∗ be

the reverse path, which connects y1 to y0. We want to use d and

d∗ to define a map from π1(Y, y0) to π1(Y, y1). Given any y0-loop

f0 : I → X with f0(0) = f0(1) = y0, we can form a y1-loop by the

formula

f1 = d ∗ f ∗ d∗.

In other words, the first part of f1 travels backward along d from y1
to y0, the second part travels around f0, and the third part travels

back to y1. You should picture a lasso, as in Figure 4.3.
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Figure 4.3. A lasso

Using arguments similar to the ones for the exercises above, you

can show the following result: If f0 and f̂0 are equivalent, then f1
and f̂1 are equivalent. In other words, the map H, which sends

[f0] ∈ π1(Y, y0) to [f1] ∈ π1(Y, y1) is well defined independent of the

equivalence class representative used to define it. So, now we have

a well-defined map H : π1(Y, y0) → π1(Y, y1). After this, one shows

that H is a homomorphism. That is, H([f ] ∗ [g]) = H([f ]) ∗H([g]).

This is not hard to do once you draw a picture of what is going on.

Rather than show that H is one-to-one and onto directly, one can

define a map H∗ : π1(Y, y1) → π1(Y, y0) just by reversing the roles of

the two points. In other words, the loop f1 is mapped to

f∗
0 = d∗ ∗ f1 ∗ d.

Note that f∗
0 and f0 are not precisely the same loop. If you draw

pictures you will see that there is some extra slack in f∗
0 . However,

it turns out that [f∗
0 ] = [f0]. In other words, the two loops are loop

homotopic. Thus H and H∗ are inverses of each other. Hence H is

an isomorphism.

4.5. Functoriality

The word functoriality refers to a situation where you are assign-

ing one kind of an object to another in a way which respects the

“natural” transformations between the two kinds of objects. This

notion is defined precisely in any book on category theory. In our

case, we are assigning a group π1(Y, y0) to a pointed space (Y, y0).

(By pointed space we mean a space with a chosen basepoint.) The

natural transformations of pointed spaces are basepoint-preserving
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continuous maps and the natural transformations between groups are

homomorphisms.

We would like to see that our transformation (or functor) from

spaces to groups respects these transformations. Lemmas 4.2 and 4.3

together contain this information.

Lemma 4.2. Let (Y, y0) and (Z, z0) be two pointed spaces, and let

f : Y → Z be a continuous map such that f(y0) = z0. Then there is

a homomorphism f∗ : π1(Y, y0) → π1(Z, z0).

Proof. Let [a] ∈ π1(Y, y0) be an equivalence class of loops, with

representative a. So, a : I → Y is a loop. The composition f ◦ a is

loop in Z. We define f∗[a] = [f ◦ a]. If [a0] = [a1], then there is a

homotopy H from a0 to a1. But then f ◦H is a loop homotopy from

f ◦a0 to f ◦a1. So, [f ◦a0] = [f ◦a1] and our map is well defined. Note

that f ◦(a∗b) = (f ◦a)∗(f ◦b). Hence f ∗([a]∗[b]) = (f∗([a]))∗(f∗([b])).
Hence f∗ is a homomorphism. �

Suppose that f : Y → Z is a continuous map and g : Z → W is

a continuous map. Let’s arrange so that f(y0) = z0 and f(z0) = w0.

Then g ◦ f is a map from Y to W and (g ◦ f)∗ is a homomorphism

from π1(Y, y0) to π1(W,w0).

Lemma 4.3. (g ◦ f)∗ = g∗ ◦ f∗.

Proof. Let [a] ∈ π1(Y, y0). Then

(g ◦ f)∗[a] = [(g ◦ f) ◦ a] = [g ◦ (f ◦ a)] = g∗[f ◦ a] = g∗f∗[a].

That is it. �

If f : Y → Y is the identity map, then f∗ is the identity map

on π1(Y, y0). Also, if h : Y → Z is a homeomorphism, then we

have the inverse homeomorphism h−1. But h ◦ h−1 is the identity.

Hence h∗ ◦ h−1
∗ is the identity homomorphism. Likewise h−1 ◦ h∗ is

the identity homomorphism. In short h∗ (and also h−1
∗ ) is a group

isomorphism. So

Theorem 4.4. If π1(Y, y0) and π1(Z, z0) are not isomorphic groups,

then there is no homeomorphism from Y to Z which maps y0 to z0.
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The above is slightly contrived because we don’t really care about

these basepoints. Recall that π1(Y, y0) does not depend on the base-

point if Y is path connected. So

Theorem 4.5. Suppose Y and Z are path connected spaces. If π1(Y )

and π1(Z) are not isomorphic, then Y and Z are not homeomorphic.

What’s really great about this result is that we can use it to

tell the difference between spaces just by looking at these groups.

Of course, the question remains: How do we actually compute these

groups? In the next chapter, we will go into much more details about

this.

4.6. Some First Steps

Here we will just take some first steps in the computation of funda-

mental groups. Once we have more theory, these computations will

be easy. So, what fundamental groups can we compute? It is easy to

see (compare Exercise 2) that any two loops in Rn (based at 0) are

equivalent. Hence π1(R
n, 0) is the trivial group.

Exercise 8A (Challenge). Prove that there is a loop in S2 (the

2-sphere) whose image is all of S2. (Hint : If you know about the

Hilbert plane-filling curve from real analysis, you’re in good shape for

this problem.)

Exercise 8B (Challenge). Prove that π1(S
2, p) is the trivial group.

Here p ∈ S2 is any point. (Hint : The intuitive idea is this: If the

loop misses some point q 6= p, you can just “slide” the loop “down to

p” by pushing it away from the missed point. However, you have to

deal with the loops which come from Exercise 8A.)

Exercise 9. If (Y, y0) and (Z, z0) are two pointed spaces, then the

product

(Y × Z, (y0, z0)

is again a pointed space. Prove that

π1(Y × Z, (y0, z0)) = π1(Y, y0)× π1(Z, z0).
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Exercise 10 (Challenge). Prove that π1(S
1, p) is nontrivial. (Hint :

Think of S1 as the unit circle in R2 and consider the loop

f(t) = (cos(2πt), sin(2πt)).

Show that this loop is inequivalent to the identity loop.)

Let T = S1 × S1. Here T 2 is the torus. From Exercises 9 and 10

we know that π1(T
2) is nontrivial. (We don’t worry about the base-

point because T is obviously path connected.) On the other hand, by

Exercise 8, π1(S
2) is trivial. Hence S2 and T 2 are not homeomorphic!



Chapter 5

Examples of
Fundamental Groups

The purpose of this chapter is to compute the fundamental group for

some familiar objects:

• the circle;

• the torus;

• the 2-sphere;

• the projective plane;

• lens spaces;

• the Poincaré homology sphere.

I will work out the first three in detail and then guide you through

the computation for the others. The last section is too advanced for

an undergraduate course but I couldn’t resist.

5.1. The Winding Number

Let S1 be the circle. We think of S1 as the set of unit complex

numbers in C. We choose 1 for our basepoint of S1. In this section

we will describe how to assign an integer to a continuous loop g :

[0, 1] → S1.

53
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First we will explain the idea intuitively and then we will get

to the formalities. Think of the loop g as describing a bug crawling

around the unit circle. Imagine that you are at the center of the

circle watching the bug. You always follow the bug with your eyes,

staring straight at it the whole time. (Your rubber neck allows you

to do this.) After the bug has completed his trip, you are looking in

the same direction as initially. However, your head has been twisted

around some number of times. The winding number is the integer,

positive for counterclockwise and negative for clockwise, which names

how many times your head is twisted around.

Now we come to the formalities. Let R denote the real numbers.

There is a natural map E : R → S1 given by

E(t) = exp(2πit) = cos(2πt) + i sin(2πt).

This map is certainly onto and continuous, but it has some other

special properties. Say that an open special arc in S1 is a set of the

form

C(z) = {w ∈ S1| d(z, w) < 1/100}.
Here d(z, w) = |z − w|, the usual Euclidean distance. The choice of

1/100 is convenient but fairly arbitrary. The point is just that open

special arcs are smaller than semicircles.

Exercise 1. Let C be an open special arc. Prove that E−1(C)

consists of a countably infinite number of disjoint open intervals and

that the restriction of E to any of them is a homeomorphism from

the interval onto C.

Lemma 5.1. Let [a, b] ⊂ R be an interval. Suppose g : [a, b] → S1 is

a map such that g([a, b]) is contained in a special arc. Suppose also

that there is a map g̃ : {a} → R such that E ◦ g̃(a) = g(a). Then we

can define g̃ : [a, b] → R such that E ◦ g̃ = g on all of [a, b]. This

extension of g̃ is unique.

Proof. If E had an inverse we could define g̃ = E−1 ◦ g. Also, we

would be forced to make this definition and so the extension of g̃

to [a, b] would be unique. Unfortunately, E is not invertible. For-

tunately, we have Exercise 1, which shows that E is “invertible” in

some sense. Let C be the special arc which exists by hypothesis. Let
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C̃ ⊂ E−1(C) be the unique interval from Exercise 1 which contains

g̃(a). By Exercise 1, the map E : C̃ → C is a homeomorphism. Let

F : C → C̃ be the inverse of (the restricted version of) E. Since

g[a, b] ⊂ C we can (and must) define G̃ = F ◦ g. �

Let 1 = E(Z) be the basepoint of S1. Let I = [0, 1]. Recall that

an element of π1(S
1, 1) is a map g : I → S1 such that g(0) = g(1) = 1.

Exercise 2. Given the map g, prove that there exists some N with

the following property. If x, y ∈ [0, 1] and |x− y| < 1/N then the set

g([x, y]) is contained in a special arc. (Hint : You might want to use

the fact that every infinite sequence in [0, 1] has a convergent subse-

quence. This is basically the Bolzano–Weierstrass theorem.)

Here is an improved version of Lemma 5.1.

Lemma 5.2. Let g : [0, 1] → S1 be a loop. Then there is a unique

map g̃ : [0, 1] → R such that g̃(0) = 0 and E ◦ G̃ = G on all of [0, 1].

Proof. From Exercise 2 we can find some N so that the points ti =

i/N have the following property. The image g([ti, ti+1]) is contained

in a special arc for i = 0, . . . , (N − 1). Now we go by induction. First

of all, by Lemma 5.1 we can define g̃ uniquely on [t0, t1]. But then by

Lemma 5.1 again, we can define g̃ uniquely on [t1, t2]. And so on. �

Definition 5.1. We define the winding number of g to be the value

of g̃(1) ∈ Z. We write this as w(g). Note that g̃(1) ∈ Z because

g(1) = E(g̃(1)) = 0.

We would like to see that the winding number only depends on

the homotopy class of the loop. Going back to our intuitive notion

of the winding number, suppose that two bugs are running around

the unit circle, and they stay pretty close to each other. Then you

will always be looking in about the same direction if you watch either

bug. So, your head will be turned around the same number of times

if you watch either bug. Now we give the formal proof.
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Lemma 5.3. Suppose that g0 and g1 are homotopic loops in S1.

Then w(g1) = w(g1).

Proof. Let G be the homotopy between g0 and g1. Let gt(x) =

G(x, t). The same argument as in Exercise 2 proves that there is

some N with the following property: If s, t ∈ [0, 1] are any points

such that |s− t| < 1/N and x ∈ [0, 1] is fixed, then

|G(x, s)−G(x, t)| < 1/100.

Using the other notation, we have d(gs(x), gt(x)) < 1/100. But then

d(g̃s(x), g̃t(x)) is either less than 1/100 or greater than 1/2. By con-

tinuity, the alternative cannot change. Also

d(g̃s(0), g̃t(0)) = d(0, 0) = 0 < 1/100.

This shows that the first alternative always holds and g̃s(x) and g̃t(x)

are always within 1/100 of each other. But then w(gs) = w(gt),

because both are integers within 1/100 of each other. From here it is

easy to see that w(g0) = w(g1). �

5.2. The Circle

We will use the winding number to compute π1(S
1, 1), the fundamen-

tal group of the circle.

Given a loop g, representing an element of π1(S
1, 1), we define

w([g]) = w(g).

By Lemma 5.3, this gives us a well-defined map w : π1(S
1, 1) → Z.

Lemma 5.4. w is onto.

Proof. Let g(t) = exp(2πint). Then w(g) = n. �

Execise 3. Prove that w is a homomorphism.

Lemma 5.5. w is an isomorphism.

Proof. Since w is a homomorphism, it suffices to prove the following

statement. If w(g) = 0, then g is homotopic to the constant loop.

Now, if w(g) = 0, then g̃ : [0, 1] → R is a loop. But π1(R, 0) = 0.

Hence there is a loop homotopy G̃ from g̃ to the constant loop g̃0 :
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S1 → R. But then E ◦ G̃ is a loop homotopy from g to the constant

loop in S1. This shows that w is an isomorphism. �

The last result shows that π1(S
1, 1) is isomorphic to Z.

Remark. The main property we used about the circle was the exis-

tence and special properties of the map E : R → S1. We also used

the property that π1(R, 0) = 0. It turns out that this will be a general

method for us when we compute the fundamental groups. All the spe-

cial properties we established are summarized by the statement that

R is the universal cover of S1 and E is the universal covering map.

In the next chapter I will develop these ideas in great generality.

5.3. The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra says that every complex poly-

nomial

P (z) = a0 + a1z + · · ·+ anz
n

has a root. This result has a nice proof based on the ideas we have

been developing. For convenience, we divide through so that an = 1.

We think of P as a continuous map from C to C. If P has no roots,

then P is a continuous map from C to C − {0}.
Let Cr denote the circle of radius r centered at the origin. Let

S1 denote the unit complex numbers. Given r > 0, consider the map

γr : S1 → S1 given by

γr(u) =
P (ru)

|P (ru)| .

By construction γr is a continuous loop, and hence an element of

π1(S1).

When r is small, P (Cr) is just a tiny loop around f(0) 6= 0.

Hence [γr] = 0 ∈ π1(S1) for r small. But γr varies continuously with

r. Hence [γr] = 0 for all r. On the other hand, when z ∈ Cr and r is

large, we have

P (z) = zn + f(z), |f(z)| < ǫr|P (z)|.
Here ǫr is some constant that tends to 0 as r → ∞. The point is that

the highest order term dominates the sum of the remaining terms.
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Our estimate tells us that γr converges to the loop z → zn as

r → ∞. Hence [γr] = n for r large. This is a contradiction. The only

way out is that P is not a continuous map from C to C − {0}. But

then 0 must be in the image of P . That is, P has a root.

5.4. The Torus

Exercise 9 of Chapter 4 asked you to show that

π1((Y, y)× (Z, z)) = π1(Y, y)× π1(Z, z).

The torus T 2 is homeomorphic to S1 × S1 and also path connected.

Hence π1(T
2) = Z ×Z. Iterating, we get π1(T

n) = Zn.

5.5. The 2-Sphere

Let I = [0, 1] as above. Let x ∈ S2 be some basepoint. This section,

which consists mainly of exercises, will guide you through the proof

that π1(S
2, x) = 0.

Say that a loop g : I → S2 (anchored at x) is bad if g(I) = S2

and otherwise is good .

Exercise 4. Prove that any good loop is homotopic to a point.

Exercise 5. Let [a, b] be an interval, and let H be a hemisphere

in R2. Let f : [a, b] → H be a continuous map. Prove that there is

homotopy F : [a, b]× [0, 1] → ∆ such that

• F (a, t) and F (b, t) are independent of t.

• F (x, 0) = f(x) for all x.

• f1 : [a, b] → ∆ is contained in a circular arc joining f(a) to

f(b).

Exercise 6. Let g be an arbitrary loop on S2. Prove that there is

a finite partition 0 = t0 < t1 < · · · < tn = 1 such that g maps each

interval [ti, ti+1] into a hemisphere. Now conclude from Exercise 5

that g is loop homotopic to a good loop.
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Since every loop in S2 is loop homotopic to a good loop, and

every good loop is loop homotopic to a point, every loop in S2 is

homotopic to a point. Therefore, π1(S
2, x) = 0. The same argument

works for Sn, with n > 2.

5.6. The Projective Plane

As in §3.2, we think of P 2, the projective plane, as the quotient S2/∼,

where x ∈ S2 is equivalent to itself and to the antipodal point −x.

There is a nice map E : S2 → P 2 given by E(x) = [x]. As our

notation suggests, E plays the same role here that the same-named

map played above when we considered the circle.

Let x+ = (0, 0, 1), and let x− = (0, 0,−1). Clearly, we have

E(x+) = E(x−).

Exercise 7. Suppose that g : [0, 1] → P 2 is a loop based at x+.

Prove that there is a unique map g̃ : [0, 1] → S2 such that g̃(0) = x+

and E ◦ g̃ = g (Hint : Just imitate what was done for the circle.)

Note that either g̃(1) = x+ or g̃(1) = x−. We define w(g) = +1

if g̃(1) = x+ and w(g) = −1 if g̃(1) = x−.

Exercise 8. Prove that w([g]) is well defined independent of the

loop homotopy equivalence class of g. Prove also that w gives an

isomorphism from π1(P
2) to Z/2.

In general we have P n = Sn/∼, where x ∼ −x. Thus there is

always this two-to-one map from Sn to P n. An argument similar to

the one given above shows that π1(P
n) = Z/2. Here P n is called

projective n-space.

5.7. A Lens Space

Before reading this section, you should probably know what a mani-

fold is; see §2.8 for details.

We think of S3 as the set of the form

{(z, w)| |z|2 + |w|2 = 1} ⊂ C2 = R4.
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This is an exotic way of expressing the fact that S3, the 3-sphere, is

the unit sphere in R4. The equality C2 = R4 comes from the map

(x1 + iy1, x2 + iy2) → (x1, y1, x2, y2).

Here is a nice equivalence relation on S3. Let’s define

(z, w) ∼ (uz, u2w)

if and only if u is some 5th root of unity. Each equivalence class on

S3/∼ has 5 points. Let’s call this space L(2, 5). The 2 comes from

the u2 term, and the 5 comes from the fact that we are taking 5th

roots of unity. Obviously, you could make this construction for other

choices.

Here is a sketch of how to visualize L(2, 5). Any point in L(2, 5)

is equivalent to a point of the form (z, w), where the argument of z

lies in the interval (0, 2π/5). Let S ⊂ S3 be this set. We can write

S =
⋃

θ∈[0,2π/5]

Sθ,

where Sθ consists of points of the form (z, w) where z = exp(iθ). The

whole sphere S3 is tiled by 5 copies of S. For instance, one of the

adjacent copies consists of those sets Sθ, where θ ∈ [2π/5, 4π/5].

Now we are going to (partially) explain how to visualize S. The

“slice” Sθ is a disk, and the boundary of Sθ is the circle

C = {0} × {w : |w| = 1}.

All the slices share C as a common boundary, but otherwise they are

disjoint. So, S looks something like a circular pillow, or the solid

region between two contact lenses stuck boundary to boundary. The

left-hand side of Figure 5.1 shows a side view. The two dots represent

C. To get a better picture, you could revolve this planar figure about

the vertical axis.
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Figure 5.1. The domain S

The right-hand side of Figure 5.1 shows a top view of S. We

imagine that we are looking at S0, and that the rest of S is under-

neath. The other boundary component is S2π/5. We have drawn the

circle C as a pentagon, to suggest the what is going on. We observe

the following things.

• Each point in the interior of S is equivalent only to itself.

• Each point on the interior of the “front” of S, meaning the

set S0 − C, is equivalent to one point on S2π/5 − C.

• Each point on one of the edges of C is equivalent to the 4

other points at corresponding positions on the other edges.

The triangular subdivision is supposed to serve as a guide

to the gluings.

I have not described things completely, because I want to leave you

something to think about.

Exercise 9. Prove that L(2, 5) is a good quotient in the sense of

§3.1, and also a manifold.

There is an obvious map E : S3 → L(2, 5). Using E we can show that

π1(L(2, 5)) = Z/5. Generalizing this construction in an obvious way,

we see that we can produce a 3-manifold whose fundamental group is

Z/n. These spaces L(m,n) are called lens spaces .
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5.8. The Poincaré Homology Sphere

Before we give the last example, we need to make a detour and discuss

a different way to think about S3. Let SO(3) denote the group of

orientation preserving (i.e., physically possible) rotations of S2. It

turns out that there is an amazing map from S3 to SO(3) which

is really the map from S3 to P 3 in disguise. So, given an element

q ∈ S3, we need to produce a rotation Rq of S2.

Here is the construction. We think of S3 as the unit quaternions .

That is, a point in S3 can be thought of as a symbol of the form

a+ bi+ cj + dk, a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1.

The symbols i, j, k satisfy the following rules:

• i2 = j2 = k2 = −1.

• ij = k and jk = i and ki = j.

Given these rules, you can multiply quaternions together in a way

which is similar to how you multiply complex numbers together.

Given any q ∈ S3 as above, we define

q−1 = a− bi− cj − dk.

Then you can check that qq−1 = q−1q = 1. In other words, the unit

quaternions form a group under multiplication!

We can identify R3 with the pure quaternions, namely those of

the form 0 + bi+ cj + dj. The isomorphism to R3 is just given by

0 + ai+ bj + ck → (a, b, c).

Thus our special R3 has the usual Euclidean metric on it, coming

from the identification with the usual R3.

Given p ∈ R3 we define

Rq(p) = qpq−1.

Exercise 10 (Challenge). Show that Rq preserves R3 (the pure

quaternions) and is an orientation-preserving rotation.

Multiplication turns out to be associative and so we have

Rq1 ◦Rq2(p) = q1(q2pq
−1
2 )q−1

1 = Rq1 ◦Rq2(p).
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This works for any p. Hence the map q → Rq is a homomorphism.

As you might expect, we define E(q) = Rq. Note that E(−q) = E(q).

It turns out that the kernel of E is precisely {1,−1}. So, E is both

a continuous surjection (with good local inverse properties) and a

two-to-one homomorphism from S3 to SO(3).

Now for our last example. Given the quaternionic picture of S3,

we can define a very interesting 3-dimensional manifold. IfG ⊂ SO(3)

is a finite subgroup, then G̃ = E−1(G) is a subgroup with twice the

number of elements. Now we can define an equivalence on S3 by the

rule q1 ∼ q2 iff there exists some g ∈ G̃ such that gq1 = q2. If G has

N elements, then G̃ has 2N elements and each equivalance class of

S3/∼ has 2N elements. It turns out the quotient space is a manifold

with fundamental group G̃.

As a special case, let G be the orientation-preserving symmetries

of the icosahedron, the most interesting finite subgroup of SO(3).

Then G̃ is an order 120 group known as the binary icosahedral group.

The quotient in this case is called the Poincaré homology sphere, and

its fundamental group is G̃.

Figure 5.2. A Dodecahedron

The Poincaré homology sphere is one of the great examples in ge-

ometry. In the lens space example, S3 is tiled by 5 copies of a kind of

“double lens”. In the Poincaré homology sphere example, it turns out

that S3 is tiled by 120 spherical dodecahedra. The spherical dodeca-

hedra look combinatorially the same as Euclidean dodecahedra, but

they are “puffed-out” much in the same way that spherical triangles
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are. Figure 5.2 shows a dodecahedron, drawn so that the thick lines

represent visible edges and the thin lines represent hidden edges.

Any point in S3 is equivalent to a point in one of these dodecahe-

dra, and no two points in the interior of a dodecahedron are equivalent

to each other. Thus, analyzing the Poincaré homology sphere boils

down to understanding how points on the boundary of one of the do-

decahedra are glued together. What happens is that each face of the

dodecahedron is glued to the opposite face, with a 2π/5 twist.



Chapter 6

Covering Spaces and the
Deck Group

In §1.4 we discussed how the process of “unwrapping” the essential

loops on the square torus leads naturally to the integer grid in the

plane. We also mentioned that something similar can be done for the

octagon surface and its relatives. The purpose of this chapter and the

next one is to make the unwrapping process precise, and to consider

it in much greater generality. The central objects in this chapter are

covering spaces and the deck group, objects which play the role that

the plane and the integer grid, respectively, played in §1.4. Along

the way, we will relate covering spaces and the deck group to the

fundamental group.

6.1. Covering Spaces

Let X̃ and X be path connected metric spaces. Let E : X̃ → X be

a continuous map. An open set U ⊂ X is said to be evenly covered

if the preimage E−1(U) consists of a countable disjoint union of sets

Ũ1, Ũ2, . . . such that the restriction E : Ũj → U is a homeomorphism.

(This makes sense because Ũj is a metric space in its own right.) It is

customary to require that U is path connected in this definition. The

sets Ũj are called components of the pre-image. The map E is said

65
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to be a covering map if every point in X has a neighborhood that is

evenly covered. In this case, X̃ is said to be a covering space of X.

The “mother of all examples” is the map E : R → S1 discussed

in §5.1. Here we will describe this map in another way. We still think

of the line as R, but now we think of the circle as the space X ob-

tained from [0, 1] by gluing 0 to 1. This time, our map E is given by

E(x) = [x−floor(x)]. Here floor(x) is the greatest integer less or equal

to x. So, x− floor(x) is the fractional part of x. Finally, E(x) is the

equivalence class of the fractional part of x. The map E is continuous

even though it does not appear to be so. If x1 is sligtly smaller than

an integer and x2 is slightly larger than the same integer, then E(x1)

and E(x2) are on opposite sides of [0, 1]. However, the gluing brings

them close together in X.

Exercise 1. Verify that E : R → S1 is indeed a covering map

in the example(s) given above. Reconcile the two examples and see

that essentially they are the same thing.

6.2. The Deck Group

We are going to give more examples of covering spaces below, but the

whole idea of a covering space is enhanced by another concept–the

deck group. So, we will bring up the deck group before talking more

about covering spaces. We have already associated one group to a

(pointed) metric space, namely the fundamental group. Now we are

going to assign a group in a second way. Let E : X̃ → X be a covering

map as above. Say that a deck transformation is a homeomorphism

h : X̃ → X̃ such that E ◦ h = E.

As a mnemonic, think about how the deck group relates to shuf-

fling a deck of cards. There is a natural map E, from your deck of

cards to a single card. You can think of holding the deck of cards

directly above the single card and then E is vertical projection. If

you shuffle the cards and redo the map E there is no change. So, a

deck transformation in this case corresponds to shuffling the deck.

In general, you can think of X̃ as a kind of deck of cards and X

as a single card. The analogy isn’t perfect because X̃ is connected,
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but for an evenly covered neighborhood U ⊂ X, the set Ũ = E−1(U)

really is like a deck of cards. The deck transformation h somehow

permutes the disjoint components of Ũ like shuffling permutes the

cards.

If h is a deck transformation, so is h−1. Likewise if h1 and h2 are

deck transformations, then so is h1 ◦ h2. Thus, the set of deck trans-

formations forms a group under composition. This group is called the

deck group of (X̃,X,E).

Let’s revisit our covering space example considered in the last

section. In both examples, the transformation x → x + 1 is a cov-

ering transformation. In the first case, this follows from the identity

exp(2πi(x + 1)) = exp(2πix). In the second example, it is obvious

from the definition of E.

Exercise 2. Verify that the deck group in the above example is

Z. In other words, the maps x → x + n for n ∈ Z are the only

covering transformations.

Note the deck group of (R, S1, E) is Z, the same as π1(S
1); that

is, the deck group and the fundamental group are isomorphic. Below

we will prove a result that gives general conditions under which this

is true.

6.3. A Flat Torus

The next really great example of a covering space is E : R2 → X,

where X is a flat torus . As discussed in §1.9, we can make a flat

torus X by gluing together the opposite sides of a parallelogram P0,

as shown in Figure 6.1.

Figure 6.1. The flat torus
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The resulting surface X is homeomorphic to S1 × S1, and the

fundamental group is isomorphic to Z2. There is a nice covering map

from R2 to X. We can tile R2 with translates of P0, as shown in

Figure 6.2. Given any point x ∈ R2, we choose a parallelogram Px

such that x ∈ Px. There is a unique translation Tx : Px → P0 and we

define E(x) = [Tx(x)] ∈ X.

Figure 6.2. The parallelogram tiling

The beautiful thing about this map is that it is well defined even

when x lies on the interface between two or more parallelograms. For

example, suppose that x lies on a horizontal edge, as shown in Figure

6.2. Then we could take Px to be the parallelogram either above x

or below x. In the one case Tx(x) would like in the middle of the

top edge of P0 and in the other case Tx(x) would lie in the middle of

the bottom edge of P0. However, these two points are identified on X.

Exercise 3. Prove that E : R2 → X is a covering map and that

the deck group in this case is precisely the group of translation sym-

metries of the tiling, namely Z2. Once again, the deck group and the

fundamental group are isomorphic.
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There are a few things about the flat torus example that do not

quite represent the general case. For instance, the deck group and

fundamental group are both Abelian, and this is rather a special

situation. However, in spite of the limitations of the torus example,

I would say that it accounts for 80 percent of my intuition about

covering spaces. In any case, it is a good example to learn well! The

example in Exercise 5 below accounts for another 19 percent of my

intuition, and then the last 1 percent comes from more complicated

examples.

6.4. More Examples

Here are two more examples of covering spaces and deck groups. In

the next example, the fundamental group and the deck group are

nontrivial finite groups.

Exercise 4. Let S2 be the 2-sphere and let P 2 be the projective

plane, defined as the set of equivalence classes of antipodal points on

S2. Show that the obvious map S2 → P 2 is a covering map. (Note:

In order to do this problem, you first have to recall the metric on

P 2.) Show that the deck group in this example is Z/2. Once again,

the deck group and the fundamental group are isomorphic.

So far, all the examples we have seen have Abelian deck groups.

The next exercise shows an important example in the case when the

group is not Abelian.

Exercise 5. Let X be a space that is homeomorphic to an ∞ symbol,

as shown on the right-hand side of Figure 6.3 below. Let X̃ be the

4-valent infinite tree. Exhibit a map E : X̃ → X which is a covering

map. (The tree in Figure 6.3 is only partially drawn. It is meant

to go on forever and have valence 4 at each vertex.) Prove that the

deck group for (X̃,X,E) is isomorphic to the free group on 2 gen-

erators. Once again, the deck group and the fundamental group are

isomorphic.
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Figure 6.3. The 4-valent tree and the figure 8

6.5. Simply Connected Spaces

Recall that a path connected space is one in which every two points

can be joined by a continuous path. Let X be a path connected

metric space. X is said to be simply connected if π1(X) is trivial. This

definition does not depend on the basepoint, because the isomorphism

type of the fundamental group is independent of basepoint in path

connected spaces. The plane is simply connected and so is a tree.

Suppose that f0, f1 : [0, 1] → X are two paths. Suppose also that

f0(0) = f1(0) and f1(0) = f1(1). In other words, the two paths have

the same beginning and the same ending. We say that f0 and f1 are

path homotopic if there is a homotopy F from f0 to f1 such that ft(0)

and ft(1) are independent of t. Here, as usual, ft(x) = F (x, t), where

F is a map on the unit square. Intuitively, a path homotopy slides

the one path to the other without moving the endpoints. In the case

where ft(0) = ft(1), the notion of a path homotopy coincides with

the notion of a loop homotopy.

The next exercise relates the idea of a path homotopy to the idea

of simple connectivity.
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Exercise 6. Suppose thatX is simply connected. Prove that any two

paths, which have the same endpoints as each other, are homotopic.

(Outline: Let x be the starting point of both loops. Consider the

loop g formed by first doing f0 forward and then doing f1 backward.

Then [g] ∈ π1(X,x). Hence g is loop homotopic to the identity. Let

G be the loop homotopy. Try to modify G slightly so that G becomes

a path homotopy from f0 to f1. Figure 6.4 shows what we hope is a

suggestive picture.)

Figure 6.4. altering a homotopy

Exercise 7. Let {Bi} denote any countable union of disjoint closed

balls in R3. Prove that R3 −⋃
Bi is simply connected.

6.6. The Isomorphism Theorem

Here is the main theorem in this chapter, and (in my opinion) one of

the best theorems in algebraic topology.

Theorem 6.1 (Isomorphism). Suppose that

• E : X̃ → X is a covering map.

• X and X̃ are path connected.

• X̃ is simply connected.

Then π1(X) is isomorphic to the deck group for (X̃,X,E).

The rest of the chapter is devoted to proving the Isomorphism

Theorem.
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6.7. The Bolzano–Weierstrass Theorem

A sequence of points {cj} in a metric space X is called Cauchy if,

for every ǫ > 0, there is some N such that i, j > N implies that

d(ci, cj) < ǫ. A convergent sequence is automatically Cauchy, and

one can ask about the converse. X is said to be complete if every

Cauchy sequence in X converges to a point in X.

Exercise 8. Prove that Q, the rationals, is not complete.

The basic axiom for R is that it is complete. You might ask how

one proves that R is complete. The usual way is to construct R from

Q in a way that builds in completeness. Here is the barest sketch of

the idea. Start with the set X of all Cauchy sequences in Q. Define

two Cauchy sequences {ai} and {bi} to be equivalent if the shuffled se-

quence a1, b1, a2, b2, a3, b3, . . . is also a Cauchy sequence. Intuitively,

equivalent sequences (were they to converge) have the same limit. R

is defined as the set of equivalence classes in X. Cauchy sequences

are added, subtracted, multiplied, and (when possible) divided term

by term, and you have to check that these operations respect the

equivalence relation.

Exercise 9. Using the completeness of R as an axiom, prove the

following result. Let Q1 ⊃ Q2 ⊃ Q3 · · · be a nested sequence of cubes

in Rn such that the diameter of Qn tends to 0 as n tends to ∞. Then⋂
Qn is one point. (Hint : look at the sequence of centers.)

Theorem 6.2 (Bolzano–Weierstrass). A sequence {cn} contained in

the unit cube Q0 has a convergent subsequence.

Proof. Note that Q0 is the union of 2n cubes having half the size as

Q0. At least one of these subcubes, Q1, must contain cj for infinitely

many indices. But Q1 is a union of 2n subcubes having half the size as

Q1. At least one of these subcubes, Q2, must contain cj for infinitely

many indices. And so on. The intersection
⋂
Qn, a single point, by

Exercise 2, is the limit of some subsequence of {cj}. �
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6.8. The Lifting Property

In this section, E : X̃ → X is a covering map. Let Q be a cube, and

let f : Q → X be a continuous map. We say that a lift of f is a map

f̃ : Q → X̃ such that E ◦ f̃ = f . This notion is just a generalization

of what we talked about in the previous chapter. The purpose of this

section is to prove the formal version of the result we talked about,

for some examples, in the previous chapter.

We begin with a technical result.

Lemma 6.3. There is some N with the following property. If Q′ ⊂ Q

is a subcube with side length less than 1/N , then f(Q) is contained

in an evenly covered neighborhood of X.

Proof. If this result is false, then we can find a sequence of subcubes

{Qn}, with diameter tending to 0 such that f(Qj) is not contained in

an evenly covered neighborhood. Let {cj} be the center of Qj . This

sequence has a convergent subsequence, by the Bolzano–Weierstrass

Theorem. Tossing out everything but the cubes corresponding to this

subsequence, we can assume that {cj} converges to some x ∈ Q. Then

f(x) is contained in some evenly covered neighborhood U . But then

f(Qn) ⊂ U for n large, by continuity. This is a contradiction. �

Lemma 6.4. Let Q be a cube, and let f : Q → X be a continuous

map. Let v be a vertex of Q, and let x̃ ∈ X be a point such that

E(x̃) = f(v). Suppose that f(Q) is contained in an evenly covered

neighborhood. Then there is a unique lift f̃ : Q → X̃ such that f̃(v) =

x̃.

Proof. Let U ⊂ X be the evenly covered neighborhood such that

f(Q) ⊂ U . Recall that E−1(U) is a disjoint union of sets Ũ1, Ũ2, . . .

such that the restriction E : Ũj → U is a homeomorphism. Let Ũk

be the component that contains x̃, and let F be the inverse of the

restriction of E to Ũk. Then we can and must define f̃ = F ◦ f . �

Just as we did in the previous chapter, we want to now remove the

hypothesis that f(Q) is contained in an evenly covered neighborhood.
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Theorem 6.5. Let Q be a cube and let f : Q → X be a continuous

map. Let v be a vertex of Q, and let x̃ ∈ X̃ be such that E(x̃) = f(v).

Then there is a unique lift f̃ : Q → X̃ such that f̃(v) = x̃.

Proof. By Lemma 6.3, we can find some N such that any subcube of

diameter less than N is mapped into an evenly covered neighborhood

of f . Let’s partition Q into such cubes, say Q = Q1, . . . , Qm. We

can order these cubes so that, for each k, the cube Qk shares at least

one vertex vk with some Qj for j < k. Also, we set things up so that

the initial vertex v = v1 is a vertex of Q1. We define f̃ on Q1 using

Lemma 6.4. This tells us the value of f̃ on v2 and determines how

we define f̃ on Q2. The uniqueness guarantees that the definition

on Q2 is compatible with the definition on Q1. The key point is that

Q1∩Q2 is contained in an evenly covered neighborhood. We continue

like this, from cube to cube, until we have defined f̃ in the only way

possible on all of Q. �

We will only need the above result for the case of the unit interval

[0, 1] and the unit square [0, 1]2, but it is nice to know in general.

6.9. Proof of the Isomorphism Theorem

The proof comes in 4 steps:

(1) Define the isomorphism.

(2) Prove that it is a homomorphism.

(3) Prove that the homomorphism is injective.

(4) Prove that the homomorphism is surjective.

6.9.1. Define the Isomorphism. Since X is path connected, the

isomorphism type of π1(X,x) is independent of the choice of base-

point. Let x ∈ X be a basepoint. Let G = π1(X). Let D be the deck

transformation group. Let x̃ ∈ X̃ be some point such that E(x̃) = x.

We make this choice once and for all. Suppose that h ∈ D is a deck

transformation. Then ỹ = h(x̃) is some other point. Note that

E(ỹ) = E ◦ h(x̃) = E(x̃) = x.
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Since X̃ is path connected, there is some path f̃ : [0, 1] → X̃ such

that f̃(0) = x̃ and f̃(1) = ỹ. Let f = E ◦ f̃ . By construction, f is a

loop based at f . Define

(6.1) Φ(h) = [f ] ∈ G.

To see that Φ is well defined, suppose that f̃0 and f̃1 are two loops

connecting x̃ to ỹ. Since X̃ is simply connected, there is a path

homotopy F̃ from f̃0 to f̃1. But then F = E ◦ F̃ is a loop homotopy

from f0 to f1. Hence [f0] = [f1] and Φ is well defined. Φ is our map

from D to G.

6.9.2. Homomorphism. This step looks quite mysterious, but it

is fairly obvious if you draw pictures. Let h1, h2 ∈ D be two deck

transformations. We want to prove that

Φ(h1 ◦ h2) = Φ(h1)Φ(h2).

Let ỹj = hj(x̃) for j = 1, 2. Let f̃j be a path joining x̃ to ỹj . Let

fj = E ◦ f̃j . Then Φ(hj) = [fj ].

Let z̃ = h1 ◦ h2(x̃). Note that h1 ◦ f̃2 is a path joining the points

h1(x̃) = ỹ1 and h1(ỹ2) = h1 ◦ h2(x̃).

Therefore, the concatenated path f̃1 ∗ (h1 ◦ f̃2) joins x̃ to z̃. But then

Φ(h1 ◦ h2) = [E ◦ (f̃1 ∗ (h1 ◦ f̃2))] = [(E ◦ f̃1) ∗ (E ◦ h1 ◦ f̃2)]

=∗ [(E ◦ f̃1) ∗ (E ◦ f̃2)] = [f1 ∗ f2] = [f1][f2] = Φ(h1)Φ(h2).

The starred equality comes from the fact that E ◦ h1 = E.

Exercise 10. Choose the example of the flat torus, given above,

and go through the above argument step by step, illustrating the

proof with pictures.

6.9.3. Injectivity. Since Φ is a homomorphism, we can show that

Φ is injective just by showing that Φ has a trivial kernel. So, suppose

that Φ(h) is the trivial element in π1(X,x).

Lemma 6.6. h(x̃) = x̃.
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Proof. Let ỹ = h(x̃). We want to show that ỹ = x̃. Let f̃ be a path

which joins x̃ to ỹ. It suffices to show that f is path homotopic to

the constant path. Let f = E ◦ f̃ . Then Φ(h) = [f ]. By hypothesis,

there is a loop homotopy F from f to the trivial loop. Let Q be the

unit square. By construction, F : Q → X is a continuous map such

that f0 = f and f1 is the constant map. From the lifting theorem,

there is a lift F̃ : Q → X̃ such that F̃ (0, 0) = x̃ and E ◦ F̃ = F . Here

are 3 properties of F̃ :

• f̃0 is a lift of f0 = f . From the uniqueness of lifts, f̃0 = f̃ .

• f̃1 is the constant path since f1 is the constant path.

• F (0, t) and F (1, t) are the basepoint in X, independent of

t. Hence F̃ (0, t) and F̃ (1, t) are constant maps. That is, the

endpoints of f̃t do not change with t.

From the first item, the endpoints of f̃0 are x̃ and ỹ. From the second

item, the endpoints of f̃1 are x̃ and x̃. From the third item, we see

that the two sets of endpoints coincide, forcing x̃ = ỹ. �

The following lemma finishes our injectivity proof.

Lemma 6.7. If h is a deck transformation such that h(x̃) = x̃, then

h is the identity.

Proof. Let ỹ be some other point of X̃. We want to show that

h(ỹ) = ỹ. Let f̃ be a path joining x̃ to ỹ. Let x = E(x̃) and y = E(ỹ).

Let f = E ◦ f̃ . Then f : [0, 1] → X is a path which joins x to y.

The paths f̃ and h ◦ f̃ are both lifts of f which agree at 0. That

is, f̃(0) = x̃ and h ◦ f̃(0) = h(x̃) = x̃. By uniqueness of lifts, these

two lifts are the same. In particular, ỹ = f̃(1) = h ◦ f̃(1) = h(ỹ). �

6.9.4. Surjectivity. Let [g] ∈ π1(X,x) be some element. We want

to produce a deck transformation h such that Φ(h) = [g]. Let ỹ ∈ X̃

be any point. We need to define h(ỹ). So, let f̃ be a path joining x̃

to ỹ. Let f = E ◦ f̃ . Then f is a path in X joining x to y = E(ỹ).

Consider the concatenated path γ = g ∗ f . From the lifting property

we can find a lifted path γ̃ which joins x̃ to some other point, which we

define as h(ỹ). Figure 6.5 illustrates the construction in case X̃ = R2

and X = T 2, the torus.
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Figure 6.5. Lifted paths

Exercise 11. Show that the definition of h(ỹ) is independent of the

choices of f and g. (Hint : imitate the proof given in the previous

section.)

To compute Φ(h), we consider the case that ỹ = x̃. Then we

can take f̃ to be the trivial path. In this case γ̃ is a path joining x̃

to h(x̃) and E ◦ γ̃ differs from g = E ◦ g̃ just by concatenating the

constant loop. Assuming that h is a deck transformation, we have

Φ(h) = [γ] = [g].

To finish the proof, we just have to show that h is a deck trans-

formation.

Lemma 6.8. E ◦ h = h.

Let’s compute E ◦ h(ỹ). By construction, both γ and f connect

x to y. We have

E ◦ h(ỹ) =1 E ◦ γ̃(1) = γ(1) = y = f(1) = E ◦ f̃(1) =2 E(ỹ).
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Equality 1 comes from the fact that γ̃(1) = h(ỹ) by definition. Equal-

ity 2 comes from the fact that f̃(1) = ỹ, by definition.

Lemma 6.9. h is continuous.

Proof. Let ỹ ∈ X̃ be a point. Let y = E(ỹ). There is an evenly

covered neighborhood U ⊂ X of y. Let Ũ − 1 be the component

of h−1(U) which contains ỹ. Let Ũ2 = h(Ũ1). Then Ũ2 is another

component of h−1(U) because E ◦h = E. Let Fj be the inverse of the

restriction of E to Ũj . Then h = F2 ◦E on Ũ1. Being the composition

of continuous maps, h is continuous. �

Were we to make the above construction for the element [g]−1,

we would produce the map h−1. Hence h is invertible. The same

argument as above shows that h−1 is continuous. Hence h is a home-

omorphism. Now we know that h belongs to the deck group. This

completes our proof.



Chapter 7

Existence of Universal
Covers

In the previous chapter, we proved the Isomorphism Theorem, a result

which relates the triple (X̃,X,E) to the fundamental group π1(X).

Here X̃ is a simply connected covering space of X and E : X̃ → X

is a covering map. X̃ is known as the universal cover of X. We use

the word “the” because, as it turns out, any two universal covering

spaces of X are homeomorphic to each other.

In this chapter we will prove the existence (but not uniqueness) of

a universal cover X̃ under certain assumptions on X. The conditions

we place on X are somewhat contrived, but we want to streamline the

existence proof. Our main interest in this result is the case when X

is a compact surface, and any compact surface satisfies the conditions

we impose.

The reader interested in seeing the fully general existence and

uniqueness proof should consult an algebraic topology book such as

[HAT]. The exact condition on X that guarantees the existence of X̃

is that X is semilocally simply connected , and in all such cases X̃ is

unique.
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7.1. The Main Result

Given a metric space M and two continuous paths f0, f1 : [0, 1] → M ,

we define

(7.1) D(f0, f1) = sup
t∈[0,1]

d(f0(t), f1(t)).

Let x ∈ M . We say that the pair (M,x) is conical if, for each

y ∈ M there is a continuous path γy : [0, 1] → M such that γy(0) = x

and γy(1) = y. We insist that γx is the trivial path, and also we make

the following continuity requirement. For any y ∈ M and any ǫ > 0,

there is some δ > 0 such that d(y, z) < δ implies that D(γy, γz) < ǫ.

The idea behind our definition is that you are making M into a

kind of cone, with x as the apex. The pair (Rn, 0) is a prototypical

example of a conical pair. The paths you can use in this example are

just line segments traced out at unit speed.

Exercise 1. Prove (M,x) is conical if M is homeomorphic to Rn.

Say that the path f0 in M is good if there is some ǫ > 0 with

the following property: Suppose that D(f0, f1) < ǫ and f0 and f1
have the same endpoints. Then there is a homotopy F from f0 to

f1 which does not move the endpoints. That is, ft(0) and ft(1) are

independent of t.

Definition 7.1. A metric space X is good if every path in X is

good and every point x ∈ X is such that the ball Bǫ(x) is both sim-

ply connected and conical for some ǫ > 0. The value of ǫ is allowed

to vary with the point and the path.

Here is our main result.

Theorem 7.1. Any good metric space has a simply connected cover.

Exercise 2. Prove that a flat torus is good.

Exercise 3. Prove that any finite graph is good.
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Exercise 4 (Challenge). Prove that any compact surface is good.

(Hint : In the proof of Theorem 12.10 we sketch the argument for

complete hyperbolic surfaces.)

Exercise 5. Give an example of a metric space that has no non-

trivial good paths. (Hint : swiss cheese.)

Here is the construction of X̃ and the map E : X̃ → X. Choose

a basepoint x ∈ X. We define X̃ to be the set of pairs (y, [f ]) where

y ∈ X is a point and f is a path which joins x to y. Here [f ] denotes

the path homotopy equivalence class of f . That is, [f1] = [f2] if and

only if there is a homotopy from f1 to f2 that does not move the

endpoints.

So far X̃ is just a set. We define

(7.2) D([f0], [f1]) = infD(f0, f1).

The infimum is taken over all paths f0 which represent [f0] and all

paths f1 which represent [f1]. Finally, we define

(7.3) d̃((y0, [f0]), (y1, [f1])) = d(y0, y1) +D([f0], [f1]).

Exercise 6. Prove that d̃ is a metric on X̃. (Hint : The only hard

part of this exercise is showing that d̃(p, q) = 0 implies p = q. Here

p, q ∈ X̃. This amounts to showing that D([f0], [f1]) = 0 implies that

[f0] = [f1]. Deduce this from the goodness of X.)

There is an obvious map E : X̃ → X, given by E(y, [f ]) = y.

There are a few things about E that we can see right away. Since E

does not increase distances, E is a continuous map. Also, E is onto

because X is path connected.

Exercise 7. Use the fact that X is path connected to prove that

X̃ is also path connected.

It remains to prove that E is a covering map and that X̃ is

simply connected. We will prove these two statements in the next

two sections.
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7.2. The Covering Property

Let y ∈ X be a point, and let U be an ǫ-ball about y, chosen to be both

simply connected and conical. LetH denote the set of path homotopy

classes of curves joining x to y. We first produce a homeomorphism Ψ

from E−1(U) to U ×H. This is a formal way of saying that E−1(U)

is a disjoint union of copies of U .

z

x y

Figure 7.1. The path f ∗ γ(z, y)

For any z ∈ U , let γ(y, z) be the path joining y to z, as specified

by the definition of a conical metric space. Let γ(z, y) denote the

reverse path. Let (z, [f ]) ∈ E−1(U) be a point. We define

(7.4) Ψ((z, [f ])) = (z, [f ∗ γ(z, y)]).
See Figure 7.1. If f0 and f1 are both representatives of [f ], then a

path homotopy from f0 to f1 extends to a path homotopy from f0 ∗γ
to f1 ∗ γ. Hence [f0 ∗ γ] = [f1 ∗ γ]. Hence, our map Ψ is well defined.

Lemma 7.2. Ψ is a bijection.

Proof. Suppose Ψ(z0, [f0]) = Ψ(z1, [f1]). Then z0 = z1. We set

z = z0 = z1. We know that [f0 ∗ γ(z, y)] = [f1 ∗ γ(z, y)]. Writing

γ = γ(z, y), we have [f0 ∗ γ] = [f1 ∗ γ] but then
[f0] = [f0 ∗ γ ∗ γ−1] = [f1 ∗ γ ∗ γ−1] = [f1].

This shows that Ψ is injective.

Now we show that Ψ is surjective. Given any pair (z, [g]) ∈ U×H,

the path f = g ∗ γ(y, z) connects x to z. The two paths g and

f ∗ γ(z, y) = g ∗ γ(y, z) ∗ γ(z, y)
are clearly homotopic. Hence Ψ(z, [f ]) = (z, [g]). �
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We put a metric on U ×H by declaring that points in different

components are 1 apart. Within a single component, U × {h}, we
just use the metric we already have on U .

Lemma 7.3. Ψ is a homeomorphism.

Proof. We already know that Ψ is a bijection. We just have to show

that Ψ and Ψ−1 are both continuous. We will consider Ψ. Suppose

that (z0, [f0]) and (z1, [f1]) are very close. Then f0 ∗ γ(z0, y) and

f1 ∗ γ(z1, y) are two very nearby paths, both having endpoints x and

y. Since X is good, we have

[f0 ∗ γ(z0, y)] = [f1 ∗ γ(z1, y)]
once these paths are sufficiently close. Also z0 and z1 are very close.

So, the second coordinates of Ψ(z0, [f0]) and Ψ(z1, [f1]) agree, and the

first coordinates are very close. This shows (a bit informally) that Ψ

is continuous.

Now we consider Ψ−1. Using the notation from the proof of the

previous lemma, we have

Ψ−1(z, [g]) = (z, [f ]),

where f = g ◦ γ−1. If (z0, [g0]) and (z1, [g1]) are less than 1 apart,

then [g0] = [g1]. But then, we can use the same path g to represent

both [g0] and [g1]. But then f0 = g∗γ(z0, y)−1 and f1 = g∗γ(z1, y)−1

are also close. This shows that Ψ−1 is continuous. �

Now we know that Ψ is a homeomorhism from E−1(U) to U×H.

Let π : U × H → U be projection onto U . Then the restriction of

π to each component of U × H is clearly a homeomorphism. These

components are of the form U × {h}, where h ∈ H.

Finally, note that

(7.5) E = π ◦Ψ.

For each component Ũ of E−1(U) there is some h ∈ H so that

Ψ(Ũ) = U × {h} and Ψ is a homeomorphism from Ũ to U × {h}.
But then the restriction to Ũ of E = π ◦Ψ is the composition of two

homeomorphisms, and hence a homeomorphism. This completes the

proof that E is a covering map.
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7.3. Simple Connectivity

We take the basepoint x̃ ∈ X̃ to be the pair (x, ∗) where ∗ is the

trivial loop connecting x to x. Suppose f : [0, 1] → X̃ is a loop. This

means that f(t) = (xt, [γt]), where xt ∈ X and γt is a path connecting

x to xt. Both [γ0] and [γ1] are trivial elements of π1(X).

Let β(s) = xt. Define βt : [0, 1] → X by the formula

(7.6) βt(s) = β(st).

Note that βt and γt are both paths which join x to xt.

Lemma 7.4. [βt] = [γt] for all t ∈ [0, 1].

Proof. Let J be the set of parameter values for which [βt] = [γt].

We have 0 ∈ J because β0 and γ0 are both trivial in π1(X,x). We

show J = [0, 1] by showing that J is both closed and open.

Closed : Suppose that [βt] = [γt] for a sequence of t values con-

verging to s. Since β and f are both continuous,

(xs, [γs]) = lim
t→s

(xt, [γt]) = lim
t→s

(xt, [βt]) = (xs, [βs]).

Therefore [βs] = [γs].

Open: Suppose [βt] = [γt]. Let βst denote the restriction of β to

[s, t]. For s close to t we can take γt ∗ βst as a representative for [γs].

Here we are using the fact that E : X̃ → X is a covering map. But

then

[γs] = [γt ∗ βst] = [βt ∗ βst] = [βs].

The central equality comes from the fact that [βt] = [γt]. �

By Lemma 7.4 we have

(7.7) f(t) = (β(t), [βt]).

Since f is a loop in X̃, the point f(1) = (x, [β]) is just the basepoint

in X̃. Hence [β] is the trivial element in π1(X,x).

For any null loop β, we get the path f = fβ defined by equa-

tion (7.7). The loop fβ depends continuoutly on the loop β. As β

shrinks down to a point, fβ shrinks down to the constant map. This

shows that f is homotopic to a constant map, and hence X̃ is simply

connected.
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Chapter 8

Euclidean Geometry

This chapter begins the second part of the book. It is the first in a

series of 3 chapters in which we consider the classical 2 dimensional

geometries. In this chapter we will prove some results about Euclidean

geometry in the plane. Since Euclidean geometry is so familiar, we

will not spend too much time on the basics. Following an introductory

first section, we will concentrate on interesting theorems. Most of the

theorems revolve around the theme of cutting complicated polygons

into simpler ones.

8.1. Euclidean Space

The standard dot product on Rn is given by the formula

(8.1) (x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyn.

The norm of a vector X = (x1, . . . , xn) is given by

(8.2) ‖X‖ =
√
X ·X.

The dot product satisfies the fundamental Cauchy–Schwarz In-

equality . We will give two proofs of this inequality.

Lemma 8.1. For any vectors X and Y , we have

|X · Y | ≤ ‖X‖‖Y ‖.

87
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Assuming Y is nonzero, we get equality if and only if X is a multiple

of Y .

First Proof. To avoid trivialities, assume Y is nonzero. For any

choice of t, we have

‖X‖2 + t2‖Y ‖2 + 2t(X · Y ) = ‖X − tY ‖ ≥ 0.

Plugging in t = (X · Y )/‖Y ‖2, multiplying through by ‖Y ‖2, and

simplifying, we get the inequality. The only way to get equality is

that ‖X − tY ‖ = 0. But then X = tY .

The proof above is the standard proof. Now I will give a second

proof which, though more involved, makes the result look less myste-

rious.

Second Proof. If c and s are real numbers such that c2 + s2 = 1,

then the map

(8.3) R12




x1

x2

. . .

xn


 =




cx1 + sx2

−sx1 + cx2

. . .

xn




preserves the dot product. The map R12 changes coordinates 1 and

2 and leaves the rest alone. There is an analogous symmetry Rij

(depending on c and s) which changes coordinates i and j and leaves

the rest alone. Applying suitable choices of these symmetries, we can

reduce to the special case when Y = (x1, 0, . . . , 0). In this case, the

inequality is obvious.

The Euclidean distance Rn is given by the formula

(8.4) d(X,Y ) = ‖X − Y ‖.

Lemma 8.2. d satisfies the triangle inequality.

Proof. For any vectors A and B, we have

‖A+B‖2 = (A+B) · (A+B)

= ‖A‖2 + 2(A ·B) + ‖B‖2

≤∗ ‖A‖2 + 2‖A‖‖B‖+ ‖B‖2 ≤ (‖A‖+ ‖B‖)2.
(8.5)
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The starred inequality follows from the Cauchy–Schwarz inequality.

Hence

‖A+B‖ ≤ ‖A‖+ ‖B‖.
Setting A = X − Y and B = Y − Z, we see that

d(X,Y ) = ‖X − Z‖ = ‖A+B‖ ≤ ‖A‖+ ‖B‖
≤ ‖X − Y ‖+ ‖Y − Z‖ = d(X,Y ) + d(Y,Z).

This holds for any triple X,Y, Z of vectors, and thereby completes

the proof. �

The angle θ between two vectors X and Y obeys the equation

(8.6) cos(θ) =
X · Y

‖X‖‖Y ‖ .

To understand this equation, we consider the case ‖X‖ = ‖Y ‖ = 1.

We can use compositions of the isometries mentioned above to rotate

so that X = (1, 0, . . . , 0) and Y = (c, s, 0, . . . , 0), where c2 + s2 = 1.

Then, we have

(8.7) cos(θ) = X · Y = c.

This last equation matches our expectation that cos(θ) is the first

coordinate of a unit vector in the plane that makes an angle of θ with

the positive x-axis.

Now that we have defined distances and angles in Euclidean

space, we talk a bit about volumes of solids. Given n linearly in-

dependent vectors V1, . . . , Vn in Rn, the parallelepiped spanned by

these vectors is defined as the set of all linear combinations
∑

ajvj , a1, . . . , an ∈ [0, 1].

The volume of this parallelepiped is given by

(8.8) det(V1, . . . , Vn) =
∑

σ

(−1)|σ|
n∏

i=1

Vi,σ(i).

The sum takes place over all permutations σ. The quantity |σ| is 0 if

σ is an even permutation and 1 if σ is an odd permutation. Finally,

Vij is the jth component of Vi. If you have not seen the definition

of the determinant before, this book is not place to learn it. See any

book on linear algebra.
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It would be nice if every solid body could be decomposed into

finitely many parallelepipeds. Then one could define the volume of

an arbitrary solid body by summing up the volumes of the pieces.

Unfortunately, this doesn’t work, and one must resort to some kind

of limiting process. For instance, you fill up a given solid, as best

as possible, with increasingly small cubes, and take a limit of the

corresponding sums. This is what is typically done in a calculus class.

This procedure suffices to give a satisfactory definition of volume for

household solids, such as spheres and ellipsoids.

Taking a measure-theoretic approach vastly broadens the number

of solid bodies whose volume one can define in a satisfactory way.

With the exception of Chapter 22, where we prove the Banach–Tarski

Theorem, we will always deal with very simple solids for which all

reasonable definitions of volume coincide.

8.2. The Pythagorean Theorem

Our definition of distance in R2 somewhat has the Pythagorean The-

orem built into it. The distance from the point (a, b) to (0, 0) is

defined to be c =
√
a2 + b2. So, we automatically have a2 + b2 + c2.

Here a, b and c are the side lengths of the right triangle with vertices

(0, 0) and (a, 0) and (a, b). Note that this triangle is rather special:

Two of its sides are parallel to the coordinate axes.

Here we will prove the Pythagorean Theorem for an arbitrary

right triangle in the plane. There are many, many proofs; I’ll present

my two favorites.

A

C

B

A

A

A

A

B

B

B

B
C

C

C

C

Figure 8.1. Two views of the Pythagorean Theorem
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Referring to the left half of Figure 8.1, the outer square has area

(A + B)2. At the same time, the outer square breaks into 4 right

triangles, each having area AB/2, and an inner square having area

C2. Hence (A+ B)2 = 2AB + C2. Simplifying gives A2 + B2 = C2.

That is the first proof.

Here is the second proof. For any right triangle, there is a con-

stant k such that the distance from the right-angled vertex to the

hypotenuse is k times the length of the hypotenuse. This constant k

only depends on the shape of the triangle, and not on its size. By the

base times height formula for area, the area of the triangle is kL2,

where L is the length of the hypotenuse. Again, the constant k only

depends on the shape of the triangle and not on its size. The three

triangles on the right-hand side of Figure 8.1 have the same shape.

The large one has area kC2, and the two small ones have area kA2

and kB2. Hence kC2 = kA2 + kB2. Cancelling the k (a constant we

don’t care about) gives A2 +B2 = C2.

8.3. The X Theorem

Here we prove a classic result from high school geometry. Let S1 be

the unit circle in the plane and let A and B be two chords of S1, as

shown on the left-hand side of Figure 8.2. Let L(A,B) be the length

of the region R(A,B) ⊂ S1 opposite the two acute angles of A ∩ B.

(In case A ⊥ B we choose arbitrarily.) Figure 8.2 shows R(A,B)

drawn thickly.

Figure 8.2. The chords A and B.
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Theorem 8.3 (The X Theorem). L(A,B) only depends on the acute

angle θ(A,B) between A and B and not on the positions.

Proof. To see this, imagine that A and B are toothpicks that we

can roll to a new location. The right-hand side of Figure 8.2 shows

what happens when roll A parallel to itself. By symmetry (about

the line perpendicular to the direction of motion) the same length of

arc is added to one side of R(A,B) as is subtracted from the other.

Hence, the sum of the lengths does not change. The same goes when

we roll B parallel to itself. At the same time, rotating the disk by

any amount changes neither the angle between A and B nor L(A,B).

Rotating and rolling as necessary, we can get to any position without

changing L(A,B). �

When A and B cross at the center of S1, we have L(A,B) =

2θ(A,B). By the X Theorem, this result holds in general.

As a limiting case, the X Theorem applies when A ∩ B ∈ S1. In

this case, we can reformulate the result. We fix two points x1, x2 ∈ S1

and consider the angle θ(y) between yx1 and yx2 as a function of

y ∈ S1. The X Theorem implies that θ(y) is independent of y.

8.4. Pick’s Theorem

During college I learned Pick’s Theorem from a friend and classmate

of mine, Sinai Robins. If you want to learn a whole lot about Pick’s

Theorem and its higher-dimensional generalizations, see the the book

[BRO] by Matthias Beck and Sinai Robins.

Figure 8.3. Some lattice polygons
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Let Z2 ⊂ R2 denote the ordinary lattice of integer points. Say

that a lattice polygon is a polygon in R2 whose vertices lie in Z2.

That is, the vertices have integer coordinates. Figure 8.3 shows some

examples. Let P be a lattice polygon. We let i(P ) denote the number

of vertices contained in the interior of the region bounded by P . We

let e(P ) denote the number of vertices contained on the edges of P .

(The vertices of P are included in the count for e(P ).)

Theorem 8.4 (Pick). The area of the region bounded by P is

i(P ) +
e(P )

2
− 1.

For the examples in Figure 8.3, you can of course verify the for-

mula directly. During our proof, we will often use the phrase “the area

of P”, when we really mean to say “the area of the region bounded

by P”. We hope that this slight abuse of terminology does not cause

confusion.

Exercise 1. Let P be a parallelogram whose vertices have integer

coordinates. Prove that the area of P is an integer. (Hint : Work in

C and translate so that the vertices are 0 and V and W and V +W .

Then establish the formula area(P ) = Im(VW ).)

We say that a lattice parallelogram P is primitive if i(P ) = 0 and

e(P ) = 4.

Lemma 8.5. Pick’s Theorem holds for primitive parallelograms.

Proof. By Exercise 1, the parallelogram P has integer area. To finish

the proof, we just have to show that P has area at most 1.

Let X be the square torus obtained by identifying the opposite

sides of the unit square. Note that X has area 1. Let E : R2 → X

be the universal covering map. See §6.3. Let P o denote the interior

of the region bounded by the primitive parallelogram P .

We claim that E(P o) is embedded in X. Otherwise, we can find

two points x1, x2 ∈ P o such that e(x1) = e(x2). But then x1 − x2 ∈
Z2. Let V be the vector whose tail is x1 and whose head is x2. This

is a vector with integer coordinates. Using the convexity of P , we can
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find a vector W parallel to V whose tail is a vertex of P and whose

head lies either on the interior of an edge of P or in P0. Figure 8.4

shows the situation.

W

V

P

Figure 8.4. Translating a vector

Since W ∈ Z2, and the vertices of P are in Z2, the head of W

lies in Z2. But then we either have i(P ) > 0 or e(P ) > 4, which is a

contradiction. Now we know that E(P ) is embedded. Since E(P ) is

embedded, we see that

area(P ) = area(E(P )) ≤ area(X) = 1.

This completes the proof. �

We say that a primitive triangle is a lattice triangle T such that

i(T ) = 0 and e(T ) = 3.

Exercise 2. Prove Pick’s Theorem for primitive triangles.

We say that P dissects into two lattice polygons P1 and P2 if

• P1 and P2 bound disjoint open regions, and P1 ∩ P2 is a

connected arc.

• The closed region bounded by P is the union of the closed

region bounded by P1 and the closed region bounded by P2.

Lemma 8.6. Suppose that P dissects into P1 and P2. If Pick’s The-

orem holds for P1 and P2, then it also holds for P .

Proof. Let A = area(P ) and A1 = area(P1), etc. Obviously A =

A1 + A2. Let n denote the number of vertices on P1 ∩ P2. Let
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i = i(P ) and i1 = i(P1), etc. We have

i = i1 + i2 + n− 2, e = e1 + e2 − 2n+ 2.

Therefore,

i+ e/2− 1

= i1 + i2 + n− 2 + e1/2 + e2/2− n+ 1− 1

= (i1 + e2/2− 1) + (i2 + e2/2− 1) =∗ A1 +A2 = A.

The starred equality comes from Pick’s Theorem applied to P1 and

P2. �

P

P1

P2

Figure 8.5. Dissecting a polygon

Exercise 3. Suppose that P is a lattice polygon that is not a primi-

tive triangle. Prove that P can be dissected into two lattice polygons.

By Exercise 3, any lattice polygon can be written as the finite

union of primitive triangles, each of which have area 1/2. Hence, any

lattice polygon has area which is a half-integer. The rest of our proof

goes by induction on the area.

Lemma 8.7. If P is a lattice polygon with area at most 1/2 then P

is a primitive triangle. In particular, Pick’s Theorem holds for P .

Proof. Applying Exercise 3 iteratively, we see that any lattice poly-

gon can be divided into primitive triangles. If P is not a primitive

triangle, then P can be divided into at least 2 primitive triangles.

But each such triangle has area 1/2. This would force P to have area

at least 1. �

Now let P be a general lattice polygon. If P is not a primitive

triangle, we can dissect P into two lattice polygons P1 and P2 having
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smaller area. By induction Pick’s Theorem holds for P1 and P2. But

then Pick’s Theorem holds for P as well. This completes the proof.

8.5. The Polygon Dissection Theorem

We continue with the theme of polygon dissections. Here we prove

a classic result about polygon dissections. This result is called the

Bolyai–Gerwein Theorem, but the earliest attribution I have seen is

to a work by William Wallace from 1807; See [WAL]. A dissection

of a polygon P is a description of P as the union

P1 ∪ · · · ∪ Pn

of smaller polygon, no two of which overlap. That is, the polygons

have disjoint interiors.

Two polygons P and P ′ are said to be dissection equivalent if

there are dissections

P =
n⋃

i=1

Pi, P ′ =
n⋃

i=1

P ′
i

such that Pi and P ′
i are isometric for all i = 1, . . . , n. In this case, we

write P ∼ P ′.

Exercise 4. Prove that ∼ is an equivalence relation.

Figure 8.6 illustrates why a triangle is always equivalent to a

parallelogram.

Figure 8.6. Equivalence between a triangle and a parallelogram

Figure 8.7 illustrates why a parallelogram is always equivalent to

a rectangle.
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Figure 8.7. Equivalence between a parallelogram and a rectangle

Combining the two facts we have just illustrated, we see that a

triangle is always equivalent to some rectangle. Let R(A,B) be a

rectangle with side lengths A and B. We take A < B.

Lemma 8.8. Let A′ ∈ (A,B). Then R(A,B) ∼ R(A′, B′). Here B′

is such that A′B′ = AB. In particular, any rectangle is equivalent to

a square.

Proof. Figure 8.8 shows a 2 step construction, based on a real pa-

rameter t ∈ (0, B). The first part of the figure shows that R ∼ S, and

the second part shows that S ∼ T . The two central figures are both

copies of S, but we have chosen to emphasize a different decomposi-

tion in each copy. The shape of the rectangle T varies continuously

with the parameter t! The construction works when t is small, and

continues to work until we reach some t0 so that the point x(t0) coin-

cides with a corner of T (t0). But, in this extreme case, T is a square.

As t varies in [0, t0], the rectangle T (t) interpolates between R(A,B)

and a square. �

T

t

R S

S

x

Figure 8.8. Two part construction
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Lemma 8.9. A triangle of area A is equivalent to a 1×A rectangle.

Proof. First of all, our triangle is equivalent to some rectangle. By

the previous result, any two rectangles of the same area are equivalent.

�

Now we can finish the proof. It suffices to prove the result for

unit area polygons. Let P be a polygon of unit area. We first dissect

P into finitely many triangles T1, . . . , Tm, having areas a1, . . . , am.

Each Tk is equivalent to a rectangle R(1, ak). But, when we stack

up all these rectangles, we get a rectangle having side lengths 1 and∑
ak = 1. That is, any unit area polygon is equivalent to the unit

square. The final result is immediate.

You might wonder whether the same result holds for polyhedra

in higher dimensions. This turns out to be false, and the result is

known as Dehn’s Dissection Theorem. We will give a proof of Dehn’s

Dissection Theorem in Chapter 23.

8.6. Line Integrals

We now discuss line integrals as a preparation for presenting and

proving Green’s Theorem. This material can be found in any book

on several variable calculus; see, for instance, [SPI].

A linear functional is a linear map from R2 to R. A 1-form on an

open subset U ⊂ R2 is a smooth choice p → ωp of a linear functional

at each point p ∈ U . We mention two special 1-forms, dx and dy.

These 1-forms are defined on every point of R2, and

(8.9) dx(v1, v2) = v1, dy(v1, v2) = v2,

for any tangent vector (v1, v2) based at any point. One can write a

general 1-form ω as a pointwise varying linear combination of these

two special ones. That is,

(8.10) ω = fdx+ gdy,

where f, g : U → R are smooth functions. At the point p, we have

(8.11) ωp(V ) = f(p)v1 + g(p)v2.

Here V = (v1, v2) is some vector based at p.
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Let γ : [0, 1] → R be a smooth curve, and let ω be a 1-form. We

define ∫

γ

ω =

∫ 1

0

ωγ(t)(γ
′(t))dt.

Exercise 5. Prove that
∫

γ

ω1 + ω2 =

∫

γ

ω1 +

∫

γ

ω2.

In other words, the integral is linear.

Exercise 6. Prove that
∫

−γ

ω = −
∫

γ

ω.

Here −γ is the curve obtained by reversing the direction of γ.

It turns out that the integral only depends on the image and

orientation of γ. If

s : [0, 1] → [0, 1]

is an orientation-preserving diffeomorphism, then setting β = γ ◦ s,

we have

Lemma 8.10. ∫

β

ω =

∫

γ

(ω).

Proof. By Exercise 5, it suffices to consider the forms fdx and gdy.

The proof for gdy is the same as for fdx, so we will just consider the

case ω = fdx. In this case we set γ(t) = (u(t), v(t)) and note that
∫

γ

ω =

∫ 1

0

(fu′) dt,

Here u′ = du/dt. At the same time
∫

β

ω =

∫ 1

0

d(u ◦ s)
dt

f ◦ s(t) dt =∗
∫ 1

0

(
fu′

)
◦ s(t) s′(t)dt.

The starred equality is the chain rule. The first integral equals the

last by the change-of-variables formula for integration. �
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Here is an important observation. Since the line integral only

depend on the oriented image of γ, we can specify a line integral just

by specifying a curve in the plane and its orientation.

Line integrals can be more generally defined for piecewise smooth

curves. To say that γ is a piecewise smooth curve is to say that

γ = γ1 ∪ · · · ∪ γn, where each γj is a smooth curve, and consecutive

curves meet end to end. We define
∫

γ

ω =

n∑

j=1

∫

γj

ω.

In particular, line integrals make sense for polygonal arcs.

Exercise 7. This is a crucial exercise. Let P1 and P2 and P be

the polygons from Figure 8.4. Suppose that all these polygons are

oriented counterclockwise. Prove that∫

P

ω =

∫

P1

ω +

∫

P2

ω.

8.7. Green’s Theorem for Polygons

Let D be a polygon in the plane, and let γ = ∂D, the boundary of

D oriented counterclockwise. Let ω = fdx+ gdy be a 1-form defined

in an open set that contains D in its interior. Green’s Theorem says

that

(8.12)

∫

γ

ω =

∫

D

(gx − fy) dxdy.

Here fy = ∂f/∂y and gx = ∂g/∂x. The integral on the right is a

double integral.

In our proof, it is convenient to let dω be the integrand on the

right hand side of equation (8.12). We will just use this piece of

notation to shorten our equations, but actually dω has a meaning as

the exterior derivative of ω. See [SPI] if you are curious about this.

We say that a special triangle is a right triangle whose sides are

parallel to the coordinate axes. The three white triangles in Figure

8.9 below are examples of special triangles.

Exercise 8. Let D be the special triangle with vertices (0, 0) and
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(A, 0) and (0, B) with A and B positive. Let γ be the boundary of

D, oriented counterclockwise. Let ω = fdx. Prove that
∫

γ

ω =

∫ A

0

(f(x, 0)− f(x, x′))dx,

where x′ (as a function of x) is such that (x, x′) lies on the diagonal

of D.

Lemma 8.11. Green’s Theorem is true for special triangles.

Proof. Let D be a special triangle. We can translate the whole pic-

ture so that the vertices ofD are as in Exercise 8. By the Fundamental

Theorem of Calculus, we get
∫

D

dω =

∫

D

(−fy) =

∫ A

x=0

(∫ x′

y=0

(−fy)dy

)
dx

=

∫ A

0

(f(x, 0)− f(x, x′))dx =

∫

γ

ω.

The last equality comes from Exercise 8. �

Our next result has an easy direct proof, but we will give a rather

long-winded proof to illustrate a crucial property of line integrals.

Lemma 8.12. Green’s Theorem is true for any rectangle whose sides

are parallel to the coordinate axes.

Proof. Let R be such a rectangle. We write R = T1 ∪ T2, where

T1 and T2 are two special triangles meeting along a diagonal. We

certainly have ∫

R

dω =

∫

T1

dω +

∫

T2

dω.

On the other hand, by Exercise 7, we have
∫

∂Rd

ω =

∫

∂T1

ω +

∫

∂T2

ω.

Here ∂R denotes the boundary of R taken counterclockwise, and

likewise for the other expressions. Since Green’s Theorem holds for

special triangles, we can equate the right-hand sides of our last two
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equations. But then we can equate the left-hand sides as well. Hence

Green’s Theorem holds for R. �

Lemma 8.13. Green’s Theorem is true for any triangle.

Proof. Figure 8.9 shows how we can realize an arbitrary triangle D

as a set of the form R− T1 − T2 − T3, where R is a rectangle and Tk

is a special triangle for k = 1, 2, 3. We have
∫

D

dω +
∑∫

Tk

dω =

∫

R

dω.

The same cancellation trick as in the previous lemma shows that
∫

∂D

ω +
∑∫

∂Tk

ω =

∫

∂R

ω.

Green’s Theorem, applied to cases we already know, allows us to

cancel off all terms, leaving just the one we don’t know. �

Figure 8.9. A union of triangles

Lemma 8.14. Green’s Theorem is true when the domain D is an

arbitrary polygon.

Proof. Partition D into triangles and apply the same cancellation

trick as above. �



Chapter 9

Spherical Geometry

The purpose of this chapter is to prove some results about spherical

geometry. As usual, S2 denotes the unit sphere in R3. Most of

the results in this chapter can be found in any book on differential

geometry; see, for instance, [BAL]. The one topological result, the

Hairy Ball Theorem, can be found in most topology books; see, for

instance, [GPO].

9.1. Metrics, Tangent Planes, and Isometries

S2 has two natural metrics on it. The easiest one to define is the

chordal metric: the distance between p, q ∈ S2 is ‖p − q‖. This just

uses the Euclidean metric on R3.

The other metric is often called the round metric. We define the

length of a curve on S2 to be its length when considered a curve in

R3. So, if γ : [a, b] → S2 is a differentiable curve, we have

(9.1) L(γ) =

∫ b

a

‖γ′(t)‖ dt.

The distance between two points p and q in the round metric is the

infimum of the lengths of all paths on S2 that join p to q. We will see

below that this infimum is realized by a path that is an arc of a great

circle. We will see in Chapter 11 that this way of defining a metric is

part of a general construction.

103
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In this chapter we will ignore the chordal metric and work with

the round metric. Fortunately, any isometry of the chordal metric is

an isometry of the round metric and vice versa. The point is that one

can give a formula for the one metric in terms of the other. This will

become more clear when we work out what the shortest paths are in

the round metric.

Later, when we study Riemannian surfaces, we will see that an

object called the tangent plane plays a fundamental role in the theory.

For the case of the sphere, the tangent plane has a very short and

simple definition. The tangent plane to S2 at the point p ∈ S2 is the

plane Tp(S
2) such that p ∈ Tp(S

2) and Tp(S
2) is perpendicular to the

vector pointing from 0 to p. The tangent plane has the following nice

property. Any curve γ : [a, b] → S2 is such that the velocity γ′(t) lies
in the tangent plane Tγ(t)(S

2).

Any rotation of R3 gives rise to an isometry of S2. One such

rotation is given by the matrix

Mt =




cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1


 .

This map rotates by t around the z axis and thus rotates S2 about

the north and south poles. One can find similar maps that rotate

around the other two coordinate axes. We call a rotation about one

of the coordinate axes a basic rotation.

Just by composing the basic rotations, we can move any one point

of S2 to any other point. Moreover, once we know that we can move

any point of S2 to any other, we see that we can find an isometry of

S2 that fixes any given point and rotates through an angle t about

that point. Indeed, if T : S2 → S2 is an isometry that carries (0, 0, 1)

to p, then TMtT
−1 is the desired rotation about p.

All the isometries we have described so far come from orientation-

preserving linear maps ofR3. The other “half” of the isometries come

from orientation-reversing linear maps of R3. One such isometry is

given by the map (x, y, z) → (x, y,−z). This map interchanges the

north and south poles of S2 and fixes the equator. More generally, if
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v ∈ S2 is any point, the map

(9.2) Tv(w) = −w + 2(v · w)v

is an orientation-reversing isometry. The point is that Tv is obviously

a linear transformation, and a short calculation shows that

Tv(w1) · Tv(w2) = w1 · w2.

Note also that Tv(v) = −v, so that Tv swaps v and −v. We call the

maps in equation (9.2) basic reflections .

9.2. Geodesics

There are many equivalent definitions of a geodesic. To avoid a

buildup of terminology, we will give a definition that only relies on

what we have already presented. A geodesic on S2 is a curve γ :

[a, b] → S2 with the following properties:

• γ has constant speed.

• If t1 and t2 are any sufficiently close parameters in [a, b],

then the restriction of γ to [t1, t2] is the shortest curve on

S2 that joins γ(t1) to γ(t2). In other words, γ is locally a

length-minimizing curve.

We will see that a curve is a geodesic if and only if it has constant

speed and its image lies in a great circle. A great circle is the inter-

section of a plane through the origin with S2. The study of geodesics

on S2 is a classical one. It is treated in essentially every book on

differential geometry. Here we just establish a few basic facts.

Lemma 9.1. The shortest differentiable path joining two points on

the sphere exists and is an arc of a great circle.

Proof. Let x and y be two points. We rotate so that x is the north

pole. For convenience, we assume that y is not the south pole, so

that there is a unique great circle C joining x and y. Let γ be any

differentiable curve that joins x to y.

There is a map φ : S2 → C. The point φ(p) is the point of C that

lies on the same line of latitude. Geometrically, we think of rotating
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S2 around the north and south poles, and watching p rotate around

until it sticks on C.

The differential dφp is a map from the tangent plane Tp(S
2) onto

the line tangent to C at φ(p). We note two properties of this map.

• If v is parallel to a line of longitude, then ‖dφ(v)‖ = ‖v||.
• If w is parallel to a line of latitude, then dφ(v) = 0.

Note also that the lines of longitude and latitude are perpendicular

whenever they intersect.

These properties imply that dφ is a distance nonincreasing map.

Moreover, dφ strictly decreases the length of any tangent vector that

is not parallel to a line of longitude. Therefore, the length of φ(γ) is

strictly less than the length of γ unless γ traces out a line of longitude.

But then γ traces out C, because the lines of longitude are great circles

and only one great circle connects x to y (in our case). �

Recall that two points x, y ∈ S2 are called antipodal if x = −y.

Two points are antipodal if and only if they lie on more than one

great circle. In case x and y are not antipodal, we define the geodesic

connecting x to y to be the shorter of the two great circular arcs

connecting x to y.

Now that we know about geodesics, we can prove a basic result

about isometries of S2.

Lemma 9.2. Any isometry of S2 is a composition of basic reflections.

Proof. Note that a basic rotation, i.e. a rotation about one of the

coordinate axes, is a composition of two basic reflections. So, if we

can prove that every isometry is the composition of basic rotations

and basic reflections, then we have proved that every isometry is the

composition of basic reflections.

Let I be a mystery isometry of S2. Since we can move any point

of S2 to any other point using compositions of basic rotations, we can

compose I with basic rotations so that the result fixes (0, 0, 1). So,

without loss of generality, we can assume that I fixes (0, 0, 1).

The equator E on S2 is the set of points of the form (x, y, 0).

The equator divides the sphere into the upper hemisphere and the
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lower hemisphere. Any point on the lower hemisphere is farther from

(0, 0, 1) than is any point on the upper hemisphere. For this reason,

I(E) = E. Now, E is a circle and I is an isometry of E. So, I acts

on E either as a rotation or a reflection. Composing I with basic

reflections and/or rotations, we can assume that I fixes every point

on E.

Any point p ∈ E is connected to (0, 0, 1) by the arc γp, which is

one quarter of a great circle. Since I fixes the endpoints of γp, and γp
is the unique shortest path joining p to (0, 0, 1), we have I(γp) = γp.

Moreover, I preserves distances along γp. Hence I fixes every point of

γp. Since p is an arbitary point of E, we see that I fixes every point

of the upper hemisphere. A similar argument shows that I fixes every

point of the lower hemisphere. Hence, I is the identity. �

9.3. Geodesic Triangles

Let d denote the distance on S2. If x and y are antipodal, then

d(x, y) = π. In general, d(x, y) = θ, where θ is the angle between the

vector pointing to x and the vector pointing to y. Familiar formulas

in linear algebra give

(9.3) cos(d(x, y)) = x · y, sin(d(x, y)) = ‖x× y‖.

Here × is the cross product. What makes these formulas simple is

the fact that ‖x‖ = ‖y‖ = 1.

We measure angles on S2 using the dot product on R3. Suppose

that C1 and C2 are two geodesics connecting x to y1 and y2. The

angle between C1 and C2 at x is just the angle between the tangent

vectors at x. This is the same as the dihedral angle between the

plane Π1 containing (0, x, y1) and the plane Π2 containing (0, x, y2).

As usual, there are two angles we can measure at x, and the sum of

these angles is π.

Let x1, x2, x3 be three points, all contained in the same hemi-

sphere. Then there is a unique geodesic Cj joining xj−1 and xj+1,

with the indices taken cyclically. The union of these geodesics is

called a spherical triangle. Let θj be the interior angle at xj , and let

Lj denote the length of Cj .
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There is a beautiful formula for the area of a spherical triangle,

known as Giraud’s Theorem. (Thomas Harriot discovered the result

in 1603 but did not publish it.) The area is given by

(9.4) θ1 + θ2 + θ3 − π.

This result is a special case of the general Gauss–Bonnet Theorem, a

result proved much later on. Here we sketch a proof of Giraud’s Theo-

rem. The case when the 3 points lie on the same great circle is trivial.

In all other cases, the whole triangle lies in an open hemisphere.

Say that a lune is a region bounded by two great semicircles. A

lune has two vertices. By symmetry, the interior angles at either end

of the lune are the same. Any two lunes having the same interior

angles are isometric to each other. Let A(θ) be the area of a lune

having angle θ.

Lemma 9.3. A(θ) = 2θ for all θ ∈ [0, π].

Proof. If θ = π, the lune is precisely a hemisphere. Hence

(9.5) A(π) = 2π.

Moreover, a lune having interior angle θ decomposes into n lunes

having interior angle θ/n. Hence

(9.6) A(θ) = nA(θ/n).

Combining equations (9.5) and (9.6) we see that A(θ) = 2θ whenever

θ is a rational multiple of π. But A is a continuous function of θ.

Hence A(θ) = 2θ for all θ. �

Now let T be a geodesic triangle, contained in a hemisphere,

having interior angles θ1, θ2, and θ3. Extending the sides of T , we

can cover S2 by 6 lunes.

Figure 9.1, which needs some interpretation, shows the situation.

In Figure 9.1, we have drawn T extremely small, and placed near

(say) the north pole. We are looking down on T . The sides of T

practically look straight because T is very small. We have extended

the sides of T and partially shown them. These sides continue all the

way around S2 and join up again near the south pole, where they form

another copy T ′ of T . Our technical assumption about T lying in a
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hemisphere guarantees that T and T ′ are disjoint. We have drawn the

boundary of T thickly, and we have shaded two of the lunes. These

two lunes meet at both vertices, the other vertex being near the south

pole.

Figure 9.1. Dissected sphere

By Lemma 9.3, the total area of the lunes is

(9.7) 4(θ1 + θ2 + θ3).

With the exception of some points on the edges of the lunes, every

point of S2 − (T ∪ T ′) is covered once by a lune. At the same time,

every point of T ∪ T ′ is covered 3 times by the union of the lunes.

Letting A be the area of T (and T ′) we have

(9.8) 4(θ1 + θ2 + θ3) = (4π − 2A) + 6A = 4π + 4A.

Simplifying this equation gives A = θ1 + θ2 + θ3 − π, as desired.

Exercise 1. Try to draw a version of Figure 9.1 that shows the

entire sphere, as well as the 6 lunes.
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9.4. Convexity

It doesn’t really make much sense to talk about the convexity of a

general subset of S2, because some pairs of points on S2 can be joined

by more than one shortest path. However, if X ⊂ S2 is entirely

contained in an open hemisphere H, then any two points of X can be

joined by a unique arc of a great circle that has length less than π.

This arc remains inside H. We call this the geodesic segment joining

the points.

We call X convex if the geodesic segment joining any pair of

points in X remains in X. This definition appears to depend on H,

but it does not.

Exercise 2. Prove that the notion of convexity for X does not de-

pend on the hemisphere relative to which it is defined. That is, if

X is contained in the intersection H1 ∩H2 of two open hemispheres,

then X is convex relative to either one of them.

If X ⊂ H ⊂ S2 is an arbitrary set, we define the convex hull of

X to be the intersection of all the closed convex subsets of H that

contain X. We call this set Hull(X).

Exercise 3. Prove that Hull(X) is well defined, independent of the

open hemisphere that contains X. Prove also that Hull(X) is convex

relative to any open hemisphere that contains it.

The purpose of the next 2 exercises is to establish some back-

ground results needed for the Cauchy Rigidity Theorem, proved in

Chapter 24. We say that a convex spherical polygon is a simple closed

polygonal curve in S2 made from arcs of great circles that is contained

in a hemisphere and bounds a convex set contained in that same

hemisphere. We insist that consecutive arcs make an angle which is

distinct from π. From Exercise 3, the definition of a convex spheri-

cal polygon does not depend the choice of hemisphere that contains it.

Exercise 4. Let Γ be a convex spherical polygon. Let Ĉ be a great
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circle that extends a side C of Γ. Then Γ− C is contained in one of

the two open hemispheres bounded by Ĉ.

Exercise 5. Let Q and Q′ be convex spherical quadrilaterals. Let

the sides of Q be C1, C2, C3, C4. Let θj be the interior angle between

Cj and Cj+1. Make the same definitions for Q′. Suppose that Cj

and C ′
j have the same length for all j. Label a vertex of Q by a

(+) if θ > θ′ at that vertex, and by a (−) if the opposite inequality

holds. Prove that the labels of the vertices of Q must have the form

(+,−,+,−) or (0, 0, 0, 0), up to cyclic ordering.

9.5. Stereographic Projection

Let C denote the complex numbers. We think of ∞ as an extra

point and consider C ∪∞. We want to think of C ∪∞ as a sphere.

To do this, we want to put a metric on C ∪ ∞ so that the result

is homeomorphic to a sphere. The metric we get on C ∪ ∞ is not

really so natural, but it does allow us to speak of continuous maps

from C ∪∞ to itself. This is something we will take up in the next

chapter.

One way to put a metric on C ∪∞ is to choose a map from S2

to C ∪ ∞ which is a homeomorphism from C to S2 minus a single

point, say (0, 0, 1). Then, we put a metric on C ∪∞ so that our map

is an isometry. One very nice map from S2 to C ∪∞ is stereographic

projection.

(0,0,1)

Figure 9.2. Stereographic projection
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As Figure 9.2 (drawn 1 dimension down) illustrates, stereographic

projection has the following geometric description. We identify C

with the horizontal plane R2 × {0} in R3. Half of S2 lies above this

plane and half below. We map (0, 0, 1) to ∞. Given any other point

p ∈ S2, we define φ(p) ∈ C to be the point such that (0, 0, 1) and p

and φ(p) are collinear.

The formula is given by

(9.9) φ(x, y, z) =

(
x

1− z

)
+

(
y

1− z

)
i.

The inverse map is given by

φ−1(x+ iy) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
.

One can check easily that these maps are inverses of each other.

Exercise 6. Check that our formula for stereographic projection

matches the geometric description.

Exercise 7. Check that φ gives a homeomorphism from S2− (0, 0, 1)

to C.

One of the nice facts about stereograpic projection is the follow-

ing. If C ⊂ S2 is a circle, then φ(C) is either a circle in C or else

a straight line (union ∞). When C contains the point (0, 0, 1), this

result is fairly obvious from the geometric description. The idea is

that any circle C ⊂ S2 has the form ΠC ∩ S2 for some plane ΠC .

When (0, 0, 1) ∈ ΠC , we see from the geometric description that

φ(ΠC) = (C ∩ΠC) ∪∞.

A general geometric proof, based on conic sections, is given in [HCV].

In §14.3, we will give a proof based on complex analysis.

Exercise 8 (Challenge). Find your own proof that stereographic

projection maps circles in S2 to either circles or straight lines in C.
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9.6. The Hairy Ball Theorem

Let me end the chapter with the Hairy Ball Theorem. This is really

a result about the topology of the sphere, and not its geometry, but

it is such a great result that I wanted to put it in.

A unit field on S2 is a continuous choice of unit vector tangent

to S2 at each point. The Hairy Ball Theorem says that a unit field

on S2 does not exist. The name of the theorem (which has somewhat

fallen out of favor) comes from the following interpretation: If you

have a sphere that is completely covered in hair, you cannot comb

the hair so that it lies flat and varies continuously. There has to be

some kind of cowlick somewhere.

We will suppose that a unit field exists, and derive a contradic-

tion. Suppose we have a unit field U on S2. Let γ : [0, 1] → S2 be the

a smooth loop, so that γ(0) = γ(1). For each t ∈ [0, 1), we let θ(t) de-

note the counterclockwise angle between the tangent vector γ′(t) and
our vector field at γ(t). We choose so that θ(t) varies continuously.

As t → 1, the value θ(t) necessarily tends to an integer multiple of

2π. We let

(9.10) N(U , γ) = lim
t→1

θ(t)− θ(0).

Intuitively, you are walking along γ, turning your head according the

direction of U . Once you get back to where you start, you will be

looking in the same direction as when you started, except that your

head will be turned around N times counterclockwise! Compare this

discussion about the winding number given in §5.1,

Exercise 9. Prove that the quantity N(U , γ) is independent of

the smooth parametrization of γ, as long as the orientation does not

switch. Also prove that N(U , γ) = N(U , γ′) when γ and γ′ are ho-

motopic loops. (Hint : N(U , γ) is continuous and integer-valued.)

Consider the case when γ is a small loop that winds once around

the north pole. As we walk around γ, keeping our head aligned with

the unit field, our head always points in roughly the same direction.

So, when we make one complete circuit, our neck is twisted once

around. (Don’t try this at home.) That is N(U , γ) = ±1. If we
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replace γ by −γ, the loop that is oriented in the opposite direction,

the sign of N(U , γ) switches.

Figure 9.3. Two homotopies

We orient γ so that N(U , γ) = 1. There are two ways to slide γ

to a small loop around the south pole. On the one hand, we can push

γ around the side, following a single line of longitude and keeping γ

small. On the other hand, we can pull γ down over the whole sphere,

moving through the circles of latitude. Figure 9.1 shows a top-down

view of the two methods. One method leads to a small loop β about

the south pole and the other method leads to −β, the oppositely

oriented loop. By Exercise 1, we have

N(U , β) = N(U , γ) = N(U ,−β) = −N(U , β) = 1.

This equation says that 1 = −1, which is a contradiction. This proves

the Hairy Ball Theorem.



Chapter 10

Hyperbolic Geometry

The purpose of this chapter is to give a bare bones introduction to

hyperbolic geometry. Most of material in this chapter can be found in

a variery of sources, for example [BE1], [KAT], [RAT], or [THU].

The first 2 sections of this chapter might not look like geometry at

all, but they turn out to be very important for the subject.

10.1. Linear Fractional Transformations

Now we take up the discussion started in §1.6. Suppose that

A =

[
a b

c d

]

is a 2 × 2 matrix with complex number entries and determinant 1.

The set of these matrices is denoted by SL2(C). In fact, this set

forms a group under matrix multiplication.

The matrix A defines a complex linear fractional transformation

TA(z) =
az + b

cz + d
.

Such maps are also called Möbius transformations . Note that the

denominator of TA(z) is nonzero as long as z 6= −d/c. It is convenient

to introduce an extra point ∞ and define TA(−d/c) = ∞. This

115



116 10. Hyperbolic Geometry

definition is a natural one because of the limit

lim
z→−d/c

|TA(z)| = ∞.

The determinant condition guarantees that a(−d/c) + b 6= 0, which

explains why the above limit works. We define TA(∞) = a/c. This

makes sense because of the limit

lim
|z|→∞

TA(z) = a/c.

Exercise 1. As in §9.5, we introduce a metric on C ∪ ∞ so that

C ∪ ∞ is homeomorphic to the unit sphere S2 ⊂ R3. Prove that

TA is continuous with respect to this metric. (Hint : Use the limit

formulas above to deal with the tricky points.)

Exercise 2. Establish the general formula

TAB = TA ◦ TB ,

where A,B ∈ SL2(R). In particular (since A−1 exists) the inverse

map T−1
A exists. By Exercise 1, this map is also a continuous map of

C ∪∞. Conclude that TA is a homeomorphism of C ∪∞.

10.2. Circle Preserving Property

A generalized circle in C∪∞ is either a circle in C or a set of the form

L∪∞, where L is a straight line in C. Topologically, the generalized

circles are all homeomorphic to circles. In this section we will prove

the following well-known result.

Theorem 10.1. Let C be a generalized circle and let T be a linear

fractional transformation. Then T (C) is also a generalized circle.

One can prove this result by a direct (though tedious) calcula-

tion. The book [HCV] has a nice proof involving the geometry of

stereographic projection. For fun, I will give a rather unconventional

proof. I’ll prove 4 straightforward lemmas and then give the main

argument.

Lemma 10.2. Let C be any generalized circle in C. Then there

exists a linear fractional transformation T such that T (R ∪∞) = C.
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Proof. If C is a straight line (union ∞), then a suitable translation

followed by rotation will work. So, consider the case when C is a

circle. The linear fractional transformation

T (z) =
z − i

z + i

maps R ∪∞ onto the unit circle C0 satisfying the equation |z| = 1.

The point is that every point z ∈ R is the same distance from i

and −i, so that |T (z)| = 1. Next, one can find a map of the form

S(z) = az + b that carries C0 to C. The composition S ◦ T does the

job. �

Lemma 10.3. Suppose that L is a closed loop in C ∪∞. Then there

exists a generalized circle C that intersects L in at least 3 points.

Proof. If L is contained in a straight line (union ∞) the result is

obvious. Otherwise, L has 3 noncollinear points and, like any 3 non-

collinear points, these lie on a common circle. �

Lemma 10.4. Let (z1, z2, z3) = (0, 1,∞). Let a1, a2, a3 be a triple

of distinct points in R ∪ ∞. Then there exists a linear fractional

transformation that preserves R∪∞ and maps ai to zi for i = 1, 2, 3.

Proof. The map T (z) = 1/(a3 − z) carries a3 to ∞, but does not

necessarily do the right thing on the points a1 and a2. However, we

can compose T by a suitable map of the form z → rz + s to fix the

images of a1 and a2. �

Lemma 10.5. Suppose T is a linear fractional transformation that

fixes 0 and 1 and ∞. Then T is the identity map.

Proof. Let

T (z) =
az + b

cz + d
.

The condition T (0) = 0 gives b = 0. The condition T (∞) = ∞ gives

c = 0. The condition T (1) = 1 gives a = d. Hence T (z) = z. �

Now we can give the main argument. Suppose that there is a

linear fractional transformation T and a generalized circle C such

that T (C) is not a generalized circle. Composing T with the map

from Lemma 10.2, we can assume that C = R ∪∞. By Lemma 10.3



118 10. Hyperbolic Geometry

there is a generalized circle D such that D and T (R ∪ ∞) share at

least 3 points. Call these 3 points c1, c2, c3.

Again by Lemma 10.2, there is a linear fractional transformation

S such that S(R∪∞) = D. There are points a1, a2, a3 ∈ R∪∞ such

that S(aj) = cj for j = 1, 2, 3. Also, there are points b1, b2, b3 ∈ R∪∞
such that T (bj) = cj for j = 1, 2, 3. By Lemma 10.4 we can find linear

fractional transformations A and B, both preserving R∪∞ such that

A(aj) = zj and B(bj) = zj for j = 1, 2, 3. Here (z1, z2, z3) = (0, 1,∞).

The two maps

T ◦B−1, S ◦A−1

both map (0, 1,∞) to the same 3 points, namely (c1, c2, c3). By

Lemma 10.5, these maps coincide. However, note that

T ◦B−1(R ∪∞) = T (R ∪∞)

is not a generalized circle and S ◦ A−1(R ∪∞) = D is a generalized

circle. This is a contradiction.

10.3. The Upper Half-Plane Model

Now we turn to hyperbolic geometry. We are going to imitate the

procedure we used in §9.1 to define the round metric on the sphere.

Once we define the hyperbolic plane as a set of points, we will define

what we mean by the lengths of curves in the hyperbolic plane. Then,

we will proceed as in the case of the sphere.

Let U ⊂ C be the upper half-plane, consisting of points z with

Im(z) > 0. As a set, the hyperbolic plane is just U . However, we will

describe a funny way of measuring the lengths of curves in U . Were

we to use the ordinary method, we would just produce a subset of

the Euclidean plane. So, given a differentiable curve γ : [a, b] → U ,

we define

(10.1) L(γ) =

∫ b

a

|γ′(t)|
Im(γ(t))

dt.

In words, the hyperbolic speed of the curve is the ratio of its Euclidean

speed to its height above the real axis.
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Here is a simple example. Consider the curve γ : R → U defined

by

γ(t) = i exp(t).

Then the length of the portion of γ connecting γ(a) to γ(b), with

a < b, is given by
∫ b

a

exp(t)

exp(t)
dt =

∫ b

a

dt = b− a.

The image of γ is an open vertical ray, but our formula tells us that

this ray, measured hyperbolically, is infinite in both directions. More-

over, the formula tells us that γ is a unit speed curve: it accumulates

b− a units of length between time a and time b.

The hyperbolic distance between two points p, q ∈ U is defined

to be the infimum of the lengths of all piecewise differentiable curves

connecting p to q. Let us consider informally what these shortest

curves ought to look like. Suppose that p and q are very near the real

axis, say

p = 0 + i 10−100, q = 1 + i 10−100.

The most obvious way to connect these two points would be to use

the path

γ(t) = t+ i 10−100.

This curve traces out the bottom of the (Euclidean unit) square shown

in Figure 10.1. Our formula tells us that this curve has length 10100.

Figure 10.1. Some paths in the hyperbolic plane
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Another thing we could do is go around the other three sides of

the square. For the left vertical edge, we could use the path γ from

our first calculation. This edge has length

log(1)− log(10−100) = 100.

The top horizontal edge has height 1 and Euclidean length 1. So,

this leg of the path has length 1. Finally, by symmetry, the length

of the right vertical edge is 100. All in all, we have connected p to q

by a path of length 201. This length is obviously much shorter than

the first path. It pays to go upward because, so to speak, unit speed

hyperbolic curves cover more ground the farther up they are. Our

second path is much better than the first but certainly not the best.

For openers, we could save some distance by rounding off the corners.

We will show in §10.6 below that the shortest curves, or geodesics , in

the hyperbolic plane are either arcs of vertical rays or arcs of circles

that are centered on the real axis.

When U is equipped with the metric we have defined, we call

U the hyperbolic plane and denote it by H2. So far we have talked

about lengths of curves in H2, but we can also talk about angles.

The angle between two differentiable and regular (i.e., nonzero speed)

curves in H2 is defined simply to be the ordinary Euclidean angle

between them. That is, the hyperbolic and Euclidean angle between

two intersecting curves is just the Euclidean angle between the two

tangent vectors at the point of intersection. So, in the upper half-

plane model of hyperbolic geometry, the distances are distorted (from

the Euclidean model) but the angles are not.

Now that we have talked about hyperbolic length and angles,

we discuss hyperbolic area. Given how hyperbolic length relates to

Euclidean length, it makes sense to say that the area of a small patch

of hyperbolic space is the ratio of its Euclidean area to its height

squared. Since the “height” of a patch varies throughout the patch,

we really have something infinitesimal in mind. Thus, precisely, we

define the hyperbolic area of a region D ⊂ H2 to be the integral

(10.2)

∫

D

dx dy

y2
.
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10.4. Another Point of View

An inner product on a real vector space V is a map 〈 , 〉 : V ×V → R

which satisfies the following properties:

• 〈av + w, x〉 = a〈v, x〉+ 〈w, x〉 for all a ∈ R and v, w, x ∈ V .

• 〈x, y〉 = 〈y, x〉.
• 〈x, x) ≥ 0 and 〈x, x) = 0 if and only if x = 0.

You can remember this by noting that an inner product satisfies the

same formal properties as the dot product.

For the moment, we care mainly about inner products on R2. At

the point z = x+ iy we introduce the inner product

(10.3) 〈v, w〉z =
1

y2
(v · w).

We mean to apply this to vectors v and w that are “based at” z. We

then define the hyperbolic norm to be

(10.4) ‖v‖H2 =
√
〈v, v〉z.

With this definition, the length of γ : [a, b] → H2 is given by

(10.5)

∫ b

a

‖γ′(t)‖γ(t) dt.

With this formalism, the notion of hyperbolic length looks much closer

to the Euclidean notion. In Chapter 11 we will see that this way of

doing things is the beginning of Riemannian geometry.

10.5. Symmetries

The hyperbolic metric has more symmetries than you might think.

Say that a real linear transformation is a linear transformation TA

based on a matrix with real entries. In this case, TA(z) ∈ C provided

z ∈ C −R.

Exercise 3. Prove that z 6∈ R implies that TA(z) 6∈ R. Prove

also that TA maps H2 into itself.
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The element TA is a homeomorphism of C ∪∞ which preserves

H2.

Exercise 4. We say that a real linear fractional transformation is

basic if it has one of three forms:

• T (z) = z + 1.

• T (z) = rz.

• T (z) = −1/z.

Prove that any real linear fractional transformation is the composi-

tion of basic ones.

It turns out that these maps are all hyperbolic isometries. This

is pretty obvious for the map T (z) = z + 1. The hyperbolic metric

is built so that the second map is a hyperbolic isometry, and in a

moment we will give two proofs of that fact. The really surprising

thing is that the third map turns out to be a hyperbolic isometry as

well.

Lemma 10.6. The map T (z) = rz is a hyperbolic isometry.

First Proof. If γ is any curve in H2, then the dilated curve T (γ)

moves r times as fast in the Euclidean sense but is r times farther

from the real axis. Hence T (γ) and γ move at the same hyperblic

speed at corresponding points. So, if we connect points p and q by

some curve γ we can connect the points T (p) and T (q) by the curve

T (γ), which has the same length—and vice versa. This shows that

the distance from p to q is the same as the distance from T (p) to

T (q).

Second Proof. Suppose that v and w are two vectors based at

z ∈ H2. Then we think of dT (v) = rv and dT (w) = rw as two

vectors based at T (z). Here dT is linear differential of T , i.e., the

matrix of first partial derivatives. Looking at the formula in equation

(10.3), we see that

〈dT (v), dT (w)〉T (z) = 〈rv, rw〉rz =
1

r2y2
(rv·rw) = 1

y2
(v·w) = 〈v, w〉z.
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So, T preserves the hyperbolic inner product at each point. Since the

hyperbolic metric is defined entirely in terms of this family of inner

products, T is an isometry.

Exercise 5. Prove that the map T (z) = −1/z is a hyperbolic isom-

etry.

Combining Exercises 4 and 5, we see that any real linear fractional

transformation is a hyperbolic isometry of H2. Recall that in §2.8
we proved SL2(R) is a 3-dimensional manifold. So, H2 has a 3-

dimensional group of symmetries!

Say that a generalized circular arc is an arc of a generalized cir-

cle. We already know that any linear fractional transformation maps

generalized circles to circles. Hence, any real linear transformation

maps generalized circular arcs to generalized circular arcs.

Exercise 6. Prove that a real linear fractional transformation T

has the following property: if a and b are two smooth curves in H2

which intersect at a point x and make an angle of θ, then T (a) and

T (b) make the same angle θ at the point T (x). (Hint : If you don’t

feel like grinding out the calculation, you can assume the result is

false and then deduce that the differential dT fails to map circle to

circles. In any case, the result is obvious for all the basic maps except

z → −1/z, and so it suffices to consider this one.)

10.6. Geodesics

In this section we will describe the shortest curves connecting two

points in H2. We first consider the case of points p and q that lie on

the imaginary axis.

Lemma 10.7. The portion of the imaginary axis connecting p to q

is the unique shortest curve in H2 that connects p to q.

Proof. Our proof is very similar to the proof we gave in Lemma 9.1

for the spherical case. Consider the map F defined by the equation

F (x + iy) = iy; see Figure 10.2. Looking at the definition of the

hyperbolic metric, we see that F is hyperbolic speed nonincreasing.
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That is, if γ is a curve in H2, then the hyperbolic speed of F (γ) at

any point is at most the hyperbolic speed of γ at the corresponding

point. Moreover, if the velocity of γ has any x-component at all, then

F (γ) is slower at the corresponding point. The idea here is that F

does not change the y-component of the hyperbolic speed, but kills

the x-component. The total hyperbolic length of γ is the integral of

its hyperbolic speed. Thus the hyperbolic length of F (γ) is less than

the hyperbolic length of γ, unless γ travels vertically the whole time.

Our result follows immediately from this. �

Figure 10.2. The map F

It follows from symmetry that the vertical rays in H2 are all

geodesics. A vertical ray is the unique shortest path in H2 connect-

ing any pair of points on that ray.

Exercise 7. Let p and q be two arbitary points in H2. Prove

that there is a hyperbolic isometry—specifically, some linear frac-

tional transformation—that carries p and q to points that lie on the

same vertical ray.

Theorem 10.8. Any two distinct points in H2 can be joined by a

unique shortest path. This path is either a vertical line segment or

else an arc of a circle that is centered on the real axis.

Proof. We have already proved this result for points that lie on the

same vertical ray. in light of Exercise 7, it suffices to prove, in general,
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that the image of a vertical ray under a linear fractional hyperbolic

isometry is one of the two kinds of curves described in the theorem.

Let ρ be a vertical ray, and let T be a linear fractional transfor-

mation that is also a hyperbolic isometry. From the work in §10.2
we know that T (ρ) is an arc of a circle. Since T preserves R ∪ ∞,

both endpoints of this circular arc lie on R∪∞. Finally, since T pre-

serves angles, T (ρ) meets R at right angles at any point where T (ρ)

intersects R. If T (ρ) limits on ∞, then T (ρ) is another vertical ray.

Otherwise, T (ρ) is a semicircle, contained in a circle that is centered

on the real axis. �

10.7. The Disk Model

Now that we have defined geodesics in the hyperbolic plane, we can go

forward and define geodesics polygons. Before we do this, we would

like to have another model in which to draw pictures. This other

model is sometimes more convenient.

Let ∆ be the open unit disk. There is a (complex) linear fractional

map M : H2 → ∆ given by

(10.6) M(z) =
z − i

z + i
.

This map does the right thing because z ∈ H2 is always closer to i

than to −i and so |M(z)| < 1. Since M maps circles to circles and

preserves angles, M maps geodesics in H2 to circular arcs in ∆ that

meet the unit circle at right angles.

Sometimes it is convenient to draw pictures of geodesics in the

unit disk rather than in the hyperbolic plane. So, when it comes time

to draw pictures, we will be drawing circular arcs that meet the unit

circle at right angles. The geodesics that go through the Euclidean

center of ∆ are just unit line segments. The rest of them “bend in-

ward” toward the origin.

Exercise 8. Draw pictures of 10 geodesics in the disk model.

Rather than just think of ∆ as a convenient place to draw pic-

tures, we can also think of ∆ as another model of H2. The cheapest
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way to do this is to say that the distance the two points p, q ∈ ∆ is

defined to be the hyperbolic distance between the points M−1(p) and

M−1(q) in H2.

A more direct approach is to define a new inner product at each

point z ∈ ∆. The formula is given by

(10.7) 〈v, w〉z =
4v · w

(1− |z|)2 .

Once we have this inner product, we can directly define lengths of

curves in ∆ as in equation (10.5). Then we can define distances in ∆

as in the upper half-plane model. It turns out that this new method

produces the same result as the cheap method. The proof is a calcu-

lation similar to our second proof of Lemma 10.6. We just prove that

M is an isometry relative to the inner product on H2 and the inner

product on ∆.

Exercise 9. Prove that the map M is an isometry from H2 and

∆, when lengths are defined in terms of the inner product in equa-

tion (10.7). That is, prove that

〈v, w〉z = 〈dM(v), dM(w)〉M(z)

for any pair of vectors v and w based at z ∈ H2.

The disk ∆, equipped with its metric, is known as the Poincaré

disk model of the hyperbolic plane. When T is a real linear fractional

transformation, the map M ◦ T ◦ M−1 is an isometry of ∆. Since

M preserves angles, the hyperbolic angle between two curves in ∆ is

the same as the Euclidean angle between them. Thus, in both our

models, Euclidean and hyperbolic angles coincide.

Before we continue, we mention one more piece of terminology.

The ideal boundary of H2 is defined to be R ∪∞ in the upper half-

plane model and the unit circle in the disk model. Points on the ideal

boundary are called ideal points . The ideal points are not points in

H2. They are considered “limit points” of geodesics in H2.
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10.8. Geodesic Polygons

Now that we have our two models of the hyperbolic plane, and we

know that the geodesics are, we are ready to consider geodesic poly-

gons in the hyperbolic plane. To save words, we will use the term H2

rather loosely to refer to either of our two models of the hyperbolic

plane. Since there is an isometry, namely M , carrying one model to

the other, there doesn’t seem to be much harm in doing this.

Say that a geodesic polygon in H2 is a simple closed path made

from geodesic segments. Here, “simple” means that the path does not

intersect itself. Say that a solid geodesic polygon is the region in H2

bounded by a geodesic polygon. It is convenient to allow some of the

“vertices” of the polygon to be ideal points. We call such “vertices”

by the name ideal vertices . The interior angle of a polygon at an ideal

vertex is 0: the two geodesics both meet the ideal point perpendicular

to the ideal boundary.

We point out a special geodesic triangle, called an ideal triangle.

An ideal triangle is a geodesic triangle having 3 infinite geodesic sides

and 3 ideal vertices; see Figure 10.3 below. The main result in this

section, the Gauss–Bonnet formula for hyperbolic geodesic triangles,

is the hyperbolic analogue of the result in §9.3. The proof is very

similar, too.

Theorem 10.9. Let T be a geodesic triangle in the hyperbolic plane.

The area of T equals π minus the sum of the interior angles of π. In

particular, the sum of these interior angles is less than π.

We will give the same kind of proof that we gave for the analogous

result in §9.3.
Lemma 10.10. Theorem 10.9 holds for ideal triangles.

Proof. We are trying to prove that any ideal triangle has area π.

You can move any one ideal triangle to any other using an isometry

of H2. So, it suffices to prove this result for a single triangle. Let

us prove this for the triangle T , in the upper half-plane model, with

vertices −1 and 1 and ∞. We first observe that∫ ∞

y=y0

1

y2
dy = 1/y0.
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Now we compute our area, using equation (10.2). Integrating in the

y direction, we have

area(T ) =

∫ 1

x=−1

∫ ∞

y=
√
1−x2

1

y2
dy =

∫ 1

−1

1√
1− x2

dx = π.

The last integral is most easily done making the trigonometric sub-

stitution x = sin(t) and dx = cos(t). �

Let T (θ) denote a geodesic triangle having two vertices on the

ideal boundary of H2 and one interior vertex having interior angle θ.

Lemma 10.11. Theorem 10.9 holds for T (θ).

Proof. Any two such triangles are isometric to each other. We first

match up the interior vertices and then suitably rotate one trian-

gle so that the sides emanating from the common vertex match. In

particular, any incarnation of T (θ) has the same area. Let

f(θ) = π − area(T (θ)).

We want to show that f(θ) = θ for all θ ∈ [0, π). We already know

that f(0) = 0, by the previous result.

O

A B

C

Figure 10.3. Two dissections
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To analyze the general situation, we work in the disk model and

choose T (θ) so that it has an interior vertex O at 0. Figure 10.3 shows

a dissection proof that

f(θ1 + θ2) = f(θ1) + f(θ2),

as long as θ1 + θ2 ≤ π. Just to make the picture clear, we point out

the following:

• The triangle T (θ1) has vertices O,A,B.

• The triangle T (θ2) has vertices O,B,C.

• The triangle T (θ1 + θ2) has vertices O,A,C.

• The triangle with vertices A,B,C is an ideal triangle.

To make this formula work even when θ1 + θ2 = π, we set f(π) = π.

The quadrilateral we have drawn can be dissected in two ways. One

way gives A1 + A2. The other way gives A+ π. Here Ak is the area

of T (θk) and A is the area of T (θ1 + θ2).

Since f(π) = π, we can use our formula inductively to show

f(rπ) = rπ for any rational r ∈ (0, 1). But the function f is pretty

clearly continuous. Since f is the identity on a dense set, f is the

identity everywhere. �

Now we take an arbitrary geodesic triangle and extend the sides

so that they hit the ideal boundary of H2. Then we consider the

dissection of the ideal triangle defined by the (ideal) endpoints of

these sides, as shown in Figure 10.4.

Figure 10.4. A Dissected ideal triangle.
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The ideal triangle and also the three outer triangles are of the

kind we have already considered. Theorem 10.9 holds true for these.

The ideal triangle has area π, and the three outer triangles have areas

α, β, and γ, the three interior angles of the inner triangle. Hence, the

inner triangle has area π − α− β − γ, as desired. This completes the

proof.

A solid geodesic polygon P is convex if it has the following prop-

ery: if p, q ∈ P are two points then the geodesic segment joining p

and q is also contained in P . It is easy to prove, inductively, that any

convex geodesic polygon can be decomposed into geodesic triangles.

Lemma 10.12. The area of a convex geodesic n-gon is (n − 2)π

minus the sum of the interior angles.

Proof. Just decompose into triangles and then apply the triangle

theorem multiple times. �

Exercise 10 (Challenge). Suppose that θ1, θ2, θ3 are three numbers

whose sum is less than π. Prove that there is a hyperbolic geodesic

triangle with angles θ1, θ2, θ3.

Exercise 11 (Challenge). Say that a geodesic triangle is δ-thin

if every point in the interior of the (solid version of) triangle is within

δ of a point on the boundary. Note that there is no universal δ so that

all Euclidean triangles are δ-thin. Prove that all hyperbolic geodesic

triangles are 10-thin. (The value δ = 10 is far from optimal.)

10.9. Classification of Isometries

Let T be a real linear fractional transformation. If T (∞) = ∞, then

we have T (z) = az + b. If T (∞) 6= ∞, then the equation T (z) = z

leads to a quadratic equation az2 + bz + c, with a, b, c ∈ R. If T is

not the identity, then there are 3 possibilities:

• T fixes one point in H2 and no other points.

• T fixes no points in H2 and one point in R ∪∞.

• T fixes no points in H2 and two points in R ∪∞.
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T is called elliptic, parabolic, or hyperbolic, according to which pos-

sibility occurs. We will discuss these three cases in turn. Before we

start, we mention a helpful construction. Given isometries g and T ,

we call S = gTg−1 a conjugate of T . Note that g maps the fixed

points of T to the fixed points of S.

Suppose T is elliptic. Working in the disk model, we can con-

jugate T so that the result S fixes the origin. In this case, S maps

each geodesic through the origin to another geodesic through the ori-

gin. Moreover, S preserves the distances along these geodesics. From

here, we see that S must be a rotation. So, in the disk model, all the

elliptic isometries are conjugate to ordinary rotations.

Suppose that T is parabolic. Working in the upper half-plane

model, we can conjugate T so that the result S fixes ∞. In this case

S(z) = az + b. If a 6= 1, then S fixes an additional point in R.

Since this does not happen, a = 1. Hence S(z) = z + b. So, in the

upper half-plane model, all parabolic isometries are conjugate to a

translation.

Suppose that T is hyperbolic. Working in the upper half-plane

model, we can conjugate T so that the result S fixes 0 and ∞. But

then S(z) = rz for some r 6= 0. So, in the upper half-plane model, all

hyperbolic isometries are conjugate to dilations (or contractions).

Neither the parabolic elements nor the hyperbolic elements have

fixed points in H2, but they still behave in a qualitatively different

way. Considering the parabolic map S(z) = z + b, we see that there

is no ǫ > 0 such that S moves all points of H2 more than ǫ. For

example, the hyperbolic distance between iy and S(iy) tends to 0 as

y → ∞. On the other hand, if we examine the map S(z) = rz, we

see that there is some ǫ > 0 such that S moves all points of H2 by at

least ǫ. Indeed, ǫ = | log(r)|.





Chapter 11

Riemannian Metrics on
Surfaces

The purpose of this chapter is explain what is meant by a smooth

surface with a Riemannian metric. The main construction generalizes

what we did for the sphere in §9.1 and also (especially) what we did

for the hyperbolic plane in §10.3. We will give the main definition of

a surface with a Riemannian metric at the end, after assembling all

the preliminary definitions.

A smooth surface with a Riemannian metric is a special case of

a smooth Riemannian manifold . Smooth Riemannian manifolds are

the subject of differential, or Riemannian, geometry. A book such

as [DOC] gives an excellent general account of smooth Riemannian

manifolds.

11.1. Curves in the Plane

A smooth curve in R2 is a smooth map f : (a, b) → R2. Such a map

is typically given by equations

f(t) = (x(t), y(t))

such that x(t) and y(t) are smooth functions. This is to say that

dnf

dtn
=

(
dnx

dtn
,
dny

dtn

)
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exists for all n. We will usually write f ′(t) for df/dt.

The function f is regular if f ′(t) 6= 0 for all t ∈ (a, b). As usual,

f ′(t) is known as the velocity of f at t. Sometimes it is useful to talk

about smooth curves defined on closed intervals. Thus, if we write

f : [a, b] → R2, we really mean that f is defined on some larger open

interval (a−ǫ, b+ǫ) and is smooth there. In particular f : [0, 0] → R2

is defined in a neighborhood of 0. This is the usual treatment of the

problem with taking derivatives at the endpoints.

11.2. Riemannian Metrics on the Plane

We defined inner products at the top of §10.4. Let I denote the set

of inner products on R2. Let U ⊂ R2 be an open set. A Riemannian

metric on U is a smooth map Ψ : U → I. In other words, a Rie-

mannian metric on U is a choice Gp of inner product for each p ∈ U .

This choice gives rise to the functions gij(p), via the formula

(11.1) gij(p) = Gp(ei, ej).

Here e1 = (1, 0) and e2 = (0, 1). We require that the functions gij
are smooth functions on U . So, you can specify a Riemannian metric

on U by specifying 4 smooth functions gij : U → R subject to the

following constraints:

• g12(p) = g21(p) for all p ∈ U .

• For all p ∈ U , the matrix {gij(p)} is positive definite. That

is, the matrix has positive eigenvalues.

A curve in U is just a curve in R2 which happens to lie entirely

in U . We can measure the length of a curve in U relative to the given

Riemannian metric, as follows: Let f : [a, b] → U be a smooth curve.

We define

(11.2) Riemannian length(f) =

∫ b

a

√
Gf(t)(f ′(t), f ′(t)) dt.

The integrand above is called the Riemannian speed of f at t. So,

we are computing the Riemannian length of f by integrating its Rie-

mannian speed. Of course, these quantities depend on the choice of

Riemannian metric. If we choose the standard Riemannian metric,
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which is to say the ordinary dot product at each point, then we re-

cover the ordinary notions of speed and length.

Exercise 1: Using the material in the previous chapter, describe

the Riemannian metric on the upper half-plane which gives rise to

the hyperbolic plane.

Exercise 2: Come up with a sensible definition of the Riemann-

ian area of a subset of R2, assuming that R2 has been equipped with

a Riemannian metric.

Exercise 3. Give an example of a Riemannian metric, defined on all

of R2, which has the following property. Any two points in R2 can

be joined by a smooth curve whose Riemannian length is less than 1.

Exercise 4. Let G be a Riemannian metric on the plane and let

p, q be two distinct points. Prove that there is some ǫ > 0 such that

any curve connecting p to q has length at least ǫ relative to G. Of

course, ǫ depends on the metric. (Hint : Use the fact that a positive

continuous function on a compact set has a positive infimum.)

11.3. Diffeomorphisms and Isometries

Let U and V be two open subsets of R2. A diffeomorphism from U

to V is a homeomorphism f : U → V with the following additional

properties:

• f is smooth, that is, all orders of partial derivatives of f

exist.

• For each p ∈ U , the matrix df(p) of first partial derivatives is

nonsingular. That is, df defines a vector space isomorphism

at each point. We abbreviate this by saying that f is regular .

• f−1 is smooth and regular.

Actually, the third condition follows from the other two and the In-

verse Function Theorem.

Note that dfp maps a tangent vector based at p to a tangent

vector based at f(p). Suppose that U and V are given Riemannian
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metrics. We say that a diffeomorphism f : U → V is a Riemannian

isometry if

Hf(p)(dfp(v), dfp(w)) = Gp(v, w), ∀v, w, p.

Here v and w are vectors and p ∈ U . Also G is the Riemannian metric

defined on U , and H is the Riemannian metric defined on V . We have

already encountered this concept in our second proof of Lemma 10.6.

Here is another point of view on Riemannian isometries. A Rie-

mannian metric on U ⊂ R2 turns U into a metric space in the fol-

lowing way. Given p, q ∈ U we define S(p, q) to be the set of smooth

curves in U which join p to q. We define d(p, q) to be the infimum of

the lengths of curves in S(p, q). This is exactly what we did both for

the sphere and for the hyperbolic plane in the preceding chapters. A

smooth map f : U → V is a Riemannian isometry if and only if it is

a metric isometry relative to the two metric space structures.

Exercise 5. Prove that d really is a metric on U . Prove also that a

Riemannian isometry between U and V gives rise to a metric space

isometry.

Exercise 6 (Challenge). Prove that there is a Riemannian metric

on the plane which makes it isometric to the upper hemisphere of S2,

relative to the round metric. (This part is not so hard.) Now, prove

that there is no Riemannian metric on the plane which makes it iso-

metric to the upper hemisphere of S2 relative to the chordal metric.

See §9.1 for definitions.

11.4. Atlases and Smooth Surfaces

Recall that a surface is a metric space S such that every point has

a neighborhood which is homeomorphic to R2. We say that a col-

lection of such neighborhoods is called an atlas . The neighborhoods

themselves are called coordinate charts . So, each element of the atlas

is a pair (U, h), where U is an open subset of Σ and h : U → R2 is

a homeomorphism. We require that the union of all the coordinate

charts in the atlas is the entire surface. In other words, each point in

the surface is contained in at least one coordinate chart.
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Suppose now that (U1, h1) and (U2, h2) are 2 coordinate charts,

and it happens that V = U1∩U2 is not empty. We define V1 = h1(V )

and V2 = h2(V ). Being the intersection of two open sets, V is an open

subset of both U1 and U2. Since h1 and h2 are homeomorphisms, V1

and V2 are open subsets of R2. On V1 the map

h12 = h2 ◦ h−1
1

is well defined. We have h12(V1) = V2. The map

h21 = h1 ◦ h−1
2

is defined on V2 and evidently h21(V2) = V1. The two maps h12

and h21 are inverses of each other. Also, both maps are continuous,

since they are the composition of continuous maps. In summary h12 :

V1 → V2 is a homeomorphism and h21 : V2 → V1 is the inverse

homeomorphism. These two functions are called overlap functions

because they are defined on the overlaps between coordinate charts.

Our atlas on Σ is said to be a smooth structure if all its overlap

functions are smooth diffeomorphisms. In other words, every time we

can produce an overlap function h12 : V1 → V2, it turns out to be a

diffeomorphism. We say that a smooth surface is a surface equipped

with a smooth structure.

Here is an annoying technical point. Let (U, h) be a pair such

that U is an open subset of Σ and h : U → R2 is a homeomorphism.

If (U, h) is not part of our atlas, then we can enlarge our atlas by

including (U, h) in it. This will produce possibly some new overlap

functions. If all the new overlap functions are diffeomorphisms, then

we say that (U, h) is compatible with our atlas. We say that our atlas

ismaximal if it already contains all compatible coordinate charts. It is

conventional for us to require that our atlases be maximal. However,

this point never actually comes up in practice.

11.5. Smooth Curves and the Tangent Plane

We have already discussed what we mean by a smooth curve in the

plane. Now we will generalize the idea, and speak about smooth

curves on a smooth surface. If we happen to have a smooth surface

embedded in Euclidean space, such as the sphere embedded in R3,
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then it is easy to talk about smooth curves. For instance, we could

say that a smooth curve f : (a, b) → S2 is smooth if each of the

3 coordinate functions is smooth. When we deal with an abstract

smooth surface, the situation is a bit trickier. We always need to

refer back to the coordinate charts defining the surface.

Let Σ be a smooth surface. Say that a map f : (a, b) → Σ is

smooth at t if there is some ǫ > 0 such that the following holds.

• (t− ǫ, t+ ǫ) ∈ (a, b).

• f((t − ǫ, t + ǫ)) is contained in a coordinate chart (U, h) in

our atlas.

• The curve h ◦ f : (t− ǫ, t+ ǫ) → R2 is a smooth curve.

The fact that our overlap functions are all diffeomorphisms means

that the notion of smoothness does not depend on which coordinate

chart we use. In other words, if f(t− ǫ, t+ ǫ) ⊂ U1 ∩U2 and (U1, h1)

and (U2, h2) are both coordinate charts, then

h2 ◦ f = h12 ◦ (h1 ◦ f).

Since h12 is smooth, the curve h1 ◦ f is smooth if and only if the

curve h2 ◦ f is smooth. Here are using the fact that the composition

of smooth maps is again smooth. This fact is in turn a consequence

of the chain rule.

We say that f : (a, b) → Σ is smooth if f is smooth at each

t ∈ (a, b). We say that f : [a, b] → Σ is smooth if f is defined and

smooth on a larger interval (a− ǫ, b+ ǫ).

Let p ∈ Σ be a point. Suppose that

f1, f2 : [0, 0] → Σ

are two curves such that f1(0) = f2(0) = p. We write f1 ∼ f2 if there

is a coordinate chart (U, h) such that p ∈ U and h◦f1 and h◦f2 have

the same velocity at 0. In other words, (h ◦ f1)′(0) = (h ◦ f2)′(0).

Exercise 7. Prove that ∼ is well defined, independent of the co-

ordinate chart we use. Prove also that ∼ is an equivalence relation.
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We define Tp(Σ) to be the set of equivalence classes of curves

f : [0, 0] → Σ such that f(0) = p. We can make Tp(Σ) into a vector

space as follows. If [f1] and [f2] are two equivalence classes of curves,

we define [f1] + [f2] to be the equivalence class of the curve g such

that the velocity of h ◦ g is the velocity of h ◦ f1 plus the velocity of

h ◦ f2. That is,

(h ◦ g)′(0) = (h ◦ f1)′(0) + (h ◦ f2)′(0).

Exercise 8. Prove that this notion of addition is well defined. In

other words, if we made this definition relative to two different coordi-

nate charts (U1, h1) and (U2, h2), then we could get the same answer.

(Hint : Use the fact that

h2 ◦ g = h12 ◦ (h1 ◦ g)

(and likewise for f1 and f2) and the fact that dh12 is a linear trans-

formation at each point. Now use the chain rule.)

We can also define scaling on Tp(Σ). We define r[f ] to be the

equivalence class of the curve which has r times the velocity of f at 0,

measured in any coordinate chart. Again, this is well defined because

the overlap functions are diffeomorphisms.

All in all, Tp(Σ) is a vector space for each p ∈ Σ.

Exercise 9. Prove that Tp(Σ) is isomorphic to R2.

11.6. Riemannian Surfaces

Suppose that Σ is a smooth surface. This means that we have a (max-

imal) atlas on Σ whose overlap functions are smooth diffeomorphisms.

Suppose, for each coordinate chart (U, h), we choose a Riemannian

metric on R2. We say that our choice is consistent if all the overlap

functions are Riemannian isometries relative to the choices. Thus,

the overlap function h12 considered above is a Riemannian isometry

from V1 to V2, when V1 is equipped with the Riemannian metric as-

sociated to (U1, h1) and V2 is equipped with the Riemannian metric

associated to (U2, h2).
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A Riemannian metric on Σ is a consistent choice of Riemannian

metrics on R2, one per coordinate chart. This definition is pretty

abstract, so I will give a second definition at the end of this section

which is perhaps more concrete.

Let f : [a, b] → Σ be a smooth curve. We can define the Rie-

mannian length of f as follows: First of all, we can find a partition

a = t0 < · · · < tn = b such that f([ti, ti+1]) is contained in a coor-

dinate chart (Ui, hi). Next, we can define Li to be the Riemannian

length of

hi ◦ f([ti, ti+1]).

Finally, we define the length of f to be L0+ · · ·+Ln. In other words,

we compute the lengths of a bunch of little pieces of f and then add

them together.

Lemma 11.1. The Riemannian length of f is well defined, indepen-

dent of the choices made in its definition.

Proof. Suppose first of all that we keep the partition the same but

use new coordinate charts (U ′
i , h

′
i) such that f([ti, ti+1]) ⊂ U ′

i . Then,

on [ti, ti+1] we have

h′
i ◦ f = (h′

i ◦ hi) ◦ (hi ◦ f).
But the map h′

i ◦hi is an overlap function and is an isometry relative

to the two Riemannian metrics. Thus Li = L′
i. This shows that the

Riemannian length of f does not change if we use different coordinate

charts from our atlas.

Suppose now that a = s0 < ... < sm = b is another partition, and

we are using a different sequence {(U ′
i , h

′
i)} of coordinate charts to

calculate the length. Then by considering all the si and also all the

tj (from our original partition) we can find a refinement a = u0 <

· · · < ul = b which contains all the si and also all the tj . (Basically,

we just take the collection of all the numbers and then resort them.)

We can use the charts (Ui, hi) to compute the length relative to

the u-partition, and we will get the same answer as if we used the

t-partition. The point here is just that integration is additive:
∫ ti+1

ti

=

∫ uk+1

t1

+ · · ·+
∫ ti+1

uk+h−1

.
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Here ti = uk < · · · < uk+h = ti+1. Likewise, we can use the charts

(U ′
i , h

′
i) to compute the length relative to the u-partition, and we will

get the same answer as if we used the s-partition. Thus, we reduce

to the previously considered case where the partition is the same but

the charts change. �

Here is another point of view. The object Tp(Σ) is a 2-dimensional

real vector space for each point p ∈ Σ. We could define a Riemannian

metric on Σ to be a smoothly varying choice of inner product Gp on

the vector space Tp(Σ) for each point p ∈ Σ. We just have to make

sense of the notion of smoothness. If we fix a coordinate chart (U, h),

then a Riemannian metric G on Σ gives rise to a Riemannian met-

ric H on R2 as follows. Suppose we have a point q ∈ R2 and two

vectors v, w. Let p = h−1(q) ∈ U and [f1], [f2] ∈ Tp(Σ) be the two

classes so that (h ◦ f1)′(0) = v and (h ◦ f2)′(0) = w. Then we define

Hq(v, w) = Gp([f1], [f2]). To say that our Riemannian metric on Σ

varies smoothly is to say that H is a smooth Riemannian metric on

R2 for any choice of coordinate chart. This other definition is com-

pletely equivalent to the one I gave above.

Exercise 10. Make up a plausible definition for what a smooth

Riemannian n-manifold ought to be, and develop the theory as far as

we have done here for surfaces.





Chapter 12

Hyperbolic Surfaces

In this chapter we will take up the informal discussion from §1.5. We

will first explain what a hyperbolic surface is, and then we will show

how the gluing construction discussed informally in §1.5 leads to a

hyperbolic surface; see [RAT] for a much more general treatment.

In fact, we will present a general method of constructing hyperbolic

surfaces out of convex geodesic hyperbolic polygons. At the end, we

will prove that every complete hyperbolic surface is covered by the

hyperbolic plane.

12.1. Definition

We will give two definitions of a hyperbolic surface. The first defini-

tion requires the material in the last chapter while the second defini-

tion does not.

Definition 12.1. A hyperbolic surface is a smooth surface with a

Riemannian metric, such that each point on the surface has a neigh-

borhood that is isometric to an open disk in the hyperbolic plane.

Our second definition is more elementary and does not require the

material on Riemannian manifolds discussed in the previous chapter.

143
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On the other hand, the second definition requires a few preliminar-

ies of its own. Let U and V be two open subsets of H2. Say that

a disk-like set is a subset of the plane that is homeomorphic to an

open disk. Say that a map f : U → V is a local hyperbolic isometry

if the restriction of f to each open component of U agrees with the

restriction of a hyperbolic isometry. The easiest case to think about

is when U and V are both connected. Then f : U → V is a local

isometry iff f is the restriction of a hyperbolic isometry to U .

Definition 12.2. A hyperbolic structure on Σ is an atlas of co-

ordinate charts on Σ such that the following holds:

• The image of every coordinate chart is a disk-like subset of

H2.

• The overlap functions are local hyperbolic isometries.

• The atlas is maximal.

Now we reconcile the two definitions. Suppose that Σ is a hyper-

bolic surface according to Definition 12.1. Then the local isometries

mentioned in Definition 12.1 give rise to an atlas of coordinate charts

in which the overlap functions are local isometries. This atlas is not

maximal, but then we can complete it to a maximal atlas using Zorn’s

lemma. (See any book on set theory, such as [DEV], for a discussion

of Zorn’s lemma. ) In this way, we see that Σ is a hyperbolic surface

according to Definition 12.2.

Exercise 1. Prove that a local hyperbolic isometry is a smooth

map. This amounts to showing that a linear fractional is infinitely

differentiable.

Suppose that Σ is a hyperbolic surface according to Definition 12.2.

According to Exercise 1, the system of coordinate charts on Σ has

smooth overlap functions. Therefore, Σ is a smooth surface. We can

define a Riemannian metric on Σ as follows. Let p ∈ Σ be a point.

Let (U, f) be a coordinate chart about p. This means that U is an

open neighborhood of p and f : U → H2 is a homeomorphism onto

a disk-like set. Let V,W ∈ Tp(Σ) be two tangent vectors. This is to

say V = [α] and W = [β] where α, β : (−ǫ, ǫ) → Σ are smooth curves
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with α(0) = β(0) = p. We define

Hp(V,W ) = Gf(p)((f ◦ α)′(0), (f ◦ β)′(0)).

Here G is the Riemannian metric on the hyperbolic plane. In other

words, we have just used the coordinate chart to transfer the metric

on H2 to the tangent space TpΣ of Σ at p. The fact that the overlap

functions are all hyperbolic isometries implies that the above defini-

tion of the metric is independent of which coordinate chart is used.

This puts a Riemannian metric on Σ with the desired properties.

Equipped with this metric, Σ satisfies Definition 12.1.

Now we know that the two definitions pick out the same objects

as hyperbolic surfaces.

12.2. Gluing Recipes

We would like a way to systematically build hyperbolic surfaces. Re-

call from §10.8 that a convex geodesic polygon is a convex subset of

H2 whose boundary consists of a simple closed path of geodesic seg-

ments. The idea is to glue together a bunch of geodesic polygons,

taking care to get the angle sums correct.

Let P be a geodesic polygon. Let e ∈ P be an edge. Say a

decoration of e is a labelling of e by both a number and an arrow. Say

that a decoration of P is a decoration of every edge of P . Whenever

we have built surfaces by gluing the sides of a polygon together, we

have always based the construction on a decoration of the polygon.

We say that a gluing recipe for a hyperbolic surface is a finite list

P1, . . . , Pn of decorated polygons. There are some conditions we want

to force:

• If some number appears as a label, then it appears as the

label for exactly two edges. This condition guarantees that

we will glue the edges together in pairs.

• If two edges have the same numerical label, then they have

the same hyperbolic length. This allows us to make our

gluing using (the restriction of) a hyperbolic isometry.
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• Any complete circuit of angles adds up to 2π. This condi-

tion guarantees that a neighborhood of each vertex is locally

isometric to H2.

2

4

4

1

3

2

1

3

1

34

2

Figure 12.1. A complete circuit

The third condition requires some explanation. A complete circuit

is a collection of edges

e1, e
′
1, e2, e

′
2, e3, e

′
3, . . . , e

′
k, e1.

with the property, for all j, that ej and e′j have the same numerical

label and e′j and ej+1 are consecutive edges of the same polygon.

(Here we are taking the indices cyclically, so that k + 1 is set equal

to 1.) Figure 12.1 shows what we have in mind.

There is one subtle condition that we need also to require. Let

vj be the vertex incident to e′j and ej+1. Then the arrow along ej+1

points to vj iff the arrow along e′j+1 points to v′j+1. Figure 12.1

depicts a situation where this holds. The point here is that we want

the edges in our chain to emanate from a single vertex in the quotient

space. The edges ej and e′j+1 subtend an angle αj and we want

α1 + · · ·+ αk = 2π.
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12.3. Gluing Recipes Lead to Surfaces

Theorem 12.1. Any gluing recipe gives rise to a hyperbolic surface.

Proof. Given a gluing recipe, we can form a surface Σ as follows.

First of all, we start out with the metric space X which is the disjoint

union of P1, . . . , Pn. We can do this by declaring d(p, q) = 1 if p ∈ Pi

and q ∈ Pj with j 6= i. For p, q ∈ Pj (the same polygon) we just

use the hyperbolic metric. So, you should picture X approximately

as a stack of polygons hovering in the air, as on the left-hand side of

Figure 12.1.

Now we define an equivalence relation on X using the rule that

p ∼ p′ iff p and p′ are corresponding points on like-numbered edges.

Here corresponding should be pretty obvious. Suppose e and e′ are
two like-numbered edges, both having length λ. Then there is some t

such that p is t units along e measured in the direction of the arrow.

Likewise there is some t′ such that p′ is t′ units along e′. Then p and

p′ are corresponding points iff t = t′.

The nontrivial equivalence classes typically have 2 members, with

1 member coming from each edge. However, for the vertices of the

polygons, each of which belongs to two edges, the corresponding

equivalence class might be larger. In Figure 12.1, the equivalence

class of the relevant vertex has 4 elements.

The surface is defined as Σ = X/∼. We would like to show that

Σ is indeed a surface, so we have to construct an atlas of coordinate

charts. Suppose that x is an interior point of some polygon P . Then

some open neighborhood Ux of x remains in the interior of P . No

point in Ux is equivalent to any other point of Σ. The inclusion map

Ux → P ⊂ H2 gives a coordinate chart from Ux to H2. We take Ux

to be a metric disk.

Suppose now that p ∈ Σ is an equivalence class consisting of two

points, in the interiors of a pair of edges, that are glued together

when the edges are paired. That is, p = {q, q′}, with q ∈ e and

q′ ∈ e′, where e and e′ are open edges. Let P and P ′ be the polygons
containing e and e′, respectively. Let U and U ′ be small half-disk

neighborhoods of q and q′ in P and P ′, respectively, as shown in

Figure 12.2.
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Figure 12.2. Half-disk neighborhoods

We define h : U ∪ U ′ → H2 so that the following holds.

• The map h, when restricted to either U or U ′, is the inclusion
map composed with a hyperbolic isometry.

• h(e ∩ U) = h′(e′ ∩ U ′) and the arrows go the right way.

• h(U) and h(U ′) lie on opposite sides of h(e) = h(e′).

This is pretty obvious. We first define h as the inclusion map on both

halves, and then we compose one half of the map with a suitable

isometry to adjust things. The main point here is that U ∩ e and

U ′ ∩ e′ are open geodesic segments of the same length.

Exercise 2. Prove that ∆ = (U ∪ U ′)/ ∼ is homeomorphic to an

open disk. More precisely, prove that h defines a homeomorphism ∆

to a disk in H2. Finally, prove that ∆ is an open neighborhood of p

in Σ.

Finally, suppose that p is the equivalence class coming from some

vertices of our polygons. Then we have one of the circuits mentioned

above. Let {q1, . . . , qk} be the equivalence class of p. In the example

shown in Figure 12.1, we have k = 4. Let Pj be the polygon that has

qj as a vertex. In each Pj we choose a little wedge-shaped neighbor-

hood consisting of all points of Pj within ǫ of qj .
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Exercise 3. Prove that the union (U1 ∪ · · · ∪ Uk)/ ∼ is homeo-

morphic to a disk.

We define a map h : U1 ∪ · · · ∪ Uk → H2 in such a way that the

following holds.

• The map h, when restricted to any Uj , is the inclusion map

composed with a hyperbolic isometry.

• h respects the gluing of edges.

Expressing the last condition is a bit clumsy, but I hope that you

can see what it means. If two edges are glued together, then h sends

them (or at least the portions inside our little pizza slices) to the same

segment in H2.

Exercise 4. Prove that (U1 ∪ . . . ∪ Uk)/ ∼ is an open neighbor-

hood of p in Σ and that h gives a homeomorphism from this set onto

an open disk in H2. (Hint : The circuit condition guarantees that the

images of h fit together to make a single hyperbolic disk.)

From the way we have defined things, the overlap functions are

all local hyperbolic isometries, so we have found an atlas on Σ whose

overlap functions are local hyperbolic isometries. We can complete

this to a maximal atlas, if we like, using Zorn’s lemma. �

12.4. Some Examples

Here are some additional examples for you to work out. The first ex-

ercise asks you to work out the discussion in §1.5. The next example

points to more flexible and systematic approach.

Exercise 5. Prove that there is a regular convex 4n-gon, with angles

π/2n, provided that n ≥ 2. Call this polygon P4n. Decorate P4n by

giving the opposite sides and making the arrows point in the same

direction. See Figure 1.7. Prove that P4n, as decorated, is a gluing

diagram for a hyperbolic surface.
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Exercise 6. Prove that there exists a right angled regular hexagon.

Construct a decoration of 4n such hexagons in such a way that it is

the gluing diagram for a hyperbolic surface.

Exercise 7 (Challenge). If you take n = 2 in Exercises 5 and

6 you get homeomorphic surfaces. Prove that they are not isometric.

Exercise 8 (Challenge). Prove that there are uncountably many

surfaces, all homeomorphic to the octagon surface from Exercise 5,

no two of which are isometric to each other.

12.5. Geodesic Triangulations

So far, we have shown how to build some hyperbolic surfaces from

gluing diagrams. In this section we will show that every compact

hyperbolic surface arises from this construction. We begin with a

well-known construction in H2.

Let X ⊂ H2 be a finite collection of points. For each p ∈ X, we

let Np be the set of points that are closer to p than to any point of

X.

Lemma 12.2. Np is convex. If Np is bounded, then Np is the interior

of a convex geodesic hyperbolic polygon.

Proof. Say that a geodesic half-plane is a set of points in H2 lying

to one side of a hyperbolic geodesic. Geodesic half-planes are convex.

Given any two points p, q ∈ H2, the set of points closer to p is a

geodesic half-plane. For this reason, Np is the intersection of finitely

many geodesic half-planes, and the boundary of Np is contained in

a finite union of geodesics. Since the intersection of convex sets is

convex, Np is convex. In case Np is bounded, the boundary evidently

is a convex geodesic polygon. �

Say that a geodesic triangulation of a hyperbolic surface is a de-

composition of the surface as the finite union of geodesic triangles.

Every pair of triangles should either be disjoint or share an edge or

share a vertex. If a hyperbolic surface has a geodesic triangulation,
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then we can cut the surface open along the triangles and thereby

obtain a description of the surface in terms of a gluing diagram.

Lemma 12.3. Every compact hyperbolic surface has a geodesic tri-

angulation.

Proof. Let S be the surface. By compactness, there is some d ∈ (0, 1)

such that every disk of radius d on the surface is isometric to a disk

of radius d in H2. Place a finite number of points on S in such a

way that every disk of radius D/K contains at least one point. The

constant K is yet to be determined. Let X denote this finite set of

points.

Given p ∈ X, let Bd(p) denote the disk of radius d about p. Let

Np ⊂ S be the set of points in S that are closer to p than to any other

point in X. We claim that each Np is isometric to the interior of a

convex geodesic hyperbolic polygon provided that K is large enough.

(This is not an immediate consequence of the previous result because

we are working on a surface and not directly in H2.) The boundary

of Np consists of points q such that q is equidistant between p and

some other point p′ of X. Let Xp denote the set of points p′ ∈ X such

that some point of Np is equidistant from p and p′. We can choose K

large enough so that Np ⊂ Bd(p) and Xp consists entirely of points

in the Bd(p). Now we apply the previous result. This shows that Np

is the interior of a convex geodesic polygon.

We have partitioned S into convex geodesic polygons. To finish

the triangulation, we just add in extra geodesic segments, as needed,

to divide each of the convex polygons into triangles. �

Theorem 12.3 allows to prove the Gauss–Bonnet Theorem for

hyperbolic surfaces.

Theorem 12.4 (Gauss–Bonnet). The hyperbolic area of a compact

hyperbolic surface S is −2πχ(S), where χ(S) is the Euler character-

istic of S. In particular, the area only depends on the Euler charac-

teristic.
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Proof. We give S a geodesic triangulation. From §3.4, we have the

formula

(12.1) χ(S) = F − E + V,

where F is the number of faces in the triangulation, E is the number

of edges, and V is the number of vertices.

Each triangle in the triangulation has 3 edges, and each edge

belongs to two triangles. For this reason, E = 3F/2. At the same

time, the total sum of all the interior angles of all the triangles is

2πV , because the sum of these angles around any one vertex is 2π.

Putting these equations together, we get

(12.2) χ(S) = −F

2
+ V = −F

2
+

1

2π

∑

angles

θi.

For each triangle τ , let θi(τ), for i = 1, 2, 3, be the three interior

angles of τ . Hence

−2πχ(S) =

π

(
F −

∑

angles

θi

)
=

∑

triangles

(
π − θ1(τ)− θ2(τ)− θ3(τ)

)
=∗

∑

triangles

area(τ) =

area(S).

(12.3)

The starred equality comes from Theorem 10.9. �

Theorem 12.4 is a special case of the Gauss-Bonnet Theorem from

differential geometry. See [BAL] for a discussion of the proof of this

general result.

12.6. Riemannian Covers

We say that a Riemannian cover of a Riemannian manifold X is a

Riemannian manifold X̃ such that the covering map E : X̃ → X is

a local isometry. We mean that the differential dE is an isometry on
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each tangent plane, measured with respect to the two Riemannian

metrics.

Lemma 12.5. Suppose that X is a Riemannian manifold and X̃ is

a covering space of X. Then one can make X̃ into a Riemannian

manifold in such a way that the covering map E : X̃ → X is a

Riemannian cover.

Proof. First of all, X̃ inherits the structure of a manifold. We have

the covering map E : X̃ → X. Each point x̃ ∈ X̃ lies in a small

open neighborhood Ũ such that U = Ũ is an evenly covered neigh-

borhood of x = E(x̃) and also (U, φ) is a coordinate chart for x. The

composition φ ◦ E : Ũ → Rn gives a coordinate chart for an open

neighborhood of x̃. The overlap functions for these coordinate charts

on X̃ are the same as for the coordinate charts on X. Hence X is a

smooth manifold and E is a smooth map.

There exists a unique Riemannian metric on X̃ so that E : X̃ →
X is an isometry. We define the metric g̃ such that

g̃x̃(X,Y ) = gx(dE(X), dE(Y )).

Here dE is the differential of E. Here X and Y are tangent vectors to

X̃ at x̃. When measured in the local coordinates we have described,

the differential dE is just the identity map. So, the metric g̃ is actually

an inner product.

There is a second way to think about the Riemannian metric

on X̃ which perhaps is more clear. The Riemannian metric on X

is just a collection of Riemannian metrics on various open sets of

Rn that are compatible in the sense that all overlap functions are

isometries. We may, first of all, restrict our attention to open sets

in X that are evenly covered by the covering map. We can then use

the preimages of these open sets as coordinate charts in X̃. Since

the overlap functions for the charts on X̃ are the same as on X, the

same collection of compatible metrics defines a Riemannian metric on

X̃. �

Exercise 9. Show that a Riemannian covering map E : X̃ → X

is distance nonincreasing. Also, give an example of a Riemannian

covering from a connected space X̃ to a connected space X that is
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not a global isometry. That is, give an example where there are

points x̃, ỹ ∈ x̃ that are farther apart than their corresponding im-

ages x, y ∈ X.

Recall that a metric space is complete if every Cauchy sequence in

the space converges. For a Riemannian manifold, there is a different

notion, called geodesic completness , which people often mean when

they say that a Riemannian manifold is complete. However, the two

definitions are the same, thanks to the Hopf–Rinow Theorem. See

[DOC] for a proof. We mention this just to keep consistent with

other texts. We only care about the metric completeness.

Lemma 12.6. Let E : X̃ → X be a Riemannian covering space. If

X is complete, then so is X̃.

Proof. Let {x̃n} be a Cauchy sequence in X̃. We have constructed

things in such a way that the map E : X̃ → X is distance nonin-

creasing. Setting xn = E(x̃n), we now know that {xn} is a Cauchy

sequence in X. Since X is complete, there is some limit point x∗.
There is an evenly covered neighborhood U of x∗ which contains xn

for n large. But then all the points x̃n lie in the same component of

Ẽ−1(U) for n large. But E : Ũ → U is a homeomorphism. In par-

ticular, E maps convergent sequences to convergent sequences and so

does E−1. Since {xn} is a convergent sequence in U , the sequence

{x̃n} is a convergent sequence in Ũ . �

12.7. Hadamard’s Theorem

In this section we prove Hadamard’s Theorem, in two dimensions. See

[DOC] for a proof in general. The version of Hadamard’s Theorem

we prove is a technical step in our proof that any complete hyperbolic

surface is covered by H2. Just for this section, let H = H2 stand

for the hyperbolic plane.

Theorem 12.7 (Hadamard). Let H be a complete and simply con-

nected surface that is locally isometric to H2. Then H is globally

isometric to H2.
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A surface is oriented if we can make a continuous choice of basis

for each tangent plane. Any simply connected surface is oriented.

Let h ∈ H be a point and let h ∈ H be a point. Both points have

neighborhoods which are isometric to disks in the hyperbolic plane.

Thus we can find an isometry I between a neighborhood U ⊂ H of

h and a neigborhood U ⊂ H of h. Let x ∈ H be any point. We can

take I to be orientation preserving.

Let γ be a continuous path connecting h to x.

Lemma 12.8. I can be extended to a neighborhood of γ in such a

way that I is a local isometry at every point along γ.

Proof. We think of γ as a map from [0, 1] to H, with γ(0) = h and

γ(1) = x. Say that a point t ∈ [0, 1] is good if this lemma holds for

the restriction of γ to the interval [0, t]. Note that 0 is good. Note

also that if t is good, then so is s ∈ [0, t]. Hence the set J of good

points is an interval that contains 0. Moreover, since local isometries

are defined on open sets, J is an open interval.

We claim that J is a closed interval. Suppose that all points

t ∈ [0, s) are good. We take a sequence of points {sn} ∈ [0, s) such

that sn → t. Then {γ(sn)} is a Cauchy sequence. Since I is not

distance increasing, {I(γ(sn)} is also a Cauchy sequence. Since H is

complete, this Cauchy sequence converges. We define

I(t) = lim I(γ(sn)).

We would like to see that in fact I is defined and a local isometry in

a neighborhood of γ(t).

There is a local isometry I ′ carrying a neighborhood U of γ(t) to

a disk in H2. Since every two points have isometric neighborhoods,

we can assume that I ′ and I agree on γ(t). Once n is large, we have

γ(sn) ∈ U . The points I(γ(sn)) and I ′(γ(sn)) are the same distance

from I(γ(t)). So, we may adjust I ′ by a rotation so that I and I ′

agree on some γ(sn). But then I and I ′ agree on all of γ(sn, t]. The

point is that two orientation-preserving isometries agree everywhere

provided that they agree on two points. This shows that the union

map I ∪ I ′ is a local isometry at all points of γ[0, t].
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Our argument shows that t is good, and therefore that J is a

closed interval. Since J is open, closed, and connected, we must have

that J = [0, 1]. �

Now we have a candidate map I : H → H. However, we need

to see that this map is well defined. That is, we need to see that the

point I(x) is independent of the choice of path γ joining h to x. This

is where we use the simple connectivity assumption.

Let γ0 and γ1 be two paths joining h to x. We think of γ0 and γ1
both as maps from [0, 1] into H, with γ0(0) = γ1(0) = h and γ0(1) =

γ1(1) = x. Since H is simply connected, there is a path homotopy

γt from γ0 to γ1. The point xt = I(γt(1)) varies continuously with t.

On the other hand, note that the same extension in the above lemma

works for both γs and γt as long as s and t are close together. Hence

xs = xt for s and t close. But this shows that xt does not move at

all.

Our extension gives a local isometry I : H → H. But the exis-

tence of our extension just used the following.

• Completeness of H.

• Local homogeneity of H, in connection with the map I ′

above.

• Path connectivity and simple connectivity of H.

All these properties hold with the two spaces reversed. Reversing

the roles of H and H, we construct the inverse map I−1 using the

same method. Hence both I and I−1 are homeomorphisms and local

isometries. Bring local isometries, both maps I and I−1 are globally

distance nonincreasing. This is only possible if both these maps are

global isometries.

12.8. The Hyperbolic Cover

We are almost done with the proof that every complete hyperbolic

surface is covered by the hyperbolic plane. We just need one more

technical result.

Lemma 12.9. A complete hyperbolic surface is good in the sense of

Chapter 7.
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Proof. Let X be a complete hyperbolic surface. A sufficiently small

ball about any x ∈ X is isometric to a hyperbolic disk. Such sets

are obviously both conical and simply connected. Indeed, we can join

each point y ∈ Bǫ(x) to x by a geodesic. We just need to see that

any path in X is good.

Consider a continuous path f0 : [0, 1] → X. Every point x ∈
f0[0, 1] has a neighborhood Ux that is isometric to a hyperbolic disk.

By compactness, there is a single positive constant, say 2ǫ that works

for all points of f0[0, 1]. Let f1 : [0, 1] → X be a path such that

D(f0, f1) < ǫ. This means that distance between f0(t) and f1(t)

is less than ǫ. For each t ∈ [0, 1] there is a geodesic gt[0, 1] → X

connecting f0(t) to f1(t) that remains within the ǫ-ball about f0(t).

For s sufficiently near t, the two paths γs and γt lie in the 2ǫ ball

about γ0(t). Therefore, the path γt varies continuously with t. But

then the map F (s, t) = γs(t) gives a homotopy from f0 = F (0, ∗) to
f1 = F (1, ∗). �

Theorem 12.10. A complete hyperbolic surface is universally cov-

ered by H2.

Proof. Let X be a complete hyperbolic surface. We know that X

is a good metric space in the sense of Chapter 7. By Theorem 7.1,

there exists a simply connected covering space X̃ and a covering map

E : X̃ → X. The space X̃ is complete by Lemma 12.6. But then, by

Hadamard’s Theorem, X̃ is isometric to H2. �

What I (and many people) find really great about this result is

that it opens the door to beautiful tilings of the hyperbolic plane.

These are the kinds of tilings drawn by M. C. Escher in his Circle

Woodcut series. Here we will sketch the idea behind these tilings. We

begin with a general exercise that justifies the construction we give

below.

Exercise 10. Let X̃ → X be a Riemannian covering of a complete

Riemannian manifold X. Let U be a simply connected open subset of

X. Let Ũ = E−1(U). Prove that U is evenly covered by Ũ and that

the restriction of E to any component of Ũ is an isometry between



158 12. Hyperbolic Surfaces

that component and U . (Hint : Imitate the proof of Hadamard’s The-

orem to construct an inverse map that is also a local isometry.)

Now consider a description of a hyperbolic surface as one obtained

by gluing together the sides of a hyperbolic polygon. For instance, if

we glue together 4 regular right angled hexagons in a suitable pattern,

we get a hyperbolic surface of Euler characteristic −2; see §12.4. Let
X be a hyperbolic surface obtained by this construction. The interiors

of the right angled hexagons are embedded and simply connected in

X. We can consider the preimages of these open hexagons in H2 by

pulling them back by the map E. By Exercise 10, the result is an

infinite collection of open right angled hexagons H2.

At the same time, X contains a graph whose edges are embedded

geodesic arcs. These arcs are the images of the edges of the hexagons

under the gluing maps. The preimages of these arcs in H2 are the

interfaces between the open hexagons. The whole picture fits together

to give a tiling of H2 by right angled hexagons. Being right angled,

these hexagons necessarily meet 4 per vertex. This is a hyperbolic

geometry analogue of the picture we developed in §6.3.
In §6.3, we actually went the other way around. We started with

the tiling and then produced the covering map. The situation here

is so concrete that we can actually do the same thing. We take an

infinite supply of regular right angled hyperbolic hexagons and glue

them together so that they meet 4 per vertex. The same argument as

the one given in Chapter 12 shows that the result is locally isometric

to the hyperbolic plane. With a bit of effort, one can see that the

resulting space is both simply connected and complete, and hence

globally isometric to the hyperbolic plane. Once we have built this

tiling of H2 by hexagons, we can imitate the construction in §6.3,
directly producing the covering map from H2 to the surface.

Given that we can construct the universal cover E : H2 → X

directly in this case, without resorting to Theorem 12.10, you might

wonder why we need this result at all. I suppose that the best an-

swer to this question is that Theorem 12.10 is completely general.
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We do not have to fool around with the combinatorics of gluing to-

gether infinite families of polygons every time we want to construct

the universal cover of a hyperbolic surface.
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Chapter 13

A Primer on Complex
Analysis

The purpose of this chapter is to present some of the foundational

results in complex analysis. I have tried to write this chapter in such

a way that someone who knows no complex analysis could follow

along. However, the development here is rather rapid and terse. The

ideal reader is a person who has already taken a semester of complex

analysis, but who perhaps does not remember the proofs of the main

results. This chapter collects the basic results in one place. All the

material here can be found in any book on complex analysis; see, e.g.,

[AHL].

13.1. Basic Definitions

Throughout the chapter U will denote an open subset of C, the com-

plex plane. Let f : U → C be a continuous map. We say that f has

a complex derivative at z ∈ U if the quotient

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists and is finite. Note that h is allowed to be a complex number.

f is said to be complex analytic in U if f ′(z) exists for all z ∈ U and

the function z → f ′(z) varies continuously in U . Complex analytic

163
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functions are sometimes called holomorphic functions . The two terms

are synonyms.

Complex analysis is mainly the study of complex analytic func-

tions. In this chapter we will discuss complex analytic functions from

3 points of view:

• A complex analytic function is a function that has a complex

derivative at each point, as we have just discussed.

• A complex analytic function is a function which satisfies the

Cauchy Integral Formula.

• A complex analytic function is a function which agrees with

its Taylor series in a neighborhood of each point.

Each of these concepts brings out a different characteristic of a com-

plex analytic function. A major part of an undergraduate complex

analysis course is explaining why these three definitions are the same.

Among other things, we will establish the equivalence of the 3 defini-

tions in this chapter.

Here is an overview of this chapter. The next several sections lead

up to the Cauchy Integral Formula. Once we establish the Cauchy

Integral Formula, we will prove a number of results about complex

analytic functions. We will consider the connection to power series

at the end.

Exercise 1. Suppose that f and g are complex analytic in U and

g is never 0 in U . Prove that the functions f + g and f − g and fg

and f/g are all complex analytic in U . Conclude that any function

P (z)/Q(z), where P and Q are polynomials, is complex analytic away

from the roots of Q.

Exercise 2. Suppose that f is complex analytic on U and g is com-

plex analytic on V and f(U) ⊂ V . Prove g ◦ f is complex analytic

and the complex derivative satisfies (g ◦ f)′(z) = g′(f(z))f ′(z). This
is the chain rule.
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Being a complex analytic map is rather special. For instance, the

function f(z) = z2 + 3z is not complex analytic in C. So, not all

smooth maps are complex analytic.

We can think of a complex analytic function f as a map from R2

to R2 by writing

f(x+ iy) = u(x+ iy) + iv(x+ iy).

Recall that f is differentiable at the point (x, y) if the matrix of partial

derivatives

df =

[
ux uy

vx vy

]

exists at p = (x, y) and

lim
t→0

f(p+ tv)− f(v)

t
= df |p(v).

Here t ∈ R. To say that f has a complex derivative at z = x+ iy is

the same as saying that f is differentiable and df |p is the composition

of a rotation and a dilation. That is
[
ux uy

vx vy

]
=

[
r cos(θ) r sin(θ)

−r sin(θ) r cos(θ)

]
, r ∈ R, θ ∈ [0, 2π).

Equating terms, we get

ux = vy, uv = −vx.

These are called the Cauchy–Riemann equations . Thus, if f is com-

plex analytic, then its first partials vary continuously and satisfy the

Cauchy–Riemann equations.

The converse is also true: f is complex analytic provided that df

exists, is continuous, and satisfies the Cauchy–Riemann equations.

13.2. Cauchy’s Theorem

Suppose γ is a smooth oriented arc in C and f is a complex val-

ued function defined in a neighborhood of γ. We define a complex

line integral along γ as follows. Letting g : [a, b] → γ be a smooth

parametrization of γ that respects the orientation of γ, we define
∫

γ

f dz =

∫ b

a

f(g(t))
dg

dt
dt.
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The same argument as in §8.6 shows that the answer only depends

on γ and not the parametrization. Also, were we to switch the orien-

tation, the value of the line integral would switch signs.

Exercise 4. Let λ be a counterclockwise oriented circle centered

at 0, and let f(z) = 1/z. Prove that
∫
λ
f dz = 2πi.

If we have a finite union γ = {γj} of smooth oriented arcs, we

define ∫

γ

f dz =
∑

j

∫

γj

f.

In particular, we want to consider the case when γ is a circular poly-

gon. A circular polygon is an embedded loop made by concatenating

line segments and arcs of circles; see Figure 13.1 for an example.

Theorem 13.1 (Cauchy). Let γ be a circular polygon. Suppose that

f is complex analytic in a neighborhood of the domain bounded by γ.

Then
∫
γ
f dz = 0.

Proof. Let f = u+ iv. Letting dx and dy be the usual line elements,

we can write
∫

∂D

f dz =

∫

∂D

(u+iv)(dx+idy) =

∫

∂D

(udx−vdy)+i

∫

D

(vdx+udy).

By Green’s theorem, the integral on the right-hand side equals
∫

D

(uy + vx)dxdy + i

∫

D

(ux − vy)dxdy.

Both pieces vanish, due to the Cauchy–Riemann equations. �

Remark: In §8.7 we proved Green’s Theorem for polygons. The case

of circular polygons follows from the polygon case and a straightfor-

ward limiting argument. Alternatively, most books on multivariable

calculus have a proof of Green’s Theorem in great generality; see, e.g.,

[SPI]. Cauchy’s Theorem holds in the same generality that Green’s

Theorem holds, but the version we state is sufficient for all the appli-

cations we give.
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13.3. The Cauchy Integral Formula

Here is the beautiful Cauchy Integral Formula.

Theorem 13.2 (Cauchy Integral Formula). Let γ be a circular poly-

gon, oriented counterclockwise around the domain D that it bounds.

Let a ∈ D − γ. Suppose that f is complex analytic in a neighborhood

U of D. Then

(13.1) f(a) =
1

2πi

∫

γ

f(z)

z − a
dz.

Proof. We translate the whole picture and consider without loss of

generality the case when a = 0. The function g(z) = f(z)/z is com-

plex analytic in U − {0}. Let β be the circular polygon shown in

Figure 13.1.

λ

γ

0

Figure 13.1.

We have

(13.2)

∫

β

g dz = 0

by Cauchy’s Theorem. We allow the two oppositely oriented vertical

segments in β to approach each other. In the limit, the contributions
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from the two vertical segments cancel out, and equation (13.2) yields

(13.3)

∫

γ

g(z) =

∫

λ

g(z).

Here λ is a counterclockwise circle centered at 0. Define

(13.4) I =

∣∣∣∣
∫

γ

g(z)dz − 2πif(0)

∣∣∣∣.

We want to show that I = 0. Combining Exercise 4 and Equation

13.3, we have

(13.5) I =

∣∣∣∣
∫

γ

g(z)dz − f(0)

∫

λ

dz

z

∣∣∣∣ =
∣∣∣∣
∫

λ

f(z)

z
dz −

∫

λ

f(0)

z
dz

∣∣∣∣.

Now we have a bound on I that is expressed entirely in terms of λ.

Rearranging the terms of the last integral, we have

(13.6) I =

∣∣∣∣
∫

λ

f(z)− f(0)

z
dz

∣∣∣∣ ≤ length(λ)× 2|f ′(0)|.

The last inequality holds once λ is sufficiently small. Letting λ shrink

to a point, we see that I = 0, as desied. �

13.4. Differentiability

Here we use the Cauchy Integral Formula to prove some results about

the differentiability of complex analytic functions. Our first result is

not so important in itself, but it illustrates how one uses the Cauchy

Integral Formula to get a formula for the derivative of a complex

analytic function.

Theorem 13.3. Suppose that f is a complex valued and continuously

differentiable function defined in an open set U . If f satisfies the

Cauchy Integral Formula with respect to every circle in U , then f is

complex analytic in U .
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Proof. Let a ∈ U and let γ ⊂ U be a circle surrounding a. Using

the Cauchy Integral Formula, we compute

lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

1

2πih

(∫

γ

f(z)

z − a− h
dz −

∫

γ

f(z)

z − a
dz

)
=

= lim
h→0

1

2πi

∫

γ

f(z)

(z − a)(z − a− h)
dz =

=
1

2πi

∫

γ

f(z)

(z − a)2
dz.

(13.7)

This tells us that f has a complex derivative at a and also gives a

formula for it. �

Theorem 13.4. Suppose that f is a complex analytic function defined

in an open set U . Then f ′ is also complex analytic in U .

Proof. Note that f ′ exists just by virtue of the fact that f is complex

analytic. Since f is complex analytic in U , Theorem 13.3 holds for f .

Equation (13.7) gives us a formula for f ′. We compute

lim
h→0

f ′(a+ h)− f ′(a)

h

= lim
h→0

1

2πih

(∫

γ

f(z)

(z − a− h)2
dz −

∫

γ

f(z)

(z − a)2
dz

)
=

=
2

2πi

∫

γ

f(z)

(z − a)3
dz.

(13.8)

Here γ is some circle that surrounds a. Hence f ′ has a complex

derivative throughout U and equation (13.8) gives a formula for it.

In light of equation (13.8), the function f ′′ is continuous. Hence f ′ is
complex analytic in U . �

An immediate corollary is that complex analytic functions are

infinitely differentiable. The calculation in equation (13.8), when done

inductively, yields the following formula for the nth derivative of a

complex analytic function f .

(13.9) f (n)(a) =
n!

2πi

∫

γ

f(z)

(z − a)n+1
dz.



170 13. A Primer on Complex Analysis

13.5. The Maximum Principle

Let f be a complex analytic function in a connected open set U . Here

we will show that f cannot take on its maximum value at a point in

U unless f is constant. We will assume that f takes on a maximum

at some point a ∈ U , and we will derive a contradiction. If f has an

interior maximum, we can compose f with translations and dilations

and arrange the following properties.

• |f(0)| = 1.

• U contains the unit disk.

• |F (z)| ≤ 1 for all |z| = 1.

• |F (z)| < 1 for some z such that |z| = 1.

Let γ be the unit circle. By the Cauchy Integral Formula we have

1 = |f(0)| = 1

2π

∣∣∣∣
∫

γ

f(z)

z

∣∣∣∣ ≤∗ 1

2π

∫

γ

|f(z)|dz < 1.

This is a contradiction. The starred inequality is essentially the tri-

angle inequality. For later purposes we work out some consequences

of the Maximum Principle.

Lemma 13.5. Suppose that f(z)/zn is well defined at 0 and complex

analytic in a neighborhood of the unit disk. Then f(z) ≤ M |z|n,
where M is the maximum value of |f(z)| on the unit circle.

Proof. From the Maximum Principle we get the result that

|f(z)|/|zn| ≤ M.

Hence |f(z)| ≤ M |z|n. �

Lemma 13.6. Suppose, for all n, that the function f(z)/zn is well

defined at 0 and complex analytic in a neighborhood of the unit disk.

Then f is identically 0 on the unit disk.

Proof. From the preceding result, we have |f(z)| ≤ M |z|n. If |z| < 1,

then

lim
n→∞

M |z|n = 0.

Hence |f(z)| = 0 if |z| < 1. By continuity, |f(z)| = 0 if |z| ≤ 1. �



13.6. Removable Singularities 171

13.6. Removable Singularities

Here we will prove the following result:

Theorem 13.7. Let U be an open set that contains a point b. Suppose

that f is complex analytic and bounded on U −{b}. Then f(b) can be

(uniquely) defined so that f is complex analytic in U .

Proof. Let γ and β and λ be the loops used to prove the Cauchy

Integral Formula. So, λ is a small loop surrounding b and γ is a big

loop surrounding b. Let |λ| denote the radius of λ. Let D be the open

domain bounded by γ. We define g : D → C by the integral

g(a) =
1

2πi

∫

γ

f(z)

z − a
dz.

The same calculation as in the proof of Theorem 13.4 shows that g is

complex analytic on all of D. We will show that f(a) = g(a) for all

a ∈ D−{b}. Once we know this, we set f(b) = g(b) and we are done.

Now suppose that a 6= b. Since f(z) is bounded in a neighborhood

of b we have

lim
|λ|→0

∫

λ

f(z)

z − a
dz = 0.

But, by the Cauchy Integral Formula,

f(a) =
1

2πi

∫

β

f(z)

z − a
dz

no matter which choice of λ we make. Therefore

f(a) = lim
|λ|→0

1

2πi

∫

β

f(z)

z − a
dz =

1

2πi

∫

γ

f(z)

z − a
dz = g(a).

So f(a) = g(a) for all a ∈ D − {b}. �

Lemma 13.8. Let D denote the unit disk. Suppose that f is complex

analytic in a neighborhood of D and |f(z)|/zn is bounded on D−{0}.
Then f is identically 0 on D.

Proof. The function f(z)/zn is complex analytic in the unit disk by

the above result. Lemma 13.6 now says that f is identically 0. �
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13.7. Power Series

We say that a sequence {an} of complex numbers satisfies the unit

convergence condition (or UCC) if

(13.10) lim
n→∞

anρ
n = 0, ∀ρ ∈ [0, 1).

The UCC implies that the terms in the sequence {|an|ρn} decay ex-

ponentially fast for any ρ < 1. To see this, we choose any ρ∗ ∈ (ρ, 1)

and note that

|an|ρn = |an|(ρ∗)n ×
(

ρ

ρ∗

)n

<

(
ρ

ρ∗

)n

for n sufficiently large.

Exercise 5. Suppose that {an} satisfies the UCC. Let k > 0 be any

integer and let C be any constant. Prove that the sequence {Cnkan}
also satisfies the UCC.

Now we will discuss the convergence of power series to complex

analytic functions, as well as the term-by-term differentiation of these

series. Let {an} be a sequence satisfying the UCC. First, we define a

“finite series”, which is just a polynomial.

(13.11) fn(z) =

n∑

k=0

akz
k.

Lemma 13.9. The sequence {fn(z)} is a Cauchy sequence of complex

numbers for all |z| < 1.

Proof. If a, b > N and N is sufficiently large, then

|fa(z)− fb(z)| = |
b∑

n=a

anz
n| ≤

b∑

n=a

|an||z|n ≤
∞∑

N

δn =
δn

1− δ
.

Here we have chosen some ρ∗ > |z| and taken δ = |z|/ρ∗. This

calculation establishes what we want. �

Lemma 13.9 says that the limit

(13.12) f(z) =
∑

anz
n = lim

n→∞
fn(z)
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exists provided that |z| < 1. Here is our main result about this infinite

series.

Theorem 13.10. f(z) is complex analytic in the open unit disk and

f ′(z) is obtained by differentiating the series term-by-term.

Proof. Let gN = f − fN . Then

f(z + h)− f(z)

h
=

fN (z + h)− fN (z)

h
+

gN (z + h)− gN (z)

h
.

From Exercise 1 above fN (z) is complex analytic. Also, the sequence

{nan} satisfies the UCC by Exercise 4. Hence, limN→∞ f ′
N (z) exists

at every point in the unit disk. Moreover, this limit is just obtained

by differentiating the series for f(z) term by term. To prove our result

we just have to show that

lim
h→0

f(z + h)− f(z)

h
= lim

N→∞
f ′
N (z).

This is the same as showing that

lim
N→∞

lim
h→0

gN (z + h)− gN (z)

h
= 0.

On the individual terms we have the bound

|an(z + h)n − anz
n

h
| = |an||

(z + h)n − zn

h
| ≤∗ n|an||z + h|n−1.

The starred inequality comes from the fact that the map φ(z) = zn

expands distances in C by at most nδn−1 as long as |z| ≤ δ.

As long as h is fairly small, we can choose some δ < 1 and restrict

our attention to the case |z + h| < δ < 1. Given the above estimate,

we get

|gN (z + h)− gN (z)

h
| ≤

∞∑

n=N

n|an|δn−1 =

∞∑

n=N

nδ|an|δn = RN .

(We are just calling the last expression RN for convenience.) But the

sequence {nδ|an|} satisfies the UCC by Exercise 5. Hence, the terms

comprising RN decay exponentially. Hence, limN→∞ RN = 0. But

the inequality above holds for any h with |z + h| < δ. Hence

lim
N→∞

lim
h→0

|gN (z + h)− gN (z)

h
| ≤ lim

N→∞
RN = 0.

This is what we wanted to prove. �
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The above result, applied iteratively, shows that the kth complex

derivative f (k)(z) is complex analytic in the open unit disk and is

obtained by differentiating the series for f(z) term-by-term k times.

Our discussion, which focused on the unit disk, generalizes in

a straightforward way. Say that the sequence {bn} satisfies the R-

convergence criterion if the sequence {anRn} satisfies the UCC. In

this case the series
∑

bn(z−z0)
n is complex analytic in the open disk

of radius R about z0 and the same result as above applies.

13.8. Taylor Series

The basic result we want to prove is that a complex analytic function

equals its Taylor series. We begin with a technical lemma.

Lemma 13.11. Suppose that f is complex analytic in a neighborhood

of the unit disk. Then the sequence

{f (n)(0)/n!}

is bounded and hence satisfies the UCC.

Proof. It follows immediately from equation (13.9) that |f (n)| ≤
Mn!, where M is the maximum value attained by f on the closed

unit disk. �

Lemma 13.11 says that the Taylor series for f about 0 defines a

power series which converges and is complex analytic in a neighbor-

hood of the unit disk. The next result says that f coincides with its

Taylor series in the unit disk.

Theorem 13.12. Suppose that f is complex analytic in a neighbor-

hood of the unit disk. Then f equals its Taylor series on the unit

disk.

Proof. Since the Taylor series f̃ of f is defined and complex analytic

on the unit disk, we can consider the difference function f − f̃ . This

complex analytic function has zero Taylor series. Thus, it suffices to

prove the following special case. If the Taylor series of f vanishes

identically at 0, then f is zero on the whole unit disk.
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If g is any function with g(0) = 0, we have

(13.13) |g(z)| ≤
∫ 1

0

|g′(tz)|dt.

Here g′(tz) is the complex derivative of the function z → g(tz). Equa-

tion (13.13) is best seen geometrically. The idea is that |g′(tz)| mea-

sures the speed of the curve t → g(tz) which connects 0 to g(z).

Let ∆ be the closed unit disk. Fix n for the moment. Since

fn(0) = 0 we can choose δ > 0 so that |f (n)(z)| < 1 for all |z| < δ.

Applying equation (13.13) to g = f (n−1), we get

(13.14) |f (n−1)(z)| ≤ |z|, ∀|z| ≤ δ.

Applying equation (13.13) to g = f (n−2) and using the bound in

equation (13.14), we get

(13.15) f (n−2) ≤ |z|2/2, ∀|z| ≤ δ.

Continuing in this way, we get

(13.16) |f(z)| ≤ |z|n/n!, ∀|z| ≤ δ.

In particular, |f(z)|/|z|n is bounded onDn−{0}, whereDn is the disk

of radius δ. Note that δ depends on n, but this does not bother us.

By compactness, |f(z)|/|z|n is bounded on ∆−Dn. Hence |f(z)|/|zn|
is bounded on ∆ − {0}. Since this holds for all n, Lemma 13.8 says

that f is identically 0 on the unit disk. �

Exercise 6. Define the exponential function

E(z) =

∞∑

n=0

zn

n!
.

Prove that the series defining E(z) converges on all of C. Prove also

that E′(z) = E(z) and that E(z1 + z2) = E(z1)E(z2). For this last

part, you can do it by manipulating the series directly and applying

the binomial theorem. The restriction of E to R coincides with the

familiar exponential function.

Exercise 7. Define the two functions

C(z) = 1− z2

2!
+

z4

4!
− z6

6!
· · · , S(z) = z − zz

z!
+

z5

5!
− z7

7!
· · · .
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Show that these series converge for all z ∈ C and that C(x) = cos(x)

and S(x) = sin(x) for all x ∈ R. Verify that E(z) = C(z) + iS(z).

Exercise 8. Let us define cos(x) and sin(x) such that the map

γ0(x) = (cos(x), sin(x))

is the unit speed counterclockwise parametrization of the unit circle

such that γ(0) = (1, 0). Prove that C(x) = cos(x) and S(x) = sin(x)

for all x ∈ R. (Hint : Consider the map γ1(x) = (C(x), S(x)). Check

that
d

dx

(
C2(x) + S2(x)

)
= 0

using term-by-term differentiation. From here it is not too hard to

show that γ0 and γ1 are the same parametrization of the unit circle.)

Exercise 9. Our main result in this section is definitely false for

smooth functions that are not complex analytic. Consider the func-

tion

f(t) = exp(−1/t2), t > 0.

When t ≤ 0 we define f(t) = 0. Prove that f is smooth and has a

trivial Taylor series about 0. This shows that smooth functions need

not equal their Taylor series.



Chapter 14

Disk and Plane Rigidity

In this chapter, we apply some of the complex analysis developed in

the previous chapter, notably the Maximum Principle and Theorem

13.7, to certain holomorphic maps of the disk and plane. The types

of results we prove show that certain weak-seeming conditions placed

on a complex analytic function actually place very strong restrictions

on the function. These kinds of rigidity results provide a link between

complex analysis and geoemtry.

As an application of the results, we will prove that stereographic

projection maps circles on S2 to circles in C∪∞. While not the most

elementary possible proof, our proof does give an application of the

complex analysis we have been developing. For a geometric proof of

the main result, see [HCV].

14.1. Disk Rigidity

We first prove Theorem 1.1, mentioned in Chapter 1.

Theorem 14.1. Let f be biholomorphism from the unit disk to itself.

Then f is a Möbius transformation.

Proof. If f(0) 6= 0, then we can find a linear fractional automorphism

H of ∆ such that f ◦H(0) = 0. Thus, it suffices to consider the case

when f(0) = 0. Since f ′(0) exists, the function g(z) = f(z)/z is

177
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bounded in ∆. Hence, this function is complex analytic. Below we

will show that |f(z)| ≤ |z| for all z ∈ ∆, and the same argument,

applied to f−1, shows that |f−1(z)| ≤ |z| for all z ∈ ∆. These two

inequalities show that |f(z)| = |z| on ∆. But then g(∆) is contained

in the unit circle, a 1-dimensional curve. This is impossible unless g

is a constant map. Hence there is a constant C such that f(z) = Cz.

Hence f is a linear fractional transformation.

It remains to show that |f(z)| ≤ |z| for z ∈ ∆. This is the same

as showing that |g(z)| ≤ 1 for all z ∈ ∆. Let Cr be the circle of radius

r < 1 about 0. Then |g(z)| ≤ 1/r on Cr. Hence |g(z)| ≤ 1/r if |z| < r

by the Maximum Principle. Letting r → 1, we see that |g(z)| ≤ 1 on

∆. This is what we wanted to prove. �

Exercise 1. Prove the same result for a biholomorphism from the

upper halfplane to itself.

The next result shows the distinguished role played by the hyper-

bolic metric on the open unit disk, from the point of view of complex

analysis.

Lemma 14.2. Let ∆ be the unit disk, equipped with the hyperbolic

metric from §10.7. Let f : ∆ → ∆ be a complex analytic map, not

necessarily a biholomorphism. Then f does not expand distances in

the hyperbolic metric.

Proof. We would like to see, at each point p ∈ ∆, that the differ-

ential df maps vectors having hyperbolic length 1 to vectors having

hyperbolic length at most 1. Call this the no-stretch property . It

suffices to prove that the no-stretch property holds for each p ∈ ∆.

We can find Möbius transformations T1 and T2 such that T1(0) = p

and T2(f(p)) = 0, respectively. The map g = T2 ◦ f ◦ T1 satisfies

g(0) = 0. Since T1 and T2 are hyperbolic isometries, g has the no-

stretch property at 0 if and only if f has the no-stretch property at p.

Since g(0) = 0, we just need to show that |g′(0)| ≤ 1 to establish the

no-stretch property for g at 0. The same argument as in the previous

proof establishes this fact. �
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Lemma 14.2 is more flexible than it first appears. Any disk W0 in

the plane has its own hyperbolic metric, so that a similarity carrying

∆ to W0 is a hyperbolic isometry. This principle should help you with

the next exercise.

Exercise 2. Suppose that U is some open set in the plane and

w ∈ U is some point. Suppose also that G : U → ∆ is a holomorphic

map. Prove that there is some disk W ⊂ U , centered at w, whose size

does not depend on G, such that the hyperbolic distance from G(w)

to G(w′) is less than 1 for all w′ ∈ W .

14.2. Liouville’s Theorem

Here is Liouville’s Theorem.

Theorem 14.3 (Liouville). Suppose that f is a bounded holomorphic

function on C. Then f is constant.

Proof. Equation (13.7) says that

(14.1) f ′(a) =

∫

γ

f(z)

(z − a)2
dz.

Taking γ to be a large circle of radius r about 0, we see that the right

hand side of the above equation is at most C/r for some constant

C. Letting r → ∞, we see that f ′(a) = 0. Since a is artitrary, f is

constant. �

Exercise 3 (Challenge). A function f : C → R is called harmonic

if it has the following property. For any disk D, the value of f at

the center of D equals the average value of f on D. Prove that a

bounded harmonic function is constant. This result is equivalent to

Liouville’s Theorem. (Sketch: You want to show that f(a) = f(b) for

all a, b ∈ C. Consider the difference Cr = Ar − Br, where Ar is the

average of f on the disk of radius r about a and Br is the average

of f on the disk of radius r about b. Show that limr→∞ Cr = 0, by

analyzing the intersection Ar − Br and observing that there is a lot

of cancellation in the computation of Ar −Br when r is large.)
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Exercise 4. Give an alternate proof of Liouville’s Theorem by show-

ing that the function g(z) = f(z)/z is holomorphic in the whole plane

and then applying the Maximum Principle.

Exercise 5. Use Liouville’s Theorem to give another proof of the

Fundamental Theorem of Algebra. (Hint : Let P (z) be a complex

polynomial supposedly with no roots. Consider f(z) = 1/P (z).)

Exercise 6. Suppose that g : C → C is a continuous map with the

following properties:

• g(0) = 0.

• g is holomorphic on C − {0}.
• |g(z)| < C|z| for |z| sufficiently large.

Prove that g(z) = Az for some constant A. Hint: First show that g is

holomorphic on all of C, then show the same thing for h(z) = g(z)/z.

Exercise 7 (Challenge). Suppose that f : C → C is a holo-

morphic function such that |f(z)| < |z|n for some n and all z with |z|
sufficiently large. Prove that f is a polynomial.

Lemma 14.4. Suppose f is a homeomorphism of C that is complex

analytic except at finitly many points. Then f(z) = Az +B for some

constants A and B.

Proof. Combining Lemma 2.2 and Theorem 13.7, we see that f is

complex analytic on all of C. The function f ′(z) cannot identically

vanish. So, we can compose f with translations and then assume

that f(0) = 0 and f ′(0) > 0. But then there is some C > 0 such that

|f(z)| > C|z| provided that |z| is sufficiently small. Now consider the

function

(14.2) g(z) =
1

f(1/z)
.

Note that g satisfies the conditions of Exercise 4. Hence g(z) = Az.

But then f(z) = z/A. Remembering that this new version of f is a
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translation of the original, we see that the original version of f has

the form Az +B. �

14.3. Stereographic Projection Revisited

Let φ : S2 → C ∪∞ be stereographic projection.

Lemma 14.5. The differential dφ is a similarity on the tangent plane

Tx at x ∈ S2 − {(0, 0, 1)}.

Proof. One can prove this result by a direct calculation, but we will

give a geometric proof. Our proof refers to Figure 14.1. We think

of C as the xy-plane. Let T = Tx and let T ′ be the plane through

x parallel to C. Let L be the line joining (0, 0, 1) to x. Figure 14.1

shows the intersection of all these objects with the plane Π containing

(0, 0, 0) and (0, 0, 1) and x. The X Theorem from §8.3 implies that

the lines T ∩ Π and T ′ ∩ Π make the same angle with L = L ∩ Π.

Hence, reflection in the plane P = L⊥ carries T isometrically to T ′.

The differential dφ has the following description: First reflect T

to T ′ through P , then radially project T ′ to C through p. Thus dφ is

the composition of an isometry and a similiarity, which is just another

similarity. �

C

T’

P T

L

x

Figure 14.1. The Differential of Stereographic Projection

Exercise 8. Prove Lemma 14.5 by a direct calculation, using equa-

tion (9.9).

Lemma 14.6. Suppose I is an isometry of S2. Then I ′ = φ◦ I ◦φ−1

is a linear fractional transformation.
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Proof. Here is where complex analysis comes in. We can find a linear

fractional transformation T such that J = T ◦ I ′ fixes ∞. It suffices

to show that J is a linear fractional transformation. The map J is

smooth except at perhaps a finite list of points. (The points we are

not certain about are various images and preimages of ∞.) Moreover,

by Lemma 14.5, the differential dJ is a similarity at all but finitely

many points. Hence J is a homeomorphism of C that is holomorphic

except at finitely many points. By Lemma 14.4, the map J is linear,

and hence a linear fractional transformation. But then I ′ is a linear

fractional transformation. �

Now we come to the main application of the results in this section.

Again, this result has a direct geometric proof, but we want to show

how one can get the result from complex analysis.

Lemma 14.7. Stereographic projection maps circles on S2 to gener-

alized circles in C ∪∞.

Proof. Let C be a circle on S2. Let I be an isometry of S2 such that

I(C) contains (0, 0, 1). As we remarked in §9.5, the curve L = φ(I(C))

is a straight line (union∞). Thus, φ(I(C)) is a generalized circle. But

φ(L) = I ′(φ(C)), I ′ = φ ◦ I ◦ φ−1.

By Lemma 14.4, the map I ′ is a linear fractional transformation.

Therefore, so is J = (I ′)−1. But φ(C) = J(L), where J is a linear

fractional transformation and L is a generalized circle. Since linear

fractional transformations map generalized circles to generalized cir-

cles, as we saw in Chapter 10, we see that J(L) = φ(C) is also a

generalized circle. �

Exercise 9. Generalize the definition of stereographic projection so

that it works in all dimension and prove that generalized stereographic

projection maps spheres to spheres. You should be able to deduce this

from the 2-dimensional case and symmetry.



Chapter 15

The Schwarz–Christoffel
Transformation

In this chapter we will study some examples of Schwarz–Christoffel

transformations. These maps turn out to give biholomorphisms be-

tween the upper half-plane and the interiors of polygons. For ease of

exposition, we will restrict our attention to the case when the sides of

the polygon are parallel to the coordinate axes. We call such polygons

rectilinear polygons ; see Figure 15.1.

Figure 15.1. A rectilinear polygon

One remarkable thing about the Schwarz–Christoffel transforma-

tions is that there is, in a sense, an explicit formula for them. The

book [DRT] has a great deal of information about these maps, in-

cluding a discussion of their history.
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15.1. The Basic Construction

Suppose that x1 < x2 < · · · < xn ∈ R and e1, · · · , en are numbers

such that ej = ±1/2 for all j and e1 + · · ·+ en = −2.

Let U ⊂ C denote the upper half-plane. Let U∗ ⊂ C denote the

region obtained by deleting the closed downward pointing rays which

start at x1, . . . , xn. We are mainly interested in U , but the larger

region U∗ is convenient for technical purposes.

Figure 15.2. The region U∗

Consider the function

(15.1) f(z) = (z − x1)
e1 · · · (z − xn)

en .

If we try to define this function in all of C we run into trouble because

we cannot consistently define f all the way around a loop which circles

around xj . Since U∗ has no loops like this, f is defined and complex

analytic in all of U∗.

We define a function F : U∗ → C as follows. First we set

F (i) = 0. Next, for any z ∈ U∗, we let γ be a piecewise smooth

path connecting 0 to z, and we set

(15.2) F (z) =

∫

γ

f(z)dz.

Equation 15.2 is well defined by Theorem 13.1. It follows almost

immediately from the Fundamental Theorem of Calculus that F is

holomorphic in U∗ and F ′(z) = f(z). In particular, F ′(z) never

vanishes in U∗. Here is our main result about F .

Theorem 15.1. F is well defined and continuous on R ∪ ∞. The

image F (R∪∞) is a closed polygonal loop whose sides are alternately

parallel to the real and imaginary axes. If F (R ∪∞) is an embedded

polygon, then F is a biholomorphism from U to the polygonal domain

bounded by F (R ∪∞).
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15.2. The Inverse Function Theorem

As a prelude to proving Theorem 15.1. We prove a special case of the

Inverse Function Theorem. For the general case, see, e.g., [SPI].

Theorem 15.2. Let f be a holomorphic map defined in a neighbor-

hood of z ∈ C. Suppose that f ′(z) 6= 0. Then the restriction of f to

a neighborhood of z has an inverse, and f−1 is also holomorphic.

Proof. We can translate and scale so that z = 0 and f(0) = 0 and

f ′(0) = 1. Let Dr be the disk of radius r about 0. For r small, we

have |f ′(z) − 1| < 1/100 for all z ∈ Dr. Let z1 6= z2 be two points

in Dr. Let L be the straight line joining these points. Given our

bounds on f ′(z) along L, we see that the curve f(L) nearly has the

same length as L and points almost in the same direction as L at all

points. Hence f(z1) 6= f(z2). Hence f is injective on Dr for r small.

The same argument shows that f(∂Dr) is a closed loop that is at

least (say) r/2 from 0 and winds once around 0. Let ∆r denote the

set of points w such that f(∂Dr) winds once around w. Note that ∆r

is an open neighborhood of 0. Suppose there is some w ∈ ∆r−f(Dr).

Consider the 1-paramater family of loops γt = f(t∂Dr). For t close

to 0, the loop γ1 winds 0 times around w. On the other hand, γ1
winds once around w. In order for the winding number to change in

this way, γt must contain w for some t. But then w ∈ f(Dr). Hence

f : Dr → ∆r is a surjection.

Now we know that f : Dr → ∆r is a bijection. So, f
−1 : ∆r → Dr

exists. Our injectivity proof also shows that f−1 is continuous: f

cannot map far away points close together. One way to see that f is

differentiable at 0 is that the dilated maps gn(z) = nf(z/n) converge

to a similarity as n → ∞. But the dilated inverse of f is the inverse

of the dilation of f . Hence, the dilations of f−1 also converge to a

similarity. This shows that f−1 is differentiable at 0. The chain rule

now shows that (f−1)′(0) = 1/f ′(0). The same argument works at

any other point z in the interior of Dn. This shows that f−1 has a

continuously varying complex derivative in the interior of ∆n. Hence,

f−1 is holomorphic in ∆n. �
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15.3. Proof of Theorem 15.1

We already know that F is defined on R − {x1, . . . , xn}, and F is

pretty obviously continuous where defined.

Exercise 1. Prove that F is defined and continuous on R ∪ ∞.

(Hint : use the same definition at these points as for the other points.

The finiteness of integrals such as

∫ 1

0

1

x1/2
dx;

∫ ∞

1

x−2 dx

is what makes the definition work.)

Now we want to analyze the image F (R ∪ ∞). The points

x1, . . . , xn divide R into the n + 1 intervals I0, . . . , In. Actually,

I0 = (−∞, x1) and In = (xn,∞) are rays. Let Jk = F (Ik).

When we square f , we get

f2(z) = (z − x1)
±1 · · · (Z − xn)

±1.

From this we see that f2 is positive on I0, negative on I1, positive on

I2, and so on. So, f is real on I0, pure imaginary on I1, real on I2,

pure imaginary on I3, and so on. But F ′(z) = f(z), and the argument

of F ′(z) tells us how F rotates points in a neighborhood of z. Hence

J0 is a horizontal segment, J1 is a vertical segment, J2 is a horizontal

segment, and so on. Since F is continuous on R ∪ ∞, we see that

these segments all piece together to give the kind of path described

in Theorem 15.1.

We orient R from −∞ to +∞. If you walk along R, then U

lies to your left. Being complex analytic, the map F is orientation

preserving. This means that, as you walk around F (R), the image

F (U) (at least locally) lies to your left.

Exercise 2. Show that F (R) turns left at xj if ej = −1/2 and

right if ej = −1/2. Geometrically, f(U) looks like one quadrant in

a neighborhood of f(xj) if ej = −1/2 and three quadrants if ej = 1/2.
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Given Exercise 2, and the fact that e1+ · · ·+en = −2, the polyg-

onal path F (R) turns once around counterclockwise (the equivalent

of 4 left turns.) Hence F (I0) and F (In) travel in the same direction

and fit together seamlessly.

Now we suppose that F (R∪∞) is an embedded polygon. Let R

be the region bounded by F (R ∪∞).

Lemma 15.3. F (U) ⊂ R.

Proof. Let U = U ∪R ∪∞. The set U is a compact subset of the

Riemann sphere S2 = C ∪ ∞. Lemma 2.2 tells us that F (U) is a

bounded subset of C. Since U is a compact subset of S2 and F is

continuous, F (U) is compact.

If F (U) is not a subset of R, we can find a point p ∈ U such that

F (p) lies in the boundary of F (U) but not in ∂R. Note that p must

lie in U because F (U −U) = ∂R. By the Inverse Function Theorem,

F maps a neighborhood of p onto a neighborhood of F (p). But then

F (p) could not lie in the boundary of F (U). This contradiction shows

that F (U) ⊂ R. �

Exercise 3. Use essentially the same argument that we gave in §5.3,
in connection with the Fundamental Theorem of Algebra, to show

that F (U) = R.

Lemma 15.4. F is one-to-one on U .

Proof. Let B ⊂ U denote the set of points z such that F (z) = F (z′)
for some other z′ ∈ U . Consider the extreme case when B = U .

Choose some z ∈ U∗ ∩ R, and let {zn} be a sequence of points in

U converging to z. Let {z′n} be a sequence of points in U such that

F (zn) = F (z′n).

By Theorem 15.2, the map F is one-to-one in a neighborhood

of z, so there is some minimum distance between z and z′n. Passing

to a subsequence, we can assume that z′n converges to some point

z′ ∈ R ∪ ∞. From the minimum distance property, z 6= z′. By

continuity F (z) = F (z′). But F is one-to-one on R ∪∞.

Now we know that B 6= U . We will show that B is both open

and closed. Since U is connected, the only possibility is that B = ∅.
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Essentially, that same argument we just gave to show that B 6= U

shows that B is closed in U . We just have to show that B is open.

Suppose that z ∈ B and F (z′) = F (z). By Theorem 15.2, F

maps neighborhoods of z and z′ onto neighborhoods of F (z) = F (z′).
Hence B contains a neighborhood of z. Hence B is open. �

Lemma 15.4 and Exercise 3 combine to show that F : U → R is

a complex analytic bijection. Theorem 15.2 now shows that F−1 is

complex analytic. Hence F is a biholomorphism. This completes the

proof of Theorem 15.1.

15.4. The Range of Possibilities

Theorem 15.1 explains how we can get some rectilinear polygons as

images of the upper half-plane under a Schwarz–Christoffel transfor-

mation. It turns out that, up to scaling, we can get all of them this

way. The idea is to show that we can vary the inputs of the construc-

tion so as to produce every possibility. Here is the main result.

Theorem 15.5. Up to scaling, every rectilinear polygon is the image

of the upper half-plane under a Schwarz–Christoffel transformation.

The proof of Theorem 15.5 is a bit hard going, but I included

it because I like the result and also because I will use Theorem 15.5

in the next chapter to prove the Riemann Mapping Theorem. Once

we know the Riemann Mapping Theorem, we can say right away

that every open solid polygon is the image of the upper half-plane

under a biholomorphsm. However, without knowing Theorem 15.5,

it seems difficult to prove, just from the Riemann Mapping Theorem,

that every biholomorphism from the upper half-plane to a rectilinear

polygon is given (up to composition with Möbius transformations) by

a Schwarz–Christoffel transformation.

One unfortunate thing about our proof of Theorem 15.5 is that it

is not completely self-contained. It relies on a basic result in topology

known as Invariance of Domain. The Invariance of Domain result has

always struck me as obviously true, but the proof is fairly difficult.
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15.5. Invariance of Domain

The following result is Theorem 2B.3 in [HAT].

Theorem 15.6 (Invariance of Domain). Suppose that U ⊂ Rn is an

open set, and Φ : U → Rn is a continous and one-to-one map. Then

Φ(U) is open in Rn.

We are mainly interested in a certain corollary of the Invariance

of Domain result. Suppose that X and Y are spaces, both homeo-

morphic to open subsets of Rn. A map Φ : X → Y is proper if it has

the following property. If K ⊂ Y is compact, then Φ−1(K) ⊂ X is

compact.

Lemma 15.7. Let X and Y be spaces, both homeomorphic to open

subsets of Rn. Suppose also that X is nonempty and Y is connected.

If Φ : X → Y is a one-to-one, continuous, and proper map, then

Φ(X) = Y .

Proof. We suppose that this result is false and derive a contradiction.

By Invariance of Domain, Φ(X) is an open subset of Y . Moreover,

Φ(X) is nonempty. Since Y is connected, Y itself is the only subset

of Y that is simultaneously open, closed, and nonempty. We conclude

that Φ(X) is not closed. Hence, we can find a point

q ∈ Φ(X)− Φ(X).

Given the location of q, we can find a sequence {pk} ∈ Φ(X) such

that pk → q.

We can choose {pk} so that it lies in a compact subset of Y .

Since Φ is proper, there is a sequence {p′k}, contained in a compact

subset of X such that Φ(p′k) = pk. Since {p′k} lies in a compact

subset of X, this sequence has a convergent subsequence. Passing

to this subsequence, we let q′ = lim pk ∈ X. Since Φ is continuous,

Φ(q′) = q. This contradicts the fact that q 6∈ Φ(X). �

Given Lemma 15.7, the rest of our proof of Theorem 15.5 is self-

contained.
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15.6. The Existence Proof

Say that a marked loop is a counterclockwise oriented rectilinear loop

with a preferred edge. We fix some length n sequence Σ of “lefts” and

“rights”, with a total of 4 more “lefts” than ”rights”, and we let Y ′
Σ

denote the space of all marked polygons that have this sequence of

turns as we trace around it counterclockwise, starting with the pre-

ferred edge. Let YΣ ⊂ Y ′
Σ denote the subset of embedded ones. Using

the side lengths of the polygons, we consider Y ′
Σ and YΣ as subsets of

Rn. This makes these sets into metric spaces.

Exercise 4. Let Σ be a sequence of length n, as above. Prove

that YΣ and Y ′
Σ are both homeomorphic to open subset of Rn−2.

Exercise 5 (Challenge). Prove that YΣ is connected. (Hint : The

result is certainly true for the sequence Σ = LLLL. Here YΣ is just

the space of rectangles. In general, do induction on the length of Σ.

Show that a rectilinear polygon always has a “spot” where you can

continuously shrink one of the edges to a point without destroying

the embedding property; see Figure 15.3.)

Figure 15.3. Shrinking an edge

Let Σ1 and Σ2 be two sequences. We write Σ1 → Σ2 if Σ2 is

obtained from Σ1 by the insertion of LR or RL somewhere in Σ1.

For any sequence Σ2 except LLLL, there is some sequence Σ1 such

that Σ1 → Σ2. Say that the sequence Σ1 is good if some polygon in

YΣ is the image F (R ∪∞) for a Schwarz–Christoffel transform F .

Lemma 15.8. All sequences are good.
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Proof. The sequence LLLL is certainly good. We will prove the

following statement. If Σ1 → Σ2 and Σ1 is good, then so is Σ2. This

lemma then follows from induction.

Let P be a polygon in Y1 that is realized as the image F (R∪∞)

for some Schwarz–Christoffel transformation F . Let x1, ..., xn be the

special points corresponding to F . The exponents e1, ..., en are chosen

so as to match the sequence of lefts and rights in Σ1.

Figure 15.4. A zig-zag.

Let’s say that Σ2 is obtained from Σ1 by inserting LR after the

kth slot. Then, between xk and xk+1, we insert two new points x′
1 and

x′
2. We place these points extremely close together, and right near the

middle of the interval bounded by xk and xk+1. We chose additional

exponents e′1 = −1/2 and e′2 = 1/2. Let F ′ be the new Schwarz–

Christoffel transform based on the points x1, . . . , xk, x
′
1, x

′
2, xk+1, . . . , xn

and the corresponding exponents. When x′
1 and x′

2 are very close, the

images F (R∪∞) and F ′(R∪∞) are almost identical, except that the

single edge F (Ik) is replaced by a zig-zag, as shown in Figure 15.4. If

this perturbation is small, the polygon in question is embedded. �

We fix a sequence of exponents e1, . . . , en, as above. These expo-

nents determine the corresponding sequence Σ of lefts and rights. The

input to our construction is a positive constant c and points x1 = −1

and 0 = x2 < x3 < · · · < xn = 1. Let X ′ be the set of possible inputs.
X ′ is homeomorphic to Rn−2.

Given some particular input p ∈ X ′, the output is a polygonal

loop Φ(p) = F (R ∪∞). Here F is the Schwarz–Christoffel transfor-

mation from equation (15.2), rescaled by c. We scale by c at the end

for technical purposes. By construction Φ(p) is a point in the space

of Y ′ = Y ′
Σ. Thus, we have a map Φ : X ′ → Y ′. The map Φ is pretty

obviously continuous, given the formula for the Schwarz–Christoffel

transformation.
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Lemma 15.9. Φ : X ′ → Y ′ is one-to-one.

Proof. Suppose that F1 and F2 are two Schwarz–Christoffel trans-

formations such that F1(R ∪∞) and F2(R ∪∞) trace out the same

polygon. We mean also that F1(xi) = F2(xi) for all i. Define

G = F−1
1 F2 : U → U . This is a biholomorphism that fixes −1,

0, and 1. By Exercise 6 below, G is the identity. �

Exercise 6. Let G : U → U be a biholomorphism from the upper

half-plane to itself. Suppose that G fixes the points −1, 0, and 1.

Prove that G is the identity map.

Recall that Y ⊂ Y ′ is the subset of embedded polygons. We let

X = Φ−1(Y ). Since all sequences are good, X is nonempty. Since Φ

is continuous, X is open. To finish the proof of Theorem 15.5, we just

have to show that Φ : X → Y is proper. Then we can apply Lemma

15.7 and conclude that Φ(X) = Y , as desired.

Let K be a compact subset of Y . We want to show that Φ−1(K)

is a compact subset of X. This is the same as showing that Φ−1(K)

is a compact subset of X ′. We can put this another way. Suppose

{pk} is a sequence of inputs that exits every compact subset of X ′.
We want to prove that Φ(pk) exits every compact subset of Y .

Say that a special interval relative to the index k is an interval

bounded by consecutive points xk,j and xk,j+1. If {pk} exits every

compact subset of X ′, then at least one of 3 things happens on a

subsequence. Either ck → ∞ or ck → 0 or {ck} is bounded. In the

last case, the length of the shortest special interval tends to 0 with k.

Suppose that ck → ∞. Now matter how we choose the input,

all the points in the interval [−2/3,−1/3] ⊂ I0 are at least 1/3 units

away from all the special points. Looking at the formula for F in

equation (15.2), we see that F (I0) has length at least (1/3)n+1. But

then one of the sides of the kth output has length at least ck(1/3)
n+1,

a number that tends to ∞ with k. Hence Φ(pk) exits every compact

subset of Y .

Suppose that ck → 0. No matter what the input, we can find 3

points y1, y2, y3 ∈ R, all in distinct special intervals, that are all at
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least 1/2n from any of the endpoints of the special intervals. Looking

at the formula for F in equation (15.2), we see that there is some

constant C, independent of inputs, such that |F (yi)| < C for i =

1, 2, 3. But then the polygon corresponding to Φ(pk) has three sides

which come within Cck of the origin. But Cck tends to 0. This shows

that points Φ(pk) exit every compact set of Y .

The following result finishes our proof of Theorem 15.5.

Lemma 15.10. If {ck} is bounded and the length of some special

interval tends to 0, then Φ(pk) exits every compact subset of Y .

Proof. We will suppose that Φ(pk) lies in a compact subset of Y and

derive a contradiction. After a bounded amount of scaling, we can

assume that ck = 1 for all k. Let Fk be the Schwarz–Christoffel trans-

formation associated to pk. Let Pk = Fk(R ∪∞). By compactness,

there is some D > 0 such that the sides of Pk have length at most

1/D and the distance between any two distinct vertices of Pk is at

least D. Here D is independent of k.

Passing to a subsequence, we can assume that xk1, . . . , xkn con-

verges to points x∞,1, . . . , x∞,m. Here m < n because some points

have coalesced. We have associated exponents e∞,1, . . . , e∞,m, where

e∞,k is the sum of the exponents of the points that coalesce to x∞,k.

Exercise 7. Prove that e∞,k ≥ −1/2. (Hint : Use the fact that

the sides of Pk have length at most 1/D, independent of k.)

Because the integrands for Fk converge at each point of U∗, the
sequence {Fk} of maps converges to a map F∞ : U∗ → C, defined

exactly as in equation (15.2). Because e∞,k ≥ −1/2 and
∑

e∞,k =

−2, the map F∞ extends to be continuous on R ∪∞.

Choose an index m such that 2 or more points xk,j converge to

x∞,m. Consider the special intervals A∞ and B∞ on either side of

x∞,m. There are special intervals Ak and Bk such that Ak → A∞
and Bk → B∞. By our choice of index m, the intervals Ak and Bk

are not consecutive.

Exercise 8. Prove the following result. There is some K such that
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k > K implies that Fk(Ak) contains all but D/3 of F∞(A∞). (Hint :

use the finiteness of of all the integrals involved and the convergence

of the integrands. The same result holds for B in place of A.)

By Exercise 8, some endpoint of Fk(Ak) is within 2D/3 of some

endpoint of Fk(Bk). This contradicts the existence of D. �



Chapter 16

Riemann Surfaces and
Uniformization

The purpose of this chapter is to define the notion of a Riemann

surface. A Riemann surface is essentially a surface that is built out

of pieces of C glued together with complex analytic maps. Once we

know about Riemann surfaces, we can speak about complex analytic

maps between them. We will prove some basic results about such

maps, relying on the material from the previous 3 chapters.

Following the discussion of Riemann surfaces, we will prove the

Riemann Mapping Theorem. For another proof of this result, one

that does not rely on Theorem 15.5, see [AHL].

The Riemann Mapping Theorem is a special case of the Poincaré

Uniformization Theorem, a result we will state without proof. A proof

can be found in [BE2]. After stating the Uniformization Theorem,

we will deduce some consequences from it.

16.1. Riemann Surfaces

Let S be a surface. Recall that a smooth structure on S is a maximal

collection of coordinate charts which have the property that the over-

lap functions are all smooth. A Riemann surface is defined in a similar

way, with the word complex analytic replacing the word smooth. That

195
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is, a Riemann surface structure on a surface is a maximal collection

of coordinate charts such that the overlap functions are all smooth.

Here are some examples:

Open Subsets of C. Any open subset of C is a Riemann sur-

face. We can take the coordinate chart maps to be the identity.

The Riemann Sphere. We can think of S2 as C ∪ ∞. Then

U1 = C is a neighborhood of {0} and U2 = C ∪∞− {0} is a neigh-

borhood of ∞. The identity map is a homeomorphism from U1 to C

and the map f(z) = 1/z is a homeomorphism from U2 to C. The

overlap U1∩U2 is C−{0} and the overlap function is just f(z) = 1/z,

a complex analytic function. We already have a collection of (two)

coordinate charts which cover S2, and we can complete this collection

to a maximal collection. This makes S2 into a Riemann surface. This

surface is known as the Riemann sphere.

Flat Tori. Let P be a parallelogram. If we glue the opposite sides

of P together by translations, then we produce a closed surface. We

can find a covering of S by coordinate charts whose overlap functions

are translations, i.e., maps of the form z → z + C for various choices

of the constant C. Such maps are complex analytic, and so we can

make these flat tori into Riemann surfaces in a natural way.

Hyperbolic Surfaces. Recall that a hyperbolic structure on a sur-

face is a maximal collection of coordinate charts into H2 such that

the overlap functions are all restrictions of hyperbolic isometries. If

we only use orientation preserving hyperbolic isometries, then these

maps are all linear fractional transformations. Linear fractional trans-

formations are complex analytic, and so a hyperbolic structure on a

surface is always a Riemann surface structure.

Exercise 1. In §12.6 we discussed the notion of a Riemannian cover-

ing space. We can similarly define a Riemann surface covering . This

would be a covering map between Riemann surfaces that is complex

analytic. Given a covering map E : S̃ → S, prove that S̃ can be made

into a Riemann surface such that E is a Riemann surface covering.
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Exercise 2. Let E(z) be the exponential function, as defined in Ex-

ercise 7 of §13.8. Prove that E is a covering map from C to C −{0}.
(Hint : Use the identities in Exercises 7-9 of §13.8 to get a handle on

the geometry of E.)

Exercise 3 (Challenge). Let X be the space obtained by glu-

ing together two copies of the solid unit square, along all sides (see

Figure 16.1). Give X the structure of a Riemann surface (by finding

local charts) so that there is a biholomorphic map between X and the

Riemann sphere. (Hint : For the coordinate charts, the only tricky

part is thinking about what to do at the vertices and edges. Think

about the Christoffel transform between the square and the upper

half plane.)

1

2

3

44

1

2

3

Figure 16.1. Gluing 2 squares

16.2. Maps Between Riemann Surfaces

Suppose S1 and S2 are two Riemann surfaces. A map f : S1 → S2 is

complex analytic in a neighborhood of p1 ∈ S1 if there are neighbor-

hoods U1 of p1 and U2 of p2 = f(p1), together with coordinate charts

fj : Uj → C such that the map f2 ◦ f ◦ f−1
1 is complex analytic. f is

complex analytic on S1 if f is complex analytic in a sufficiently small

neighborhood of every point. We can use some of the machinery from

Chapter 13 to prove nontrivial results about maps between Riemann

surfaces. This chapter contains a sampler of these results.

Theorem 16.1. There is no nontrivial complex analytic map from a

compact Riemann surface into C.
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Proof. Suppose f : S → C is complex analytic. Since S is compact

f achieves its maximum at some point p ∈ S. Let U be a coordinate

chart about p and let g : U → C be a coordinate chart. Then h =

f ◦ g−1 is a complex analytic map from the open set g(U) into C.

Moreover, h takes its maximum value at an interior point of g(U).

But a nonconstant complex analytic map cannot have an interior

maximum, according to the Maximum Principle from §13.5. �

On the other hand, there are plenty of complex analytic maps

from the Riemann sphere to itself. For instance, any rational function

R(z) = P (z)
Q(z) is a complex analytic map from the Riemann sphere to

itself. Here P and Q are polynomials. The set R−1(∞) is contained

in the set of zeros of Q.

Theorem 16.2. There is no nonconstant complex analytic map from

C into a hyperbolic surface.

Proof. Let f : C → S be a complex analytic map from C to S. Let

E : H2 → S be the universal covering map. Using the lifting property

for maps we can find a lifting f̃ : C → H2 such that E ◦ f̃ = f . (We

produce f̃ by partitioning C into an infinite grid of squares, and

applying the lifting theorem one square at a time.) By construction

f̃ is complex analytic. The point is that on small neighborhoods E−1

is defined and complex analytic; and f̃ = f ◦ E−1 on these small

neighborhoods. However, we can take H2 as the open unit disk. So,

f̃ is a bounded complex analytic function on C. However, all such

maps are constant. Since f̃ is constant, so is f . �

Any complex analytic homeomorphism from C to C is a linear

map, by Corollary 14.4. Our proof of the next result uses this fact.

Theorem 16.3. Suppose that S is a Riemann surface which has a

non-Abelian fundamental group. Then there is no complex analytic

covering map of the form E : C → S.

Proof. Suppose that E : C → S exists. Let G be the fundamental

group of S. Then G acts on C as the deck group. Each element

g ∈ G acts as a complex analytic homeomorphism of C. Hence g is

a complex linear map. Being an element of the deck group, g acts
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without any fixed points. Therefore, g must be a translation. In

short G is a group of translations. But any two translations commute

and hence G is Abelian. This contradiction shows that E does not

exist. �

16.3. The Riemann Mapping Theorem

Let ∆ denote the open unit disk. Say that a Jordan domain is any

set of the form h(∆), where h : C → C is a homeomorphism.

Theorem 16.4 (Riemann Mapping Theorem). Let D be any Jordan

domain. There exists a biholomorphism from ∆ to D.

Riemann gave an intuitive description of the Riemann map. Imag-

ine that the domain D is a uniformly conducting material, and that

an electric potential of 1 is maintained at some interior point x ∈ D

and a potential of 0 is maintained on the boundary of D. The equipo-

tential lines form loops around x, and the electricity flowing from x

out to ∂D flows along lines perpendicular to the equipotential loops.

The equipotential loops and the flow lines form a kind of wavy coor-

dinate system on D. The Riemann map, if it is normalized to send

0 to x, sends the ordinary polar coordinate system on ∆ to the wavy

one.

We will give a proof of the Riemann Mapping Theorem that is

based on Theorem 15.5.

Exercise 4. Prove the following statement. For any ǫ > 0, there

is an embedded rectilinear polygon P such that every point of ∂D is

within ǫ of P , and vice versa.

We scale the picture so that ∆ ⊂ D. For each positive integer

n, choose a rectilinear polygon that is within 1/n of ∂D in the sense

of Exercise 4. Let Dn be the region bounded by this polygon. The

polygon itself is ∂Dn.

Since ∆ and the upper half plane are biholomorphically equiva-

lent, Theorem 15.5 says that there is a biholomorphism Fn : ∆ → Dn.

Composing Fn with a Möbius transformation of ∆, we arrange that

Fn(0) = 0 for all n. The rest of the proof amounts to showing that
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the sequence {Fn} converges to the desired map.

Exercise 5. Let r < 1 and let ∆(r) denote the disk of radius r

centered at the origin. Prove that there is some constant R, depend-

ing on r but not on n, such that |F ′
n(z)| < R for all z ∈ ∆(r). (Hint :

Apply equation (14.1), using a circular loop γ ⊂ ∆ that bounds ∆(r′)
for some r′ > 1.)

Since D is bounded, we can pass to a subsequence so that {Fn(z)}
converges on a countable dense subset of points z ∈ ∆. But then,

Exercise 5 guarantees that {Fn(z)} converges uniformly on each disk

∆(r). That is, for any ǫ > 0, there is some N such that n > N implies

that |Fm(z)− Fn(z)| < ǫ for all m,n > N .

Let F = limFn. We have a converging sequence of maps, all of

which satisfy the Cauchy Integral Formula for all loops in ∆. Hence,

F satisfies the Cauchy integral as well. Hence F is holomorphic. The

main thing we want to rule out is that F is the constant map. The

next lemma does this for us.

Lemma 16.5. |F ′(0)| ≥ 1.

Proof. Let Gn = F−1
n . Recall that Fn(0) = 0 and ∆ ⊂ D. Hence

Gn(∆) ⊂ ∆ and Gn(0) = 0. By Lemma 14.2, we have the inequality

|G′
n(0)| ≤ 1. �

Exercise 6. Imitate the proof of Lemma 16.5 to show that F ′(z) > 0

for all z ∈ ∆.

Lemma 16.6. F is one-to-one.

Proof. Suppose that F (z1) = F (z2). Then, by Theorem 15.2, there

are disjoint open sets U1 and U2 such that F (U1) = F (U2). But then

Fn(U1) and Fn(U2) overlap for large n. This contradicts that Fn is

one-to-one. �

Since F ′(z) never vanishes, Theorem 15.2 shows that F−1 is holo-

morphic. Now we know that F is a biholomorphism from ∆ onto
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F (∆). Certainly F (∆) ⊂ D. To finish the proof, we just have to

show that F (∆) = D.

Choose w ∈ D. Let zn = F−1
n (w). Call w good if the sequence

{zn} remains within a compact subset of ∆. Otherwise call w bad .

If w is good, there is at least one accumulation point z ∈ ∆ of {zn}.
Since Fn(zn) = w and we have a uniform bound on |F ′

n| in a neigh-

borhood of z, we have F (z) = w. We just have to show that every

point in D is good.

Lemma 16.7. w is contained in the interior of a disk W ⊂ D with the

following property. For all w′ ∈ W , the hyperbolic distance between

Fn(w) and Fn(w
′) is less than 1, independent of n.

Proof. Apply Exercise 2 from Chapter 14 to the map G = F−1
n and

some open set U ⊂ D such that w ∈ U and U ⊂ Fn(∆) for all n. �

Note that w is good if and only if there is some K such that

{zn} stays within K hyperbolic units of 0. It therefore follows from

Lemma 16.7 and the triangle inequality that the set of good points

is open. If {zn} stays with K hyperbolic units of 0, then {z′n} stays

within K+1 units of 0. Here we have set z′n = F−1
n (w′). Similarly, it

follows from Lemma 16.7 and the triangle inequality that the set of

bad points is open. Finally, 0 is good. So, the set of good points is

open, closed, and nonempty. Hence every point in D is good. Hence

f(∆) = D.

16.4. The Uniformization Theorem

Here is the Poincaré Uniformization Theorem.

Theorem 16.8 (Poincaré Uniformization). Suppose that A is a sim-

ply connected Riemann surface. Then one of three things is true:

• A is compact, and there is a biholomorphism between A and

the Riemann sphere.

• A is noncompact and there is a biholomorphism between A

and C.

• A is noncompact and there is a biholomorphism between A

and the open unit disk.
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Note that the Poincaré Uniformization Theorem contains the Rie-

mann Mapping Theorem as a special case, when A is a Jordan do-

main. The main difference between the two results is that, in the

Uniformization Theorem, A is not assumed to be a subset of C.

16.5. The Small Picard Theorem

For the rest of the chapter, we deduce some nice consequences of the

Uniformization Theorem.

Lemma 16.9. There is a complex analytic covering map from the

open unit disk to C − {0, 1}, the twice punctured plane.

Proof. The universal cover X of C − {0, 1} is a simply connected

Riemann surface. Let E : X → C −{0, 1} be the covering map. If X

is compact, then E(X) is also compact, since the image of a compact

set under a continuous map is compact. But E(X) = C−{0, 1}, which
is noncompact. So, X is noncompact. If there is a biholomorphism

between X and C, then we have a complex analytic cover C → C −
{0, 1}. However, the fundamental group of C−{0, 1} is non-Abelian.

This is a contradiction. We have only one alternative left in the

Uniformization Theorem, and so there is a biholomorphism h between

X and the open unit disk. But then E ◦ h−1 is the desired complex

analytic covering map between the open unit disk and C−{0, 1}. �

Remark. In the concrete setting just discussed, it is possible to

prove Lemma 16.9 directly, without appealing to the Uniformization

Theorem. This is done in [AHL].

Lemma 16.9 is the main ingredient in the proof of the the follow-

ing result, which is known as the Small Picard Theorem:

Theorem 16.10. Let f : C → C be a nonconstant analytic map.

Then either f is onto or f omits exactly one value.

Proof. We will suppose that f omits at least two values and show

that f is constant. We can scale f so that two of the omitted values

are 0 and 1. Then f : C → C − {0, 1}. We have our holomorphic

covering from the open unit disk ∆ to C − {0, 1}. But then we can
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find a lift f̃ : C → ∆. This map is a bounded complex analytic

function, and hence constant. Hence f is constant as well. �

16.6. Implications for Compact Surfaces

The Uniformization Theorem is stated above in terms of simply con-

nected Riemann surfaces, but it has nice implications for general sur-

faces. Here is a the main consequence for compact surfaces.

Theorem 16.11. Let S be a compact and oriented Riemann surface.

• If S is homeomorphic to a sphere, then there is a biholomor-

phism between S and the Riemann sphere.

• If S is homeomorphic to the torus, then there is a biholo-

morphism between S and a flat torus.

• If S is a Riemann surface of negative Euler characteristic,

then there is a biholomorphism between S and some hyper-

bolic surface.

Proof. The sphere case is immediate from the Uniformization The-

orem.

Suppose that S is not homeomorphic to a torus. Let S̃ be the

universal cover of S. Note that S̃ is a simply connected Riemann

surface. According to the Uniformization Theorem, there is either

a biholomorphism between S̃ and C, or a biholomorphism between

S̃ and ∆, the open unit disk. In the former case, we would have a

complex analytic covering map C → S. But S has non-Abelian fun-

damental group, so Theorem 16.3 rules out this possibility. Therefore,

we have a complex analytic covering ∆ → S where ∆ is the unit disk.

Let G be the fundamental group of S. Then G acts on ∆ as the deck

group. Each element g ∈ G is a biholomorphism of ∆. In Chapter 13

we proved that such maps are hyperbolic isometries. Hence G acts

on ∆ as a group of hyperbolic isometries. S is precisely the quotient

of the hyperbolic plane by the orbit equivalence relation: Two points

are equivalent iff there is some element of G which maps one to the

other. Small neighborhoods of points in ∆ contain unique members

of equivalence classes, and so these little disks map injectively into S.

The inverse maps give local coordinate charts into ∆, such that the
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overlap functions are restrictions of hyperbolic isometries. In short,

S inherits its hyperbolic structure from ∆.

Suppose that S is homeomorphic to a torus. If there is a holo-

morphic covering ∆ → S then the same argument as just given shows

that S is a hyperbolic surface and the fundamental group Z2 acts on

∆ by hyperbolic isometries. This is only possible if all the elements

of Z2 fix a common point on the unit circle. Such maps have the

following property: For any ǫ > 0 there is some point x ∈ ∆ which

is moved less than ǫ (as measured in the hyperbolic metric). But

then S would have closed and homotopically nontrivial loop of length

less than ǫ. This contradicts the fact that all sufficiently short loops

on S are homotopically trivial. The contradiction shows that there

is no holomorphic cover from ∆ to S. Only one alternative for the

Uniformization Theorem holds and so there is a holomorphic cover

C → S. But now the deck transformations are all Euclidean trans-

lations and S inherits a Euclidean structure from C just as in the

previous case. �

The above theorem is true in much more generality. For instance,

suppose that C ⊂ C is a finite set of N > 2 points. Then there is a

biholomorphism between C −C and a hyperbolic surface. The same

result holds if C is a countably infinite set of points, or the middle-

third Cantor set. It is hard to picture the universal cover of the

complement of the middle-third Cantor set, but the Uniformization

Theorem says that it is just the hyperbolic plane in disguise!
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Chapter 17

Flat Cone Surfaces

In this chapter we revisit the idea of gluing polygons together to form

a surface. In a sense, we return to the question taking the most

naive point of view possible. We keep the Euclidean geometry of the

component pieces and see what we get when they are glued together.

This point of view leads to the definition of a flat cone surface.

After we define flat cone surfaces, we will prove a fundamental

result about them, the combinatorial Gauss–Bonnet Theorem. The

combinatorial Gauss–Bonnet Theorem is am analogue the Gauss–

Bonnet Theorem from differential geometry; compare Theorem 12.4.

Following the proof of the combinatorial Gauss–Bonnet Theorem,

we give an application of flat cone surfaces to the study of polygonal

billiards. This is a theme that will take up both this chapter and the

next. All the material about billiards can be found, in much greater

detail in [MAT].

17.1. Sectors and Euclidean Cones

A sector inR2 is the closure of one of the 2 components ofR2−ρ1−ρ2,

where ρ1 and ρ2 are two distinct rays emanating from the origin. For

example, the nonnegative quadrant is a sector. The angle of the sector

is defined as the angle between ρ1 and ρ2 as measured from inside the

sector. For instance, the angle of the nonnegative quadrant is π/2.

207
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Two sectors inR2 can be glued together isometrically along one of

their edges. A Euclidean cone is a space obtained by gluing together,

in a cyclic pattern, a finite number of sectors. The angle of the

Euclidean cone is the sum of the angles of the sectors. The cone point

is the equivalence class of the origin(s) under the gluing. The cone

point is the only point which potentially does not have a neighborhood

locally isometric to R2.

Note that two isometric Euclidean cones might have different de-

scriptions. For instance, R2 can be broken into 4 quadrants or 8

sectors of angle π/4.

Exercise 1. Prove that two Euclidean cones are isometric if and

only if they have the same angle.

Exercise 2. Define the unit circle in a Euclidean cone to be the

set of points which are 1 unit away from the cone point. On the cone

of angle 4π find the shortest path between every pair of points on

the unit circle. This problem breaks down into finitely many cases,

depending on where the points are located.

Exercise 3. Let C be a Euclidean cone, with cone point x. Say

that a vector field on C−x is locally constant if an isometry carrying

any open set of C − x into R2 carries the vector field to a constant

vector field. Prove that C − x has a parallel vector field in a neigh-

borhood of x if and only if the cone angle of C is a multiple of 2π.

(Hint : Unroll C into the plane and watch the vector field as you go

once around the cone point.)

17.2. Euclidean Cone Surfaces

We defined in §3.2 what it means for a surface to be oriented—it

does not contain any Möbius bands. For ease of exposition, we only

consider oriented surfaces.

Say that a compact oriented surface Σ is a Euclidean cone surface

if it has the following two properties:
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• Every point p ∈ Σ has a neighborhood which is isometric

to a neighborhood of the cone point in a Euclidean cone of

angle θ(p).

• We have θ(p) = 2π for all but finitely many points.

The points p, where θ(p) 6= 2π, are called the cone points . The

quantity

δ(p) = 2π − θ(p)

is called the angle deficit . So, there are only finitely many points with

nonzero angle deficit, and these deficits could be positive or negative.

Here are two examples:

• Let P be a convex polyhedron in R3. Then ∂P is a Eu-

clidean cone surface. The metric on ∂P is the intrinsic one:

the distance between two points is the length of the shortest

curve which remains on ∂P and joins the points.

• Let P1, . . . , Pn be a finite union of polygons. Suppose that

these polygons can be glued together, isometrically along

their edges, so that the result is a surface. Then the sur-

face in question is a Euclidean cone surface if it is given its

intrinsic metric, i.e., the shortest path metric.

Amazingly, every example of type 2 is also an example of type 1

provided that the underlying surface is a sphere and all the angle

deficits are positive. This result is known as the Alexandrov Theorem.

(To make this strictly true we have to allow for the possibility that

P is contained in a plane in R3.) One interesting open problem is to

determine the combinatorics of the convex polyhedron you get, based

on the intrinsic geometry of the cone surface.

17.3. The Gauss–Bonnet Theorem

Here is combinatorial version of the Gauss–Bonnet Theorem:

Theorem 17.1. If S is a compact cone surface, then
∑

p

δ(p) = 4πχ(S).

Here the sum is taken over all angle deficits.
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Proof. A Euclidean triangle on a Euclidean cone surface S is a re-

gion isometric to (you guessed it) a Euclidean triangle. For instance,

on the boundary of a tetrahedron, there are 4 obvious maximal Eu-

clidean triangles. Two triangles on a cone surface intersect normally

if they are either disjoint or share a vertex or share an edge. A tri-

angulation of S is a decomposition of S into finitely many triangles,

such that each pair of triangles intersects normally.

Exercise 4. Prove that every Euclidean cone surface has a trian-

gulation.

Choose a triangulation of S. Let T1, . . . , TF be the list of triangles

in the triangulation. Each Ti has associated to it three angles ai, bi, ci,

with ai+bi+ci = π. The cone points are all at vertices of the triangles,

and so

∑

p

δ(p) = 2πV − (

F∑

i=1

ai +

F∑

i=1

bi +

F∑

i=1

ci).

In other words, we add up all the angles and see how the total sum

differs from the expected 2πV . Given that ai + bi + ci = π, we have

∑

p

δ(p) = 2πV − πF = 2π(V − F/2) =∗ 2π(V + F − E) = 2πχ(S).

The starred equality has the following explanation. Each triangle

contributes 3/2 edges to the total number of edges. That is, E =

3F/2 = F + F/2. Hence −F/2 = F − E. �

For comparison, we mention that the differential geometric ver-

sion of the Gauss–Bonnet Theorem says that the total curvature of

a surface S is 2πχ(S), where χ is the Euler characteristic of S; see

§3.4. One can view the combinatorial Gauss–Bonnet Theorem as the

limit of the differential geometric version, in which all the curvature

is concentrated at finitely many points. At the same time, one can

view the differential geometric version as a limit of the combinatorial

version, in which the curvature gradually diffuses out, over larger and

larger finite sets of points so that it becomes continuously distributed.
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17.4. Translation Surfaces

A Euclidean cone surface is a translation surface if all the cone an-

gles are integer multiples of 2π. For instance, the octagon surface

discussed extensively in Chapter 1 is a translation surface when the

octagon is interpreted as a regular Euclidean octagon.

Theorem 17.2. Let S be a flat cone surface, and let C be a finite

list of points in S. Then S − C admits a parallel vector field if and

only if S is a translation surface.

Proof. Suppose first that such a vector field exists. Let x1, . . . , xn be

the points of C. Let U1, . . . , Un be disk neighborhoods of x1, . . . , xn,

respectively. Since Uk − xk admits a parallel vector field, the cone

angle at xk is an integer multiple of 2π. This is Exercise 3 above.

Now we prove the converse. Choose some basepoint x ∈ Σ − C.

Let v(x) be some unit vector tangent to x. Our goal is to define a

unit vector v(y) for each point y ∈ Σ − C. Here is the construction.

Let γ be any smooth curve which joins x to y and stays in Σ − C.

Say that a vector field along γ is parallel if, in the local coordinates,

the vectors are all translates of each other. Since every point of γ has

a neighborhood which is isometric to a disk in R2, there is a unique

parallel vector field along γ which agrees with v(x) at x. We define

v(y) to be the vector of this parallel vector field at y. If this is really

well defined, then in small neighborhoods, our vector field consists

entirely of parallel vectors.

To finish our proof, we need to see that this definition is inde-

pendent of the path γ. If γ1 and γ2 are paths connecting x to y, and

are homotopic relative their endpoints, then we can produce a finite

sequence of paths γ1 = β1, . . . , βn = γ2 such that βi and βi+1 agree

except in a region which is contained in a single Euclidean disk. (You

get the β curves just by doing the homotopy a little bit at a time.)

Within the Euclidean disk, you can see that the vector field along βi

must be parallel to the vector field along βi+1, because both vector

fields just consist of a bunch of parallel vectors, and the two vector

fields agree at some point in the disk. Since this is true for all i, the

two methods for defining v(y) agree.
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The fundamental group π1(Σ − C) is generated by loops which

travel from x into a small neighborhood of one of the cone points,

wind around the cone point, and then come back. If γ1 and γ2 are

arbitrary paths joining x to y, then γ1 is homotopic relative to the

endpoints to δ1 ∗ · · · ∗ δk ∗ γ2, where each δi is one of the special loops

just mentioned. Each loop δi starts and ends at x. We just have to

see that the parallel vector field along δi agrees with v(x) at both

ends. Everything boils down to what happens in a neighborhood of

the cone point.

By Exercise 3, we can define a parallel vector field in the neigh-

borhood of each point of C. Call these vector fields the “background

vector fields”. The parallel vector fields along our looks have constant

length and make constant angles with the relevant background vector

field. So, the parallel vector field along one of our loops comes exactly

back to itself when the loop is done. �

Recall that a gluing diagram for a surface is a list of finitely many

polygons, together with a recipe for gluing together the sides of the

polygon in pairs.

Lemma 17.3. Suppose that S is a flat cone surface obtained from a

gluing diagram in which the two sides in each glued pair are parallel.

Then S is a translation surface.

Proof. Once we show that S is orientable, we will know that S is

a cone surface. On each polygon, we consider the standard pair of

vector fields V1 and V2. Here Vj consists of vectors parallel to the

basis vector ej . Given the nature of the gluing maps, the vector fields

piece together across the edges to give parallel vector fields V1 and V2

defined on the complement of finitely many points.

We first show that S is orientable. If S is not orientable, then

S contains a Möbius band M . By shrinking M if necessary, we can

arrange that M lies entirely in the region where both V1 and V2

are defined. But then we can define a continuous pair of linearly

independent vector fields on a Möbius band. This is easily seen to be

impossible. Hence S is oriented.
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It now follows from Lemma 17.2 that S is a translation surface.

�

In light of Lemma 17.3, the surface obtained by gluing (with

translations) the opposite sides of a regular 2n-gon is a translation

surface.

Translation Principle. Whenever we consider gluing diagrams for

translation surfaces, in which more than one polygon is involved, we

always think of the polygons in the plane as being pairwise disjoint.

How the polygons sit in the plane is really not so important, in the

following sense. Suppose that P1, . . . , Pn are the polygons involved in

a gluing diagram for some surface. Suppose that Q1, . . . , Qn are new

polygons, such that Qk is a translation of Pk for all k, and the pat-

tern of gluing for the Q’s is the same as the pattern of gluing for the

P s. Then the two resulting surfaces are canonically isometric. The

canonical isometry is obtained by piecing together the translations

that carry each Pk to Qk. We mention this rather obvious principle

because it guarantees that certain constructions, which seem based

on arbitrary choices, are actually well defined independent of these

choices.

17.5. Billiards and Translation Surfaces

Let P be a Euclidean polygon. A billiard path in P is the motion

taken by an infinitesimal frictionless ball as it rolls around inside P ,

bouncing off the walls according to the laws of inelastic collisions:

the angle of incidence equals the angle of reflection; see Figure 17.1

below. We make a convention that a path stops if it lands precisely

at a vertex. (The infinitesimal ball falls into the infinitesimal pocket.)

The billiard path is periodic if it eventually repeats itself. Geo-

metrically, a periodic billiard path corresponds to a polygonal path

Q with the following properties:

• Q ⊂ P (that is, the solid planar region).

• The vertices of Q are contained in the interiors of the edges

of P .
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• Q obeys the angle of incidence rule discussed above.

Figure 17.1. Polygonal billiards

Exercise 5. Find (with proof) all the examples of periodic billiard

paths in a square which do not have self-intersections. So, the path

Q has to be embedded.

The polygon P is called rational if all its angles are rational mul-

tiples of π. For instance, the equilateral triangle is a rational polygon.

In this section I will explain how to associate a translation surface

to a rational polygon. This is a classical construction, attributed by

some people to A. Katok and A.N. Zemylakov. The geometry of the

translation surface encodes many of the features of billiards in the

polygon.

For each edge e of P there is a reflection Re in the line through

the origin parallel to e. Like all reflections, Re has order 2. That is,

Re ◦ Re is the identity map. Let G be the group generated by the

elements R1, . . . , Rn. Here Rj stands for Rej and e1, . . . , en is the

complete list of edges. If ei and ej are parallel, then Ri = Rj . If P

is a rational polygon then there is some N such that ej is parallel to

some Nth root of unity. But then G is a group of order at most 2N .

In particular, G is a finite group.

For each g ∈ G, we define a polygon

(17.1) Pg = g(Pg) + Vg.
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Here Vg is a vector included so that all the polygons {Pg| g ∈ G}
are disjoint. Thanks to the Translation Principle, the surface we will

produce is independent of the choices of the translation vectors.

To form a gluing diagram, we declare that every two edges of the

form

(17.2) e1 = g(e) + Vg, e2 = gr(e) + Vgr, r = Re.

are glued together by a translation. Here e is an arbitrary edge of P .

Since gr(e) = g(e), the edges e1 and e2 are parallel. Hence, it makes

sense to glue them by a translation. Note also that (gr)r = g. So,

our instructions tell us to glue e1 to e2 if and only if they tell us to

glue e2 to e1. Let S be the space obtained from the gluing diagram.

Since the edges are glued in pairs, S is a surface. By Lemma 17.3, S

is a translation surface.

Here we work out the example where P is an isosceles triangle

with small angles 2π/8. In this case, the group G has order 16 and

our surface will be made from 16 isometric copies of P .

1

6

8

2

3
45

7

1

2

3
4 5

6

7

8

Figure 17.2. Gluing diagram for a translation surface

Figure 17.2 shows the resulting gluing diagram. We have chosen

the translations so that all the long sides have already been glued

together. Also, we have colored the triangles alternately light and
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dark so as to better show the pattern. The numbers around the

outside of the figure indicate the gluing pattern for the short edges.

The gluing pattern in Figure 17.2 has an alternate description.

Take two regular Euclidean octagons and glue each side of one to the

opposite side of the other. The smaller inset picture in Figure 17.2

shows one of the two octagons. The other octagon is splayed open,

and made by gluing together the pieces that are outside the octagon

shown.

A path γ ∈ P̂ is called straight if every point p ∈ γ has a neigh-

borhood U with the following property. any isometry between U and

a subset of R2 maps γ ∩U to a straight line segment. (For concrete-

ness we can always take U to be a little Euclidean ball centered at

p.) There is an obvious map π : X → P . We just forget the group

element involved. This forgetting respects the way we have done the

gluing and so π is a well-defined continuous map from P̂ to P . The

map π is somewhat like a covering map, except that it is not locally

a homeomorphism around points on the edges or vertices.

Lemma 17.4. Suppose γ̂ is a straight path on P̂ which does not go

through any vertices of P̂ . Then γ = π(γ̂) is a billiard path on P .

Proof. By construction γ is a polygonal path whose only vertices

are contained in the interiors of edges of P . We just have to check

the perfect K condition at each vertex. You can see why this works

by building a physical model: Take a piece of paper and make a

crease in it by folding it in half (and then unfolding it.) Now draw

a straight line on the paper which crosses the crease. This straight

line corresponds to a piece of γ̂ which crosses an edge. When you fold

the paper in half you see the straight line turn back at the crease and

form a perfect K. This folded path corresponds to γ. �

The converse is also true:

Lemma 17.5. Suppose that γ is a billiard path on P . Then there is

a straight path γ̂ on P̂ such that π(γ̂) = γ.

Proof. We use the fact that the map π is almost a covering map.

Think of γ as a parametrized path γ : R → P , with γ(0) contained
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in the interior of P . We define γ̂(0) to be the corresponding interior

point of (P, g), where g ∈ G is any initial element of G we like. We

can define γ̂(t) until the first value t1 > 0 such that γ(t1) lies on an

edge, say e1, of P . But then we can define γ̂ in a neighborhood of t1
in such a way that γ̂(t1 − s) ∈ (P, g) and γ̂(t+ s) ∈ (P, e1g) for s > 0

small. If you think about the folding construction described in the

previous lemma, you will see that the straight path γ(t1 − ǫ, t1 + ǫ)

projects to γ̂(t1− ǫ, t1+ ǫ). Here ǫ is some small value which depends

on the location of γ(t1). We can define γ̂ for t > t1 until we reach

the next time t2 such that γ(t2) lies in an edge of P . Then we repeat

the above construction for parameter values in a neighborhood of t2.

And so on. This process continues indefinitely, and defines γ̂ for all

t ≥ 0. Now we go in the other direction and define γ̂ for all t < 0. �

Note that γ̂ is a closed loop in P̂ if and only if γ is a periodic

billiard path. Thus, the closed straight loops in P̂ correspond, via π,

to periodic billiard paths in P .

Exercise 6. Suppose that P is the regular 7-gon. What is the Euler

characteristic of P̂? As a much harder problem, can you find a for-

mula for the Euler characteristic of P̂ as a function of the angles of P?

Exercise 7. The same construction can be made when P has some

irrational angles. What do you get if P is a right triangle with the

two small angles irrational multiples of π?

17.6. Special Maps on a Translation Surface

We would like to understand how straight lines move around on the

polygon P . Recall that P̂ is the translation surface made by suitably

gluing together finitely many copies of P . We are going to prove a

dynamical result about the action of certain maps on P̂ . The result

we prove holds in much greater generality, but to keep the discussion

self-contained, we are going to consider only one special map on P̂ .

Choose some direction on P̂ . Given x ∈ P̂ , let f(x) be the point

you get by starting at x and moving for one unit in the given direction.

The map f is defined except at those points x whose corresponding
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path hits a cone point. This means that f is defined except on a

set contained in a finite union of line segments. When f is defined

at x, a sufficiently small disk about x just moves forward in exactly

the same way that x does. This means that f is an isometry when

restricted to sufficiently small disks. On a large disk, which cuts

across the set where f is not defined, f is a piecewise isometry; it has

the effect of splitting the disk into several pieces and mapping each

piece isometrically to some place on P̂ .

Given a set S ⊂ P̂ , we define

(17.3) area(S) =

n∑

i=1

area(S ∩ Pi)

Here P1, . . . , Pn are the polygons out of which P̂ is made. This defini-

tion assumes that you know how to compute area inside the Euclidean

plane. For the kinds of complicated sets which arise in dynamical

systems, one actually needs some measure theory to give a rigorous

definition. In our setting here, we are just going to be computing the

areas of sets which are obtained by cutting a disk into finitely many

pieces along straight line segments.

Exercise 8. Let ∆ be a disk. Let ∆n ⊂ ∆ denote the set of points

p ∈ ∆ such that fk is well-defined on p for all k = 1, . . . , n. Note

that ∆ − ∆n is contained in a finite union of line segments. Define

fn(∆) = f(∆n). Prove that f
n(∆) and ∆ have the same area. (Hint :

fn(∆) is is obtained by translating small pieces of ∆n isometrically

to various parts of P̂ . These pieces do not overlap because f−1 exists

and has the same properties as f .)

Theorem 17.6. Let p ∈ P̂ be any point on which f and all its iterates

are defined, and let ǫ > 0 be arbitrary. Then there is some q ∈ P̂ and

some n such that d(p, q) < ǫ and d(p, fn(q)) < ǫ.

Proof. Let ∆ be the disk of radius ǫ about p. Let D0 = ∆ and let

Dn = Fn(∆). By Exercise 8, the sets D0, D1, D2, . . . all have the

same area. Since P̂ has finite area, these sets cannot all be disjoint

from each other. Hence there are two sets Da and Db, which intersect

at some point xa. We take a < b. But then Da−1 and Db−1 intersect
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at xa−1 = f−1(xa). Continuing in this way, we see that D0 and Db−a

intersect at some point x0. By construction x0 lies within ǫ of p and

f b−a(x0) also lies within ǫ of p. �

Theorem 17.6 works more generally when all we know is that f

is an area preserving map of P̂ that is defined except on a set of zero

area (or, more technically zero measure). The proof is essentially the

same, but one has to deal more carefully with the concept of area.

Even for area preserving maps, Theorem 17.6 is a toy version

of a much stronger and more general result known as the Poincaré

Recurrence Theorem.

17.7. Existence of Periodic Billiard Paths

It is a theorem of Howie Masur that every rational polygon has a

periodic billiard path. In fact, Masur gives bounds on the number of

such billiard paths of length at most L. He proves that there are at

least L2/C −C of them, and at most CL+C of them, for some con-

stant C which depends on the polygon. In some cases, it is possible

to get sharper results. For instance:

Exercise 9. Prove that there is a constant C such that

lim
L→∞

N(L)/L2 = C,

where N(L) is the number of periodic billiard paths of length less

than L on the unit square. What is C?

In this section, I will sketch an elementary proof, due to Bosher-

nitsyn, that every rational polygon has at least one periodic billiard

path. You will see that the proof actually gives the existence of many

periodic billiard paths, but no bounds like the ones mentioned above.

We choose a direction perpendicular to one of the sides of P and

let f : P̂ → P̂ be the function considered in the previous section. Let

p ∈ P̂ be some point. We think of p as the lift of γ(0), where γ : R →
P is a billiard path which, at time 0, is travelling perpendicular to a

side of P . That is, γ is travelling parallel to V at time 0. By Theorem

17.6, there is some q very close to p and some n so that q = β̂(0) and
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fn(q) = β̂(n) are very close together, and β̂(0) is very close to γ̂(0).

Here β̂(0) is a straight path in P̂ which goes through q at time 0.

If β̂(0) and γ̂(0) are sufficiently close, then these two points are

on the same polygon of P̂ . Hence β and γ are travelling in the same

direction at time 0. Likewise β is travelling in the same direction at

times 0 and n. In short, β travels perpendicular to a side of P at

time 0 and also at some much later time n. This means that β hits

the same side of P twice, and both times at right angles. But then β

is periodic. Each time it hits P perpendicularly, β just reverses itself

and retraces its path. Figure 17.3 shows an example of such a path.

Figure 17.3. A periodic billiard path



Chapter 18

Translation Surfaces and
the Veech Group

In the previous chapter we explained a construction which starts with

a rational polygon and produces a translation surface. The straight

line flow on the polygon controls the nature of billiards in the polygon.

In this chapter we will study the group of affine automorphisms of a

translation surface. This group is known as the Veech group.

It turns out that the Veech group can be interpreted as a group

of symmetries of the hyperbolic plane. So, starting with polygonal

billiards, we get back to hyperbolic geometry. We will work out a non-

trivial example of a Veech group at the end of the chapter. I learned

this particular example from Pat Hooper, and the presentation I give

is pretty close to the way he explained it to me.

A lot of the material in this chapter can be found in various

surveys of rational billiards; see, e.g., [MAT].

18.1. Affine Automorphisms

Recall that an affine map of R2 is a map of the form x → Ax + B,

where A is a 2 × 2 invertible and orientation-preserving matrix and

B is another vector. If B = 0, then the map is linear. Note that the

set of affine maps of R2 forms a group under composition.

221
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Suppose that Σ is a translation surface. An affine automorphism

of Σ is a homeomorphism φ : Σ → Σ such that the following hold:

• φ permutes the nontrivial cone points of Σ.

• Every ordinary point of Σ has a neighborhood in which φ is

an affine map.

The second condition needs a bit more explanation. Let p ∈ Σ be an

ordinary point. This is to say that there is a small disk ∆p about p

and an isometry Ip from ∆p to a small disk in R2. The same goes

for the point q = φ(p). The map Iq ◦ φ ◦ I−1
p is defined on the open

set U = Ip(∆p) ⊂ R2 and maps it to another open set Iq(∆q) ⊂ R2.

The second condition says that this map is the restriction of an affine

map to U .

We denote the set of all affine automorphisms of Σ as A(Σ). It

is easy to see that the composition of two affine automorphisms of

Σ is again an affine automorphism. Likewise, the inverse of an affine

automorphism of Σ is an affine automorphism of Σ. In short, A(Σ)

is a group.

Exercise 1. Let A be a 2× 2 matrix with integer entries and deter-

minant 1. Let B any vector, and let Σ be the square torus. You can

think of Σ as (R/Z)2. Let φ be the map φ([x]) = [Ax + B]. Prove

that φ is an affine automorphism of Σ. Thus, the square torus has a

huge affine automorphism group.

Exercise 2. Give an example of a translation surface which has

no nontrivial affine automorphisms.

Exercise 3 (Challenge). The affine automorphisms group of the

square torus is uncountable since it contains any translation. How-

ever, prove that the affine automorphism group of a surface with at

least one cone point is countable. (Hint : It suffices to consider the

subgroup G that preserves all the cone points. Try to show that this

subgroup is discrete, in the sense that any element of G sufficiently

close to the identity must actually be the identity. Draw many seg-

ments connecting all the cone points, and consider the action of an

element near the identity on these many line segments.)
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18.2. The Diffential Representation

Let SL2(R) denote the group of 2×2 matrices having real entries and

determinant 1. Given a group A, a representation of A into SL2(R)

is a homomorphism ρ : A → SL2(R). Here is one explanation for

this terminology: The elements of A might be somehow abstract,

but a representation is a way of, well, representing these elements

concretely as matrices. A representation doesn’t have to be one-

to-one or onto, but of course representations with these additional

properties are especially nice.

Here we explain a canonical representation ρ : A(Σ) → SL2(R).

The basic property of Σ we use is that there are canonical identifi-

cations between any pair of tangent planes Tp(Σ) and Tq(Σ), defined

as follows: By Theorem 17.2, there exists a parallel vector field on

Σ−C, where C is the set of cone points. Given p, q ∈ S −C, we can

find an isometry I from a neighborhood of p to a neighborhood of q

such that I(p) = q. If we insist that I preserves both the orientation

and the parallel field, then I is unique. Moreover, I is independent

of the choice of parallel field. The differential dI isometrically maps

Tp(Σ) to Tq(Σ). We set φpq = dI. So, in short

(18.1) φpq : Tp(Σ) → Tq(Σ)

is a canonical isometry. One immediate consequence of our definition

is that

(18.2) φpr = φqr ◦ φpq, φqp = φ−1
pq .

Now, given an element f ∈ A(Σ) we choose and ordinary point

p ∈ Σ, and let q = f(p). Let dfp be the differential of f at p. This

means that dfp is a linear map from Tp(Σ) to Tq(Σ). Note that the

composition

M(f, p) = φqp ◦ dfp

is a linear isomorphism from Tp(Σ) to itself. Using the isometry Ip,

we can identify Tp(Σ) with, say, the tangent plane to R2 at the origin.

We let ρ(f) be the linear transformation of R2 which corresponds to

M(f, p) under the identification.
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We claim that ρ(f) is independent of the choice of point p. To

see this, we note that the map ρ(f) has the following alternate de-

scription. Using the coordinate charts Ip and Iq discussed above, the

map ρ(f) is just the linear part of

dIq ◦ dfp ◦ dI−1
p .

The linear part of an affine map does not depend on the point. Hence

ρ(f) has the same definition independent of which point we use inside

our local coordinate chart. But the surface is connected, so ρ(f) does

not depend on the choice of point at all.

The determinant of ρ(f) measures the factor by which f increases

area in a neighborhood of any point. Since the whole surface has

finite area and ρ(f) is an automorphism, ρ(f) must have determinant

1. Hence we can interpret ρ(f) as an element of SL2(R). The map

f → ρ(f) is a homomorphism because of the chain rule: The linear

differential of a composition of maps is just the composition of the

linear differential of the invididual maps. And composition of linear

maps is the same thing as matrix multiplication in SL2(R).

We have now constructed the representation ρ : A(Σ) → SL2(R).

We let V (Σ) = ρ(A(Σ)). The matrix group V (Σ) is sometimes called

the Veech group. Below we will work out the Veech group associated

to the “double octagon” example discussed toward the end of §17.5.
Before we get to examples, however, we need to develop a bit more

of the theory.

18.3. Hyperbolic Group Actions

Recall that H2 is the hyperbolic plane. We work in the upper half

plane model. Every element of SL2(R) acts on H2 isometrically, as

a linear fractional transformation; see §10.3. In particular, the Veech

group V acts on H2. The orbit of a point x ∈ H2 is defined to be

the set

{g(x)| g ∈ V }.

We define an equivalence relation on points in H2 by saying that two

points are equivalent iff they lie in the same orbit.
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V is said to act properly discontinuously onH2 if, for every metric

ball B ⊂ H2, the set

{g ∈ V | g(B) ∩B 6= ∅}

is a finite set. In other words, all but finitely elements of V have such

a drastic action on H2 that they move the ball B completely off itself.

Exercise 4. Let SL2(Z) be the group of 2 × 2 integer matrices

having determinant 1. Prove that SL2(Z) acts properly discontinu-

ously on H2.

Before we establish the main result in this section, we give one

more definition. Two groups G1, G2 ∈ SL2(R) are conjugate if there

is some g ∈ SL2(R) such that G2 = gG1g
−1.

Exercise 5. Suppose that G1 and G2 are conjugate. Prove that

G1 acts properly discontinuously on H2 if and only if G2 does.

Theorem 18.1. If V is the Veech group of a surface, then V acts

properly discontinuously on H2.

We will sketch the proof of Theorem 18.1 in the next section.

Whether or not V acts properly discontinuously, we can form the

quotient H2/V as follows. We define two points x, y ∈ H2 to be

equivalent if there is some g ∈ V such that g(x) = y. Then H2/V

is defined to be the set of equivalence classes of points. In the case

where V acts properly discontinuously, the quotient is particularly

nice:

Theorem 18.2. If V acts properly discontinuously on H2, then we

can remove a countable discrete set of points T from H2 such that

the quotient (H2 − T )/V is a hyperbolic surface.

Proof. Before we start we note that all the elements of V act in an

orientation-preserving way, so that there are no reflections in V . (For

the orientation-reversing case, the statement of the result is slightly

different.)
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Let T be the set of points x ∈ H2 such that g(x) = x for some

nontrivial g ∈ V . The set T must be discrete in the sense that there

is some ǫ > 0 such that any ball of radius ǫ contains at most one point

of T . Otherwise we could find some ball B which contained infinitely

many points of T , and we would contradict the proper discontinuity.

Note that T is invariant under V : If x ∈ T is fixed by g, then y = h(x)

is fixed by hgh−1. Thus, the quotient (H2−T )/V makes sense. Every

x ∈ H2 − T has a neighborhood ∆x such that g(∆x) ∩ ∆x = ∅ for

any nontrivial g. To see this, let dg denote the hyperbolic distance

between g(x) and x. Since x 6∈ T , the number dg is positive. The

proper discontinuity prevents there being a sequence {gi} with {dgi}
converging to 0. Hence there is some positive lower bound to dg,

which is what we need.

Now we know that each x ∈ H2 − T has a little neighborhood

which is moved completely off itself by all of G (except the identity).

This little neighborhood therefore maps injectively into the quotient

(H2 − T ) and serves as a coordinate chart about x. �

Note that the quotient H2/V still makes sense, and actually it

is obtained from (H2 − T )/V just by adding finitely many points.

We define the covolume of V to be the volume of (H2 − T )/V . The

group V is said to be a lattice if V has finite covolume. Σ is said to

be a Veech surface if V is a lattice. For instance, SL2(Z) is a lattice.

18.4. Proof of Theorem 18.1

We first take care of a trivial case of Theorem 18.1.

Exercise 6. Suppose that Σ is a translation surface with no cone

points. Prove that Σ is isometric to a flat torus.

Exercise 7. Prove Theorem 18.1 in the case when the surface has

no cone points.

From now on, we consider the case when Σ has at least one cone

point. In this case, Σ is homeomorphic to a surface having negative
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Euler characteristic. Let C be the set of cone points of Σ. We call a

map γ : [0, 1] → Σ a saddle connection if the follwing hold.

• γ(t) ∈ C if and only if t = 0, 1.

• The restriction of γ to (0, 1) is locally a straight line.

Exercise 8. Prove that Σ has a pair of non-parallel saddle connec-

tions that intersect at a point of Σ− C.

Lemma 18.3. Let f be an affine automorphism of Σ. Let γ1 and γ2
be a pair of saddle connections, as in Exercise 8. Suppose f preserves

the endpoints of γ1 and γ2, and f(γj) = γj for j = 1, 2. Then f is in

the kernel of the differential representation ρ.

Proof. The restriction of an affine map to a straight line is just a

dilation. Hence, the restriction of f to γj is just a dilation. Since

f(γj) = γj , the dilation factor must be one: the total length is pre-

served. So f is the identity on γj .

Let p be an intersection point of γ1 and γ2. We know that

f(p) = p. Since γ1 and γ2 are nonparallel, we see that dfp fixes

two independent directions at p. Hence dfp is the identity. But then

ρ(f) is the identity. �

We suppose that there is some ball B and an infinite collection

{gi} ∈ V such that gi(B) ∩ B 6= ∅. It is a general principle of com-

pactness that there must be elements of our set which are arbitrarily

close to each other. Hence, we can find an infinite list of distinct ele-

ments of V whose action on H2 converges to the action of the identity

element.

What this means in terms of Σ is that we can find an infinite se-

quence {fj} of affine automorphisms such that ρ(fi) is not the identity

but ρ(fi) converges to the identity as i → ∞. All these elements per-

mute the set of cone points somehow. So, by taking suitable powers

of our elements, we can assume that each fi fixes each cone point of

Σ.

Let γ1 and γ2 be the saddle connections from Exercise 8. The

segment fk(γ1) is another saddle connection that connects the same
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two cone points as does γ1. For k large, fk(γ1) and γ1 nearly point in

the same direction and nearly have the same length. If they do not

point in exactly the same direction, they cannot connect the same

two endpoints. The two paths start out at the same cone point but

then slowly diverge, so that one of them misses the cone point at the

other end. Figure 18.1 shows what we mean.

Figure 18.1. Nearly parallel paths

This means that fk(γ1) and γ1 point in exactly the same direction

for k large. But then fk(γ1) = γ1. The same argument shows that

fk(γ2) = γ2 for k large. But then, by the previous result, ρ(fk) is the

identity for large k. This contradiction finishes the proof.

18.5. Triangle Groups

Figure 18.2. The hyperbolic triangle of interest
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Recall that a geodesic hyperbolic triangle is a triangle in H2

whose sides are either geodesic segments, geodesic rays, or geodesics.

The case of interest to us is the geodesic triangle with 2 ideal vertices

and one other vertex having interior angle 2π/8. Figure 18.2 shows

a picture of the triangle we mean, drawn in the disk model. This

triangle is known as the (8,∞,∞) triangle.

Lemma 18.4. Let γ be any geodesic in H2. Then there is an order

2 hyperbolic isometry which fixes γ.

Proof. Thinking of H2 as the upper half-plane, the map z → −z

fixes the imaginary axis, which is a geodesic. We have already seen

that any two geodesics are isometric to each other. If g is an isometry

taking the geodesic γ1 to the geodesic γ2 and I is an order 2 isometry

fixing γ1, then gIg−1 is the desired order 2 isometry fixing γ2. Thus,

we can start with the one reflection desribed above and construct all

the others by conjugation. �

The order 2 hyperbolic isometry fixing γ is called a hyperbolic

reflection in γ. Given any geodesic triangle ∆, we can form the group

G(∆) ⊂ SL2(R) as follows. We let I1, I2, I3 be hyperbolic reflections

fixing the 3 sides of ∆ and then we let G(∆) be the group generated by

words of even length in I1, I2, I3. For instance, I1I2 and I1I2I1I3 all

belong to G but I1I2I3 does not. All the elements in G are orientation

preserving and it turns out that we can find matrices in SL2(R) for

the elements I1I2, I2I3, and I3I1. This is enough to show that G

actually comes from a subgroup of SL2(R).

18.6. Linear and Hyperbolic Reflections

As preparation for the Veech group example we will work out, we

discuss how to convert between certain linear maps as they act on R2

and the corresponding linear fractional actions on H2.

Say that a linear reflection is a linear transformation T : R2 →
R2 such that T (v) = v and T (w) = −w for some basis {v, w} of R2.

The corresponding linear fractional transformation acting on H2 is

a hyperbolic reflection. This can be seen by considering the special
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case when v = (1, 0) and w = (0, 1): all other cases are conjugate to

this one.

The map T is determined by the pair (v, w), but more than one

basis determines T . The basis (C1v, C2w) also determines T , where

C1 and C2 are any 2 nonzero constants. For this reason, it is really

the pair (L1, L2) that determines T , where L1 is the line through v

and L2 is the line through w. The map T fixes L1 pointwise and

reverse L2.

The map −T fixes L2 pointwise and reverses L1. For this reason,

the unordered pair {L1, L2} determines the pair of maps {T,−T}.
The map ±T corresponds to a hyperbolic reflection, and each hy-

perbolic reflection corresponds to a pair ±T of maps. In short, each

hyperbolic reflection is determined by an unordered pair {L1, L2} of

lines through the origin. We call such a pair of lines a cross .

Let us first consider the case when L1 and L2 are perpendicular.

In this case, we call {L1, L2} a plus , because the two lines look like

a + symbol, up to rotation. If we work in the disk model ∆ of the

hyperbolic plane, we can normalize so that the hyperbolic reflections

corresponding to pluses all fix some geodesic through the origin in C.

Figure 18.3 shows two examples. On the left-hand side of Figure 18.3

we show two pluses, one drawn thickly and one drawn thinly. On the

right hand side of Figure 18.3, we show the geodesics in ∆ fixed by

the corresponding hyperbolic reflections.

Figure 18.3. Euclidean and hyperbolic reflections
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Exercise 9. Let θ be the smallest angle between the lines of one plus

and the lines of another. Prove that the corresponding geodesics in

∆ meet at an angle of 2θ.

In light of Exercise 9, we can draw 3 crosses whose corresponding

geodesics in ∆ are three sides of the (8,∞,∞) triangle shown in Figure

18.2. Two of the crosses are pluses and one is not. The crosses are

drawn thickly, and the thin lines are present for reference. The thin

lines are evenly spaced in the radial sense.

Figure 18.4. Three special crosses

Here is why this works. Let ±T1, ±T2, and ±T3 be the (pairs of)

hyperbolic reflections corresponding to each of the three crosses. Let

Rj be the hyperbolic reflection corresponding to ±Tj . By construc-

tion R1 and R2 each fix one of the “Euclideanly straight” sides of the

triangle in Figure 18.2.

We claim that R3 fixes the third side of the triangle in Figure 18.2.

The central point is that the third cross shares a line with each of the

first two crosses. If the signs are appropriately chosen, the element

T1T3 is a parabolic element that fixes the vertical line through the

origin. From this we see that R1R3 is a parabolic element fixing the

top vertex of our triangle. This is only possible if R3 fixes this same

point. A similar argument shows that R3 fixes the other ideal vertex

of our triangle. Hence, as claimed, R3 fixes the edge joining these

vertices.

We have gone through all this trouble because we want to rec-

ognize the (8,∞,∞) triangle group as a subgroup of the group of all

affine automorphisms of a certain translation surface. We will work

this out in the next section.
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18.7. Behold, The Double Octagon!

We will compute the Veech group of the translation surface associated

to the Euclidean isosceles triangle having small angle 2π/8. As we

saw in §17.5, this surface is obtained from a gluing diagram involving

two regular Euclidean octagons. Each side of one octagon is glued to

the opposite side of the other. Let Σ be this surface.

Theorem 18.5. V (Σ) is the even subgroup of the (8,∞,∞) reflection

triangle group.

The (8,∞,∞) triangle group is the group generated by the three

hyperbolic reflections R1, R2, R3 considered in the previous section.

The even subgroup consists of elements made from composing an even

number of these elements. The even subgroup has index 2 in the whole

group. The point is that every element of the reflection triangle group

is either odd or even.

We will sketch a proof of Theorem 18.5. To make things work

well, we define an anti-affine automorphism to be a homeomorphism

of Σ which is locally anti-affine, meaning that the map locally has the

form x → L(x) + C, where L is an orientation-reversing linear map

and C is some constant vector. The linear reflections considered in

the previous section are of this form.

Let Â(Σ) be the group of these maps, and let V̂ = ρ(Â), where

ρ is the differential representation as above. We will show that V̂

coincides with the group Ĝ generated by the reflections in the sides

of the (8,∞,∞) triangle. The odd elements of Â are orientation

reversing and the even elements are orientation preserving. So, the

Veech group corresponds to the images of the even elements.

Figure 18.5. The first cross
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Figure 18.5 shows the octagons involved in the gluing diagram

for Σ. Again, each side of the left octagon is glued to the opposite

side of the right octagon by a translation. Simultaneous reflection in

the vertical sides of Σ induces an element T1 of Â. The differential

of this map, evaluated at the center of the first octagon, fixes the

vertical line through the center and reverses the horizontal line. The

element ±dT1 therefore corresponds to the first plus in Figure 18.4.

Hence ρ(±T1) = R1. Figure 18.6 does for R2 with Figure 18.5 does

for R1. Here we take T2 to be simultaneous reflection in the diagonals

of positive slope.

Figure 18.6. The second cross

So far we have used fairly trivial symmetries of our surface. Now

we have to do something nontrivial to see the anti-affine automor-

phism that corresponds to the third cross. Figure 18.7 shows the

cross {L1, L2} we are aiming for, drawn on one of the octagons. The

auxilliary line L3 will be explained momentarily.

2

L

LL

3

1

Figure 18.7. The third cross
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We will produce an automorphism g : Σ → Σ such that g fixes L2

pointwise and g(L1) = L3 in a length-preserving and height-reversing

way. That is, g maps the top vertex of L1 to the bottom vertex of

L3 and vice versa. At the same time, the map T2 fixes L2 pointwise

and maps L3 to L1 in a length-preserving way and height-preserving

way. But then the composition T3 = T2 ◦ g fixes L2 pointwise and

reverses L1. By construction, the maps ±T3 correspond to our third

cross. We set R3 = ρ(±T3), and we have the desired map.

A
C

D
B

B
A

C

D

Figure 18.8. Cylinder decomposition

Now we turn our attention to the construction of the map g. Fig-

ure 18.8 shows a decomposition of Σ into 4 cylinders, labelled A, B,

C, D. Remember, each side of the left cylinder is glued to the oppo-

site side of the right cylinder. Thus, for instance, the two A pieces on

the left and right glue together to make the A cylinder. The A and B

cylinders are isometric to each other and the C and D cylinders are

isometric to each other. Here is the miracle that makes everything

work.

Exercise 10. Prove that the A and C cylinders are similar to each

other. Hence, all 4 cylinders are similar to each other.

For starters, we have g do the same thing on each octagon. Figure

18.9 shows how g acts on one of the octagons. g maps the points

labelled x to the points labelled y, in the manner suggested by the

arrows. These points are at the midpoints of the relevant edges.
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x

x

y

y

Figure 18.9. Action of the automorphism

Assume for the moment that there really is a locally affine au-

tomorphism of Σ that has this action. That is, assume that g really

exists. By construction g fixes L1 pointwise and g maps L1 to L3 in

a length-preserving and height-reversing way. The point is that L1

connects the two x points and L3 connects the two y points as shown

in Figure 18.9.

It only remains to show that g actually exists. First of all, we

define g in a neighborhood of the “centerline” L2. We start extending

g outward until it is defined on the A cylinder. The lines connecting

the x points to the y points glue together to form the central loops of

the A and B cylinders. By construction g shifts these central loops

half way around. Hence g extends to be the identity on the boundary

of the A cylinder. Even though g is the identity on the boundary of

the A cylinder, g is not the identity on A: it is what is called a Dehn

twist . The same discussion works for the B cylinder.

Now we consider the C cylinder. So far, g is defined on one

boundary component of the C cylinder, and g is the identity on this

boundary component. Because the A and C cylinders are similar, g

extends to all of the C cylinder in such a way as to be the identity

on both boundary components. The action of g on the C cylinder

is the same, up to scaling, as the action of g on the A cylinder. A

similar thing works for the D cylinder. So, all in all, g is a Dehn

twist of each of the 4 cylinders, and the 4 separate maps fit together
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seamlessly because g is the identity on every boundary component of

every cylinder. This establishes the existence of g.

Now we know that V̂ (Σ) contains the (8,∞,∞) reflection trian-

gle group. Hence, the Veech group V (Σ) contains the even subgroup

of the (8,∞,∞) reflection triangle group. To finish our proof, we

will show that V̂ (Σ) is precisely the reflection triangle group. Let

Y denote the (8,∞,∞) triangle. Let Ĝ be the group generated by

hyperbolic reflections in the sides of Y .

Exercise 11 (Challenge). Suppose that Γ is a group acting prop-

erly discontinuously on H2 and Ĝ ⊂ Γ. Prove that either Γ = Ĝ

or else Γ is the group generated by the reflections in the sides of the

geodesic triangle obtained by bisecting the Y in half.

If V̂ does not equal Ĝ, then Σ has an extra isometric symme-

try which fixes the centers of the octagons. (This corresponds to the

extra element, reflection in the bisector of Y .) But the octagons do

not have any line of symmetry between the two drawn in our figures

above. Hence, this extra symmetry does not exist. Hence V̂ (Σ) = Ĝ.

This is what we wanted to prove.

Exercise 12 (Challenge). Do all the same things as above for the

translation surface associated to the isosceles triangle having small

angles π/n for n = 4, 6, 8, . . . .



Part 5

The Totality of Surfaces





Chapter 19

Continued Fractions

The purpose of this chapter is to describe continued fractions and

their connection to hyperbolic geometry. One motivating factor for in-

cluding a chapter on continued fractions (besides their obvious beauty)

is that it gives us a nice way to introduce the modular group. The

modular group makes its appearance several times in subsequent

chapters. See the book [DAV] for an excellent treatment.

19.1. The Gauss Map

Given any x ∈ (0, 1) we define

(19.1) γ(x) = (1/x)− floor(1/x).

Here, floor(y) is the greatest integer less than or equal to y. The

Gauss map has a nice geometric interpretation, as shown in Figure

19.1. We start with a 1 × x rectangle, and remove as many x × x

squares as we can. Then we take the left over (shaded) rectangle

and turn it 90 degrees. The resulting rectangle is proportional to a

1 × γ(x) rectangle. Starting with x0 = x, we can form the sequence

x0, x1, x2, . . . where xk+1 = γ(xk). This sequence is defined until we

reach an index k for which xk = 0. Once xk = 0, the point xk+1 is

not defined.

239
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1

x

Figure 19.1. Cutting down a rectangle

Exercise 1. Prove that the sequence {xk} terminates at a finite in-

dex if and only if x0 is rational.

Consider the rational case. We have a sequence x0, . . . , xn, where

xn = 0. We define

(19.2) ak+1 = floor(1/xk); k = 0, . . . , n− 1.

The numbers ak also have a geometric interpretation. Referring to

Figure 19.1, where x = xk, the number ak+1 tells us the number of

squares we can remove before we are left with the shaded rectangle. In

Figure 19.1, ak+1 = 2. Figure 19.2 shows a more extended example.

Starting with x0 = 7/24, we have the following.

• a1 = floor(24/7) = 3.

• x1 = 24/7− 3 = 3/7.

• a2 = floor(7/3) = 2.

• x2 = (7/3)− 2 = 1/3.

• a3 = floor(3) = 3.

• x3 = 0.

In Figure 19.2 we can read off the sequence (a1, a2, a3) = (3, 2, 3) by

looking at the number of squares of each size in the picture. The

overall rectangle is 1× x0.
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Figure 19.2. A 7/24 by 1 rectangle cut into squares

19.2. Continued Fractions

Again, sticking to the rational case, we can get an expression for x0

in terms of a1, . . . , an. In general, we have

xk+1 =
1

xk
− ak+1,

which leads to

(19.3) xk =
1

ak+1 + xk+1
.

But then we can say that

(19.4) x0 =
1

a1 + x1
=

1

a1 +
1

a2 + x2

=
1

a1 +
1

a2 +
1

a3 + x3

· · · .

We introduce the notation

(19.5)

α1 =
1

a1
, α2 =

1

a1 +
1

a2

, α3 =
1

a1 +
1

a2 +
1

a3

· · · .

In making these definitions, we are chopping off the xk in each expres-

sion in equation (19.4). The value of αk depends on k, but x0 = αn

because xn = 0.

Cosidering the example from the previous section, we have

α1 =
1

3
, α2 =

1

3 +
1

2

=
2

7
, α3 = x0 =

7

24
.
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We say that two rational numbers p1/q1 and p2/q2 are Farey

related if

(19.6) det

[
p1 p2
q1 q2

]
= p1q2 − p2q1 = ±1.

In this case, we write p1/q2 ∼ p2/q2. For instance 1/3 ∼ 2/7 and

2/7 ∼ 7/24. This is no accident.

Exercise 2. Starting with any rational x0 ∈ (0, 1) we get a sequence

{αk} as above. Prove that αk ∼ αk+1 for all k.

Exerxise 3. Consider the sequence of differences βk = αk+1 − αk.

Prove that the signs of βk alternate. Thus, the sequence α1, α2, α3, . . .

alternately over-approximates and under-approximates x0 = αn.

Exercise 4. Prove that the denominator of αk+1 is greater than

the denominator of αk for all k. In particular, the α-sequence does

not repeat. With a little bit of extra effort, you can show that the

sequence of denominators grows at least exponentially.

19.3. The Farey Graph

Now we will switch gears and discuss an object in hyperbolic geom-

etry. Let H2 denote the upper half-plane model of the hyperbolic

plane. We form a geodesic graph G in H2 as follows. The vertices

of the graph are the rational points in R ∪∞, the ideal boundary of

H2. The point ∞ counts as rational, and is considered to be the frac-

tion 1/0. The edges of the graph are geodesics joining Farey related

rationals. For instance, the vertices

0 =
0

1
, 1 =

1

1
, ∞ =

0

1

are the vertices of an ideal triangle T0 whose boundary lies in G.
Let Γ = SL2(Z) denote the group of integer 2×2 matrices acting

on H2 by linear fractional transformations. As usual, Γ also acts on

R ∪∞. The group Γ is known as the modular group.

Technical Remark. Before we launch into a discussion about Γ,
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there is one technical point we need to clear up. The matrices A and

−A give rise to the same linear fractional transformation, so some-

times people introduce the notation PSL2(Z) to denote the quotient

group SL2(Z)/±, in which each element is an equivalence class con-

sisting of {A,−A}. This irritating distinction really plays no role in

our discussions, but you should keep in mind that a matrix is really

not quite the same thing as a linear fractional transformation, due

to the redundancy just mentioned. Nonetheless matrices represent

linear transformations.

Exercise 4. Let g ∈ Γ be some element. Suppose r1 ∼ r2. Prove

that g(r1) ∼ g(r2). In particular, g is a symmetry of G.

Now we know that Γ acts as a group of symmetries of G. We can

say more. Suppose e is an edge of G, connecting p1/q1 to p2/q2. The

matrix [
p1 p2
q1 q2

]−1

carries e to the edge connecting 0 = 0/1 to ∞ = 1/0. We call this

latter edge our favorite. In other words, we can find a symmetry of G
that carries any edge we like to our favorite edge. Since Γ is a group,

we can find an element of Γ carrying any one edge e1 of G to any

other edge e2. We just compose the element that carries e1 to our

favorite edge with the inverse of the element that carries e2 to our

favorite edge. In short Γ acts transitively on the edges of G.

Exercise 5. Prove that no two edges of G cross each other.

We have exhibited an ideal triangle T0 whose boundary lies in G.
Our favorite edge is an edge of this triangle. It is also an edge of the

ideal triangle T1 with vertices

0

1
,

1

0
,

−1

1
.

The boundary of this triangle lies in G as well. Thus, our favorite

edge is flanked by two ideal triangles whose boundaries lie in G. But
then, by symmetry, this holds for every edge of G. Starting out from

T0 and moving outward in a tree-like manner, we recognize that G is
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the set of edges of a triangulation of H2 by ideal triangles. Figure

19.3 shows a finite portion of G. The vertical line on the left is our

favorite line. The vertical line on the right connects 1 to ∞.

Figure 19.3. A portion of the Farey graph

19.4. Structure of the Modular Group

The Farey graph gives a good way to understand the structure of the

modular group. Since it is built out of ideal triangles, the Farey graph

has 3-fold symmetry built into it. The matrix

[
0 1

−1 1

]

represents the order 3 linear fractional transformation A ∈ Γ that

permutes the vertices of the ideal triangle T0 discussed above. More

precisely, A has the action

0 → 1 → ∞ → 0.

The Farey graph also has 2-fold symmetry. The matrix

[
0 1

−1 0

]
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represents the order 2 linear fractional transformation B ∈ Γ that has

the action

0 → ∞, 1 → −1.

The element B is a rotation about the “midpoint” of the edge of the

Farey graph that joins 0 to ∞. Put another way, B swaps the triangle

T0 = (0, 1,∞) with the adjacent triangle T ′ = (0,−1,∞).

Exercise 6. Prove that the element BAB rotates the triangle T ′

with vertices (0,−1,∞).

Exercise 7. Some finite string of letters, just using A and B, is

called reduced if the strings AAA and BB do not occur in it. We

make this definition because the hyperbolic isometries A3 and B2 are

the identity. Prove that any element of the modular group has the

form w(A,B) where w is a reduced word. (Hint : Show, just using

A’s and B’s, that you can move your favorite edge to any other edge

in two ways. This is exactly what the modular group can do.)

Exercise 8. Let w(A,B) be some nontrivial reduced work. Prove

that w(A,B) is a nontrivial element of the modular group.

19.5. Continued Fractions and the Farey Graph

Let’s go back to continued fractions and see how they fit in with the

Farey graph. Let x0 ∈ (0, 1) be a rational number. We have the

sequence of approximations α1, . . . , αn = x0 as in equation (19.5). It

is convenient to also define

(19.7) α−1 = ∞, α−0 = 0;

If we consider the larger sequence α−1, . . . , αn, the statements of Ex-

ercises 2 and 3 remain true. In particular, we have a path P (x0) in

the Farey graph that connects ∞ to x0, obtained by connecting ∞ to

0 to α1, etc. The example given above does not produce such a nice

picture, so we will give some other examples.

Let x0 = 5/8. This gives us

a1 = · · · = a5 = 1
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and

α1 = 1, α2 =
1

2
, α3 =

2

3
, α4 =

3

5
, α5 = x0 =

5

8
.

Figure 19.4: The Farey path associated to 5/8

Taking x0 = 5/7 gives

a1 = 1, a2 = 2, a3 = 2.

and

α1 = 1, α2 =
2

3
, α3 =

5

7
.

There are three things we would like to point out about these

pictures. First, they make a zig-zag pattern. This always happens,

thanks to Exercises 3 and 4 above. Exercise 3 says that the path

cannot backtrack on itself, and then Exercise 4 forces the back-and-

forth behavior.

Second, we can read off the numbers a1, . . . , an by looking at the

“amount of turning” the path makes at each vertex. In Figure 19.4,

our path turns “one click” at α0, then “two clicks” at α1, then “two

clicks” at α2. This corresponds to the sequence (1, 2, 2). Similarly,

the path in Figure 19.3 turns “one click” at each vertex, and this

corresponds to the sequence (1, 1, 1, 1, 1).



19.6. The Irrational Case 247

Figure 19.4. The Farey path associated to 5/7

Exercise 9. Prove that the observation about the turns holds for

any rational x0 ∈ (0, 1).

Third, the diameter of the kth arc in our path is less than 1/k(k−1).

This is a terrible estimate, but it will serve our purposes below. To

understand this estimate, note that the kth arc connects αk−1 =

pk−1/qk−1 to αk = pk/qk, and αk−1 ∼ αk. The diameter of the kth

arc is

|αk−1 − αk| =
∣∣∣∣
pk−1

qk−1
− pk

qk

∣∣∣∣ =
∗ 1

qk−1qk
≤ 1

k(k − 1)
.

The starred equation comes from the fact that αk−1 and αk are Farey

related. The last inequality comes from Exercise 4. As we mentioned

in Exercise 4, the denominators of the α-sequence grow at least ex-

ponentially. So, actually, the arcs in our path shrink exponentially

fast.

19.6. The Irrational Case

So far, we have concentrated on the case when x0 is rational. If x0

is irrational, then we produce an infinite sequence {αk} of rational
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numbers that approximate x. From what we have said above, we have

(19.8) x ∈ [αk, αk+1] or x ∈ [αk+1, αk]

for each index k, with the choice depending on the parity of k, and

also

(19.9) lim
k→∞

|αk − αk+1| = 0.

Therefore,

(19.10) x0 = lim
k→∞

αk.

The corresponding infinite path in the Farey graph starts at ∞ and

zig-zags downward forever, limiting on x.

The nicest possible example is probably

x0 =

√
5− 1

2
= 1/φ,

where φ is the golden ratio. In this case, ak = 1 for all k and αk is

always ratio of two consecutive Fibonacci numbers. The path in this

case starts out as in Figure 19.3 and continues the pattern forever.

Taking some liberties with the notation, we can write

1

φ
=

1

1 +
1

1 +
1

1 + · · ·
Since φ = 1 + (1/φ) we can equally well write

(19.11) φ = 1 +
1

1 +
1

1 +
1

1 + · · ·
The {ak} sequence is known as the continued fraction expansion

of x0. In case x0 > 1, we pad the sequence with floor(x0). So, 1/φ has

continued fraction expansion 1, 1, 1, . . . and φ has continued fraction

expansion 1, 1, 1, 1 . . .

Exercise 10. Find the continued fraction expansion of
√
k for k =

2, 3, 5, 7.
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The subject of continued fractions is a vast one. Here are a few

basic facts:

• An irrational number x0 ∈ (0, 1) is the root of an integer

quadratic equation ax2 + bx + c = 0 if and only if it has

a continued fraction expansion that is eventually periodic.

[DAV] has a proof.

• The famous number e has continued fraction expansion

2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10 · · ·
• The continued fraction expansion of π is not known.

In spite of having a huge literature, the subject of continued fractions

abounds with unsolved problems. For instance, it is unknown whether

the {ak} sequence for the cube root of 2 is unbounded. In fact, this

is unknown for any root of an integer polynomial equation that is

neither quadratic irrational nor rational.





Chapter 20

Teichmüller Space and
Moduli Space

The purpose of this chapter is to introduce the notions of the Te-

ichmüller space and the moduli space of a closed surface. I will also

discuss the mapping class group, which is the group of symmetries

of Teichmüller space. The theory of these objects is vast and deep.

My purpose is just to introduce the basic objects in an intuitive way.

I learned most of the material here (at least in the negative Euler

characteristic case) from [THU]. The book [RAT] has a careful

treatment from a similar point of view. There are a number of more

advanced works devoted entirely to the topics introduced here. For

instance, see [GAR] and [FMA].

First we will deal with the case of tori, and then we will deal with

negative Euler characteristic case.

20.1. Parallelograms

Say that a marked parallelogram is a parallelogram P with a distin-

guished vertex v, a distinguished first side e1, and a distinguished

second side e2. The sides e1 and e2 should meet at v, as in Figure

20.1. We say that two marked parallelograms P1 and P2 are equiva-

lent if there is an orientation-preserving similarity, i.e., a translation

251
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followed by a dilation followed by a rotation, that maps P1 to P2 and

preserves all the markings.

Figure 20.1. A marked parallelogram

We think of P as a subset of C. If we have a marked parallel-

ogram, we can translate it so that v = 0 and e1 points from 0 to 1.

Then e2 points from 0 to some z ∈ C −R. We only consider “half”

of the possibilities, the case when z ∈ H2, considered as the upper

half plane of C.

Exercise 1. Prove that z(P1) = z(P2) if and only if P1 and P2

are equivalent.

We can also reverse the process. Given z ∈ H2, we can form a

marked parallelogram P such that z(P ) = z. We simply choose the

parallelogram with vertices (0, 1, z, 1 + z) and mark it in the obvious

way. In short, we can say that there is a natural bijection between

the set T of marked parallelograms and H2, the upper half plane.

We can even take this one step further. H2 has its usual hyperbolic

metric, and we can transfer this metric onto T . That is, the distance

between P1 and P2 is defined to be the hyperbolic distance between

z(P1) and z(P2).

20.2. Flat Tori

In §6.3 we discussed the surface one gets by gluing the opposite sides

of a parallelogram. Such a surface is known as a flat torus . One

thing we did not discuss in §6.3 is the effect of changing the shape of

the underlying parallelogram, i.e., the topic of the previous section.
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When we consider the idea of doing the construction in §6.3 for all

possible parallelograms we are led to the notions of Teichmüller space

and moduli space. So, the idea is to unite the discussion in §6.3 with

the discussion in the previous section.

Say that a flat torus is a surface T that is locally Euclidean and

also homeomorphic to a torus. Recall that the universal cover of T is

R2 and the fundamental group of T is Z2.

Definition 20.1. Say that a marked flat torus is a flat torus, to-

gether with a distinguished pair of elements γ1, γ2 ∈ π1(T ) which

generate π1(T ). We say that two marked tori T1 and T2 are equiva-

lent if there is an orientation-preserving similarity that carries T1 to

T2 and induces a map on the fundamental groups that carries the one

distinguished generating set to the other.

Given a marked flat torus T , we can produce a marked paral-

lelogram, as follows: We think of π1(T, v) as the deck group, acting

on R2 by translations. We then consider the parallelogram P with

vertices

(20.1) 0, γ1(0), γ2(0), γ1(0) + γ2(0).

The distinguished vertex is 0, and the kth distinguished edge points

from 0 to γk(0). We insist that the marking of P is positively oriented

So, again, we weed out redundancy by only considering half the pos-

sibilities. We can also reverse the process. If we start with a marked

parallelogram P , as in Figure 20.1, we can glue the opposite sides of

P . The glued-up sides are loops which represent γ1 and γ2.

Exercise 2. Prove that two marked tori are equivalent if and only if

the corresponding marked parallelograms are equivalent.

Now we will redo the same construction from another point of

view. Let Σ denote our favorite flat torus, say, the one obtained by

identifying the opposite sides of a square.

Definition 20.2. A marked flat torus is a triple (Σ, T, φ), where
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T is a flat torus and φ : Σ → T is an orientation-preserving home-

omorphism. We say that two triples (Σ, T1, φ1) and (Σ, T2, φ1) are

equivalent if there is an orientation-preserving similarity f : T1 → T2

such that f ◦ φ1 and φ2 are homotopic maps.

We can convert between the one notion of marked torus and the

other. To go from Definition 20.2 to Definition 20.1, we first choose

a distinguished pair of elements of π1(Σ): We let γ1 denote the loop

that is the glued-up horizontal edge, and we let γ2 be the loop that

is the glued-up vertical edge. Then φ∗(γ1) and φ∗(γ2) are the distin-

guished elements of π1(T ). To go from Definition 20.1 to Definition

20.2, we recall that our original notion of a marked torus gives us

a description of the torus as a glued-up parallelogram P . We just

map the unit square to P by an affine map in such a way that the

gluings are respected, and then we interpret this map as a map from

Σ to our torus. This produces a triple (Σ, T, φ), where φ is not just a

homeomorphism but actually locally affine.

Exercise 3. Prove that our conversion between the two notions

of marked tori respects the equivalence relations. That is, the two

notions are really the same notion.

Since all the notions we have discussed are the same, we think

of T as the space of marked tori in the second sense. That is, we

work with equivalence classes of triples (Σ, T, φ). We have a canon-

ical identification of T with H2, the hyperbolic plane. With this

interpretation, T is known as the Teichmüller space of (marked) flat

structures on the torus.

20.3. The Modular Group Again

Now we are going to bring the modular group into the picture. We

discussed this group in §19.3 and §19.4. First of all, we can interpret

our favorite flat torus Σ as the quotient R2/Z2. This observation is

important in what we do next.

Let G = SL2(Z) denote the group of integer 2 × 2 matrices of

determinant 1, the modular group. Any g ∈ G acts on R2 as an
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orientation preserving linear transformation, and g(Z2) = Z2. This

means that g induces an orientation-preserving homeomorphism g :

Σ → Σ. We give this homeomorphism the same name as the linear

transformation which induces it.

Given a triple (Σ, T, φ), we define the new triple (Σ, T, φ ◦ g−1).

That is, we keep the same surface T , but we change φ : Σ → T to

the map given by the composition Σ → Σ → T , with the first arrow

given by g−1. We use g−1 in place of the more obvious choice of g for

technical reasons that we will explain momentarily.

Exercise 4. Prove that (Σ, T1, φ1) and (Σ, T2, φ2) are equivalent

if and only if (Σ, T1, φ1 ◦ g) and (Σ, T2, φ2 ◦ g) are equivalent.

The group G acts on the space T in the sense that

(20.2) g1(g2(x)) = (g1 ◦ g2)(x),

for all g1, g2 ∈ G and all x ∈ T . Here g1 ◦ g2 means “first do g2 and

then do g1”. To see this, let x be a point represented by the triple

(Σ, T, φ). We compute

g1(g2(x)) = g1(Σ, T, φ ◦ g−1
2 )(Σ, T, φ ◦ g−1

2 ◦ g−1
1 )

= (Σ, T, φ ◦ (g1 ◦ g2)−1) = (g1 ◦ g2)(x).

From this calculation, you can see why we used the inverse: it makes

the compositions come out the right way.

We have an explicit identification of T with H2, and we can see

how a particular matrix

(20.3) g =

[
a b

c d

]

acts on T in these coordinates. Let x = (Σ, T, φ) as above. We

put T in the best possible position, so that T is obtained by gluing

the opposite sides of the parallelogram (0, 1, z, 1 + z), and so that φ

is induced by the linear transformation carrying (1, 0) to (1, 0) and

(0, 1) to (x, y). Here z = x+iy. When we lift φ to the universal covers

of Σ and T , respectively, we get the same linear transformation. In
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other words, the linear transformation

(20.4) φ̂ =

[
1 x

0 y

]

induces the homeomorphism φ. The linear transformation

(20.5) φ̂ ◦ g−1 =

[
d− cx −b+ ax

−cy ay

]

induces the homeomorphism φ ◦ g−1.

To figure out the point g(x) we just have to compute the shape

of the marked parallelogram g(T0), where T0 is the unit square whose

distinguished point is the origin, whose first distinguished edge is

1 ≡ (1, 0), and whose second distinguished edge is i ≡ (0, 1). Here we

are listing both the coordinates in C and in R2. We compute that φ̂

maps the first and second edges, respectively, to cz − d and az − b.

So, if x ∈ T corresponds to z ∈ H2, then g(z) corresponds to

(20.6)
az − b

cz − d
.

Except for the minus signs, this is the usual linear fractional action

of g on H2.

20.4. Moduli Space

The quotient M = T /G is known as moduli space. To interpret this

quotient in terms of tori, we (temporarily) let M′ denote the set of

equivalence classes of flat tori. Here we say that two flat tori are

equivalent if there is an orientation-preserving similarity carrying one

to the other. We are going to construct a natural bijection between

M and M′. Once we have this bijection, we can forget about M′

and simply realize that M is the space of equivalence classes of flat

tori.

There is an obvious map from T to M′. Given a triple (Σ, T, φ),

we simply consider the torus T alone. It is a tautology that this map

respects the notions of equivalence on both T and M′. The action

of G on T has no effect on the underlying torus—only the map is

changed—so actually we get a map from M to M′.
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At the same time, there is a map from M′ to M. Given a flat

torus T , we arbitrarily choose a homeomorphism φ : Σ → T , and

we consider the image of the triple (Σ, T, φ) ∈ M. To see that this

map is independent of choices, consider the two triples (Σ, T, φ1) and

(Σ, T, φ2). The map φ−1
2 ◦φ1 is an orientation-preserving homeomor-

phism of Σ. We claim that this map is homotopic to some linear

homeomorphism of Σ, given by g ∈ G. Assuming this claim for the

moment, we see that (Σ, T, φ2) = g(Σ, T, φ1) for some g ∈ G. That

is, both choices lead to the same point in M.

Assuming our claim, we see that there is a natural bijection be-

tween M and M′, so we may identify M as the space of equivalence

classes of flat tori. The space M is known as moduli space.

It is worth pointing out that we just considered M′ as a set, but

we might have put a metric onM′ in some way. Any reasonable choice

would make our bijection between M and M′ a homeomorphism. We

will refrain from doing this here, because below we will actually do it

for surfaces of negative Euler characteristic.

Our only piece of unfinished business is to show that γ = φ−1
2 ◦φ1

is homotopic to the action of some g ∈ SL2(Z). Note that γ acts on

the fundamental group π1(Σ). Since γ is an orientation-preserving

homeomorphism, γ has the same action on π1(Σ) as does some g ∈
SL2(Z). So, replacing γ by γ ◦ g−1, we can assume that γ acts as

the identity on π1(Σ). Our task now is to show that γ is homotopic

to the identity map.

A formal proof of this fact is a bit tedious, but we will sketch

the idea. Let e1 and e2 be the usual horizontal and vertical loops on

Σ. Since γ(e1) is homotopic to e1, we first adjust γ so that it is the

identity on e1. Next, we adjust γ so that it is the identity on e1 ∪ e2.

But now we can cut Σ open and interpret γ as a continuous map from

the unit square to itself which is the identity on the boundary. The

following exercise finishes the proof.

Exercise 5. Prove that a continuous map from the unit square to

itself, which is the identity on the boundary, is homotopic to the iden-

tity map.
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There is an important lesson to take away from this section. The

space M has a more direct and simple definition than the space T .

However, it was useful to define T first and then realize M as a

quotient of T . We hope that this lesson motivates the definition

of the Teichmüller space of surfaces having a fixed negative Euler

characteristic.

20.5. Teichmüller Space

We would like to make all the same constructions that we made above

in the negative Euler characteristic case, but there is one fine point

we want to iron out. Above, we considered flat tori and similari-

ties between them, and below we will consider hyperbolic surfaces

and isometries between. Given any flat torus, we can always rescale

the metric so that it has unit area. If we only work with unit area

tori, then the natural maps between them are (orientation-preserving)

isometries. The point here is that an area-preserving and orientation

preserving similarity is an isometry. So, we might have redone the

whole theory above using unit area tori and isometries. This point of

view is more natural in the negative Euler characteristic case, because

two hyperbolic surfaces with the same topology always have the same

area; see Theorem 12.4.

Now we are ready to go. We will fix a number g ≥ 2, the genus

of the surfaces we consider. Recall that the genus g of a surface S

satisfies the equation

(20.7) χ(S) = 2− 2g.

Here χ is the Euler characteristic, as discussed in §3.4. Thus, a torus

has genus 1, and the octagon surface has genus 2. In general, a genus

g surface is a “g-holed torus” that is locally isometric to H2, the

hyperbolic plane. We are going to build T g, the Teichmüller space of

genus g hyperbolic surfaces.

We first fix our favorite surface of genus g, and call it Σ. Unlike

in the torus case, a “favorite” does not immediately jump out. My

personal favorite is the one obtained by gluing together the opposite

sides of a regular hyperbolic 4g-gon. In any case, we look at triples of

the form (Σ,M, φ), where M is a hyperbolic surface of genus g and
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φ : Σ → M is a homeomorphism. We say that two triples (Σ,M1, φ1)

and (Σ,M2, φ2) are equivalent if there is an isometry f : M1 → M2

such that f ◦ φ1 and φ2 are homotopic maps.

When we worked out the case of the torus, we had a natural

way of putting coordinates on the space T . The point is that T is

really just H2 in disguise. This time, it is not so obvious what to

do. So, we will first make T g into a metric space. The idea behind

the next definition is to make sense of surfaces being nearby to each

other without quite being the same. We say that a homeomorphism

f : M1 → M2 is a (1 + ǫ)-isometry if the inequality

(20.8) 1− ǫ ≤ d2(x2, y2)

d1(x1, y2)
≤ 1 + ǫ

holds for all quadruples x1, y1, x2, y2 with x1, y1 ∈ M1 and x2 = f(x1)

and y2 = f(y1). The functions d1 and d2 are the metrics on M1 and

M2, respectively.

Define the distance between 2 triples (Σ,M1, φ1) and (Σ,M2, φ2)

to be the infimal ǫ with the property that there is a (1 + ǫ) isometry

f : M1 → M2 such that f ◦ φ1 and φ2 are homotopic maps.

Exercise 6. Prove that the equivalence relation we have defined

respects the distance we have defined. Hence, the distance between

two equivalence classes makes sense. This is how we make T g into a

metric space.

In the case of the torus, there was a perfectly canonical metric on

T , namely the hyperbolic metric. In the higher genus case, the metric

we have defined is pretty good but not perfectly canonical. There

are a number of canonical metrics on T g. The two most commonly

used are the Teichmüller metric and the Weil–Petersson metric. One

vexing thing is that these two common metrics are pretty different

from each other. So, while there are several nice ways to view T g,

there does not seem to be one best way. What is best depends upon

the context.
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20.6. The Mapping Class Group

When we worked with our favorite flat torus Σ, the one based on

the unit square, we saw that SL2(Z) arose naturally as the group of

locally linear and orientation-preserving homeomorphisms of Σ. For

a hyperbolic surface, it is not immediately obvious that there is a

similarly natural group of homeomorphisms. However, it turns out

that there is such a group.

Above, we sketched a proof that any orientation-preserving home-

omorphism of the flat square torus Σ is homotopic to the action of

an element of SL2(Z). In fact, we can equally well say that SL2(Z)

is the quotient of the group of orientation-preserving similarities of

Σ, modulo homotopy. That is, two such homeomorphisms are equiv-

alent, and considered the same, if they are homotopic. This is a

definition that carries over immediately to the higher genus case.

We fix some initial hyperbolic surface Σ of genus g. The mapping

class group is defined as the group of equivalence classes of homeo-

morphisms of Σ, where two homeomorphisms are equivalent if they

are homotopic. The group is often denoted MCGg. It is a kind of

generalization of SL2(Z). The definition of the mapping class group

depends only mildly on the choice of Σ. Any other choice would lead

to an isomorphic group.

Exercise 7. The mapping class group is certainly well defined as

a set. Prove that it is well defined as a group, that is, the group law

respects the equivalence classes.

People have focused quite a bit of attention on the mapping class

group in recent years. There are many open problems about this

group. One of the most well-known open problems is as follows.

For each genus g, does there exist some n = ng and a one-to-one

homomorphism φ : MCGg → GLn(C)? Here GLn(C) is the group of

complex valued n×n matrices having nonzero determinant. Or, more

briefly, is the mapping class group linear? . Subgroups of GLn(C) are

called linear.
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The group MCGg acts on T g. The homeomorphism g : Σ → Σ

acts on the triple (M,Σ, φ) by sending it to the triple (M,Σ, φ◦g−1).

From the way we have defined the mapping class group, this action

respects the equivalence relation used to define T g.

Exercise 8. Recall that we defined a metric on T g above. Prove

that each element of MCGg acts as an isometry on T g.

Now that we have defined MCGg and T g, we define Mg to be

the quotient space.

(20.9) Mg = T g/MCGg.

The space Mg is known as the moduli space of genus g hyperbolic

surfaces.

As in the torus case, we could take the alternate route and define

Mg as the set of hyperbolic surfaces of genus g equipped with a metric

like the one defined above for T g. That is, the distance between two

hyperbolic surfaces is the infimal ǫ such that there is a (1+ǫ) isometry

between them.





Chapter 21

Topology of Teichmüller
Space

We defined the Teichmüller space T g in the previous chapter. In

the case of the torus, the Teichmüller space is just a copy of H2; in

particular, it is homeomorphic to R2. Here will sketch a well-known

proof, mainly through a series of exercises, that T g is homeomorphic

to R6g−6.

This beautiful result sets up a picture that is in some ways very

similar to the one for the torus. We have the mapping class group

MCGg acting isometrically on a space that is homeomorphic toR6g−g

(but having a funny metric on it). All the complexity in the topology

of the moduli space Mg comes from the operation of taking the quo-

tient of a topologically trivial space by the action of a complicated

group. This is exactly what happens for the torus, except that the

space M and the group SL2(Z) are not so complicated.

21.1. Pairs of Pants

A pair of pants is a hyperbolic surface-with-boundary that is obtained

by taking two identical copies of a right-angled hexagon and gluing 3

of the sides. Figures 21.1 and 21.2 show this. These kinds of gluings

were considered in detail in Chapter 12.

263
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Figure 21.1. Hexagon gluing

Exercise 1. Let l1, l2, l3 be three positive numbers. Prove that there

is a right-angled hexagon whose “odd” sides have lengths l1, l2, l3.

Prove that this hexagon is unique up to an isometry.

Figure 21.2. A pair of pants

A pair of pants is homeomorphic to a sphere with 3 holes. The

boundaries are totally geodesic in the sense that every point on the

boundary has a neighborhood that is isometric to a half-disk in H2.

By half-disk , we mean the portion of a disk that lies to one side of a

diameter.

Exercise 2. Suppose that M is a surface with boundary whose

interior is locally isometric to H2 and whose boundary is totally ge-

odesic. Suppose also that M is homeomorphic to a sphere with 3

holes. Prove that M is a pair of pants, in the sense that M can be
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built by gluing together 2 hexagons in the manner described above.

(Hint : Consider the 3 geodesics arcs obtained by connecting the 3

boundary components, in pairwise fashion, by shortest curves. Cut

M open along these curves and watch M fall apart into two right-

angled hexagons. Use Exercise 1 to show that these hexagons are

copies of each other.)

Exercise 3. Let l1, l2, l3 be three positive real numbers. Prove that

there exists a unique pair of pants, up to isometry, whose boundaries

have lengths l1, l2, l3, respectively.

To avoid confusion, we will shorten pair of pants to pant .

21.2. Pants Decompositions

We say that a pants decomposition of a hyperbolic surface is a real-

ization of that surface as a finite union of pants, glued together along

their boundaries. In this section we will prove that every hyperbolic

surface has a pants decomposition. Actually, we will prove that any

hyperbolic surface has many such.

Suppose that M is a hyperbolic surface and γ is a closed loop on

M . Recall that H2 is the universal cover of M and that M = H2/Γ,

where Γ is the deck group. Let γ̃ denote a lift of γ to H2. Since γ

is a closed loop, there must be some nontrivial element g ∈ Γ such

that g(γ) = γ. According to the classification of isometries of the

hyperbolic plane, g is either elliptic, hyperbolic, or parabolic. Since

M is a compact surface, there is some ǫ > 0 such that every ǫ ball on

M is embedded. This means that g moves every point of H2 by at

least ǫ. But this means that g is hyperbolic; see §10.9. In particular,

g has two fixed points on ∂H2.

From this picture, we see that γ̂ has two accumulation points

on ∂H2, namely the fixed points of g. There is a unique geodesic

β̃ connecting the two fixed points of g. This geodesic is the axis of

g. The quotient β = β̃/g is called the geodesic representative of γ.

Intuitively, if we think of γ as a rubber band that has been perhaps

stretched out of its natural position, then β represents the curve as-

sumed when the rubber band snaps back into position. The following
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exercise justifies this point of view.

Exercise 4. Prove that γ and β are homotopic.

The curve γ is called simple if γ has no self-intersections. If γ is

simple, then no two lifts of γ to the universal cover intersect. If β the

geodesic representative is not simple, then two lifts β̃1 and β̃2 in H2

cross each other. But then the endpoints of β̃1 separate the endpoints

of β̃2 on ∂H2. But then we can find corresponding lifts γ̃1 and γ̃2 of

γ whose (ideal) endpoints have the same property. This forces these

lifts to cross, which means that γ does have a self-intersection. Figure

21.3 shows the situation.

Figure 21.3. Intersecting curves

So, if γ is simple, then so is β. A similar argument proves the

following generalization: if {γi} is a finite list of pairwise disjoint

simple loops, then so is {βi}, the list of geodesic representatives.

The process of replacing a simple loop by its geodesic represen-

tative is a magical one. You might imagine that the geodesic replace-

ments could somehow crash into themselves or to each other, even

though the original curves do not. But, as we just explained, this is
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not the case. So, if we want to find a pants decomposition of a hy-

perbolic surface M , all we have to do is find simple loops that divide

M into 3-holed spheres. Then we replace all these loops with their

geodesic representatives, and we have our pants decomposition.

Now we can give the intuitive idea behind the main result of this

chapter. We start by choosing our favorite pants decomposition of

our favorite surface Σ. Let S ⊂ Σ denote the set of curves of this

decomposition. By definition Σ− S is a union of 3-holed spheres. A

point of T g is an equivalence class of triple (Σ,M, φ). We define a

pants decomposition on M by taking the geodesic representatives of

the curves in the set φ(S) ⊂ M .

Exercise 5. Prove that there will be exactly 2g − 2 pants in the

decomposition, with 3g − 3 boundary curves.

We get 3g − 3 real numbers by considering the lengths of the

boundary curves in the pants decomposition. Each curve is contained

in 2 pants. We get an additional 3g − 3 numbers by considering how

two pants are glued together along their common boundary. These

other 3g − 3 numbers are usually called the twist parameters . Our

construction respects the equivalence relation on triples and gives a

well-defined map. We from T g to R6g−6. will see that this map is a

homeomorphism.

21.3. Special Maps and Triples

In this section we prepare for our main construction. First, we choose

our favorite kind of pant. This is the pant obtained by gluing together

two identical regular hexagons. Each pant, including our favorite, has

two special points on each boundary component. These are the points

which are images of hexagon vertices; see Figure 21.2 above.

We (re)choose our favorite surface Σ so that it made from gluing

together 3g−3 of our favorite kind of pants. We insist that the pants

are glued in such a way that the marked points are matched up. This

still doesn’t determine the surface exactly, but we just pick one from

amongst the various possibilities.
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Let P (l1, l2, l3) denote the pant having boundary lengths l1, l2, l3.

We choose some reasonable homeomorphism from our favorite pant P0

to P (l1, l2, l3). The best way to to this is to choose a homeomorphism

from the regular right-angled hexagon to a hexagon with side lengths

lk/2 that sends vertices to vertices, and then to double this map, so

to speak.

More generally, given a 6-tuple (l1, l2, l3, θ1, θ2, θ3), we choose a

map from P0 to P (l1, l2, l3) which agrees with our original map above,

but which makes a twist of θk/2 (say) clockwise in a small neighbor-

hood of the kth boundary component. This new map is obtained

from the original one by giving a kind of twist. The new map is very

similar to the Dehn twists we discussed in §18.7. We call such a map

special and denote it by µ(l1, l2, l3, θ1, θ2, θ3).

Given a triple (Σ,M, φ), we get a pants decomposition of M , as

described above. We call the triple special if the following hold:

• The restriction of φ to each pant of Σ is one of our special

maps.

• If the restriction of φ to some pant P is the map

µ(l1, l2, l3, θ1, θ2, θ3),

then the restriction of φ to the pant P ′ that meets P along

the kth boundary of P is µ(. . . lk . . . , . . . , θk, . . . ). The other

4 coordinates can be different.

Here we sketch the proof that any triple is equivalent to a special

triple. We warn the reader that a formal construction is filled with

many details that we are not including. We hope that this sketch is

sufficient for the interested reader to give a careful proof. [RAT] has

all the details.

Lemma 21.1. Any triple is equivalent to a special triple.

Proof (sketch). Starting with the triple (Σ,M, φ1), we make a

homotopy between φ1 and a homeomorphism φ2 : Σ → M that maps

the set S of geodesics to the set of geodesics on the natural pants

decomposition of M . Next, we make a homotopy between φ2 and

a map φ3 : Σ → M that agrees with a special map outside a small

neighborhood of S, the only place where we do not have control over
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φ2. This map agrees with the special map on the outside of 3g − 3

small annuli.

Each annulus on Σ is divided in half. The two halves of an annu-

lus are subsets of the two different pants that glue together along a

common boundary component. The center curve of the annulus is the

common boundary component. We have a foliation of each annulus

by circles that are, in a sense, parallel to the center curve. We have a

similar picture for the corresponding annulus on M . We just adjust

φ3 so that it twists these circles “at a constant rate”, evenly dividing

the total twist between the two halves, so to speak. The final map φ4

is homotopic to the original one, and is special on each pant. Thus

(Σ,M, φ4) is equivalent to the original triple (Σ,M, φ1).

21.4. The End of the Proof

Now we construct our map from T g to R6g−6. We start with a triple

(Σ,M, φ) representing a point in T g. By Lemma 21.1, it suffices to

consider a special triple. However, for special triples, we can assign

a pair (l, θ) to each geodesic in the set S ⊂ Σ of pants boundaries.

This gives us the map from T g to R6g−6. Call this map Φ.

The map Φ is surjective, essentially thanks to Exercise 3. We

can build pants with any boundary lengths we like, and then we can

glue them together with as much twisting as we like. The map Φ is

injective because the coordinates on S give us complete instructions

for how to assemble the surface M and the map φ : Σ → M . Hence

Φ is a bijection between T g and R6g−6.

The map Φ−1 is continuous. If we have special maps correspond-

ing to nearly identical parameters, the corresponding pants are nearly

isometric to each other, and the twisting is nearly the same. This al-

lows us to build a map between the two surfaces that is nearly an

isometry and in the correct homotopy class.

Showing that Φ is continuous is the most tedious part of the

argument. Here we explain the proof. Let (M,Σj , φj) for j = 1, 2

be two very nearby special triples. Suppose that f : M1 → M2 is a

(1 + ǫ)-isometry.
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If ǫ is small, the map f carries each pant onM1 to a 3-holed sphere

on M2 whose boundaries are very nearly geodesics. The process of

replacing each near geodesic by an actual geodesic shortens the curve.

Hence, the pants boundaries on M2 are at most (1 + ǫ) times as long

as their counterparts on M1 and vice versa. Hence, the length param-

eters {lk} labelling each curve in S are about the same for each triple.

Exercise 6. Let P1 be a pant on M1, and let P2 be the corresponding

pant on M2. Prove that f(∂P1) is contained in an ǫ′-neighborhood
of P2, where ǫ′ → 0 with ǫ. (Hint : Lift the picture to the univer-

sal cover, and show that a curve that nearly minimizes length in H2

must be close to an actual geodesic.)

Exercise 7. Each pant on M1 decomposes into two identical right-

angled hexagons. Let H be such a hexagon. Prove that f(H) is

within ǫ′ of one of the corresponding hexagons on M2. Here ǫ
′ → 0 as

ǫ → 0. (Hint : By Exercise 5, f maps the pant boundaries to curves

that are very close to their geodesic representatives. This takes care

of half the sides of H. Next, f maps each other side s of H to a curve

that nearly realizes the distance between two components of a pant

on M2. Prove that this forces f(s) to be near the true minimizer.)

Each pant boundary β on M1 has 4 special points. Two of these

points come from one pant incident to β and the other two come from

the other pant incident to β. We call these collections of points special

quads .

Exercise 8. Let Q denote one of the special quads. Prove f(Q)

is within ǫ′ of the corresponding special quad on M2. Here ǫ′ → 0 as

ǫ → 0.

For M1, the parameter θ/(2π) on each curve of S can be deduced

from the distances between the points of the relevant special quads.

We now conclude from Exercise 8 that the θ parameters for M1 are

close mod 2π to the corresponding θ parameters for M2.
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Finally, if the θ parameter for M1 differs by nearly an integer

from the corresponding θ parameter for M2, then we can find an γ on

M1, crossing over the image of the offending boundary component,

such that f(γ) twists more times around and is considerably longer,

as shown in Figure 21.4. Figure 21.4 shows the case when θ = 0 for

M1 but θ = 1 for M2.

Figure 21.4. Integer twist

All in all, we have shown (modulo some details) that the map Φ

is a homeomorphism from T g to R6g−6.
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Chapter 22

The Banach–Tarski
Theorem

The purpose of this chapter is to prove the Banach–Tarski Theorem.

My account is somewhat similar to the one given in [WAG]. At first,

the Banach–Tarski Theorem does not look too much like a result

about surfaces, but in some sense it is a result about rotations of

the sphere. The proof I give also brings in the modular group in an

essential way.

22.1. The Result

We say that A,B ⊂ R3 are equivalent if there are finite partitions

into disjoint pieces,

A = A1 ∪ · · · ∪An, B = B1 ∪ · · · ∪Bn,

and isometries I1, . . . , In such that Ij(Aj) = Bj for all j. In this case,

we write A ∼ B. When A ∼ B it means, informally, that one can

cut A into n pieces, like a puzzle, and reassemble those pieces into B.

The implied map A → B is, by definition, a piecewise isometric map.

Exercise 1. Prove that ∼ is an equivalence relation.

275
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The Banach–Tarski Theorem requires the Axiom of Choice. See

[DEV] for a discussion of this axiom. Here is the precise version that

is needed.

Real Axiom of Choice (RAC). Let {Xα} be a disjoint union of

subsets of R3. Then there exists a set S ⊂ ⋃
Xα such that S contains

exactly one element of Xα for each α.

The RAC might seem obvious, or at least harmless. What the

Banach–Tarski Theorem shows is that a highly counterintuitive result

comes as a consequence of assuming that the RAC is true.

Say that A is a good set if A is bounded and A contains a ball.

Theorem 22.1 (Banach–Tarski). Assume the RAC If A and B are

arbitrary good sets, then A ∼ B.

In light of the fact that ∼ is an equivalence relation, it suffices

to prove the Banach–Tarski Theorem in the case that A is a ball of

radius 1.

What makes this theorem amazing is that A could be a tiny ball

and B could be an enormous ball. At first you might think that this

result contradicts such physical properties as “conservation of mass”.

The usual reply to this objection is that the pieces needed to make

the puzzle are so complicated that they do not have mass. Another

reply is that we are not talking about physical objects that are made

out of atoms.

22.2. The Schroeder–Bernstein Theorem

The Schroeder–Bernstein Theorem says the following. If there are

injective maps from A into B and from B into A, then there is a

bijection between A and B. This result works for any sets and any

maps. (Any book on set theory has this result, but you can extract

the general proof from the proof of the next result.)

In case A and B are subsets of R3 and the injections are piecewise

isometric maps, then the bijection manufactured by the proof is also

piecewise isometric. To formalize this situation, we write A ≺ B if
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A ∼ B′ for some subset B′ ⊂ B. This is another way of saying that

there is a piecewise isometric injection from A into B.

Lemma 22.2. If A ≺ B and B ≺ A, then A ∼ B.

Proof. We have injective and piecewise isometric maps f : A → B

and g : B → A. Say that an n-chain is a sequence of the form

xn → · · · → x0 ∈ A, where

• xk ∈ A if k > 0 is even. In this case f(xk) = xk−1

• xk ∈ B if k is odd. In this case g(xk) = xk−1.

For each a ∈ A, let n(a) denote the length of the longest n-chain that

ends in a = x0. It might be that n(a) = ∞. Let An = {a ∈ A| n(a) =
n}. Swapping the roles of A and B, define Bn similarly.

Now observe the following:

• f(Ak) = Bk+1 for k = 0, 2, 4, . . . .

• g−1(Ak) = Bk−1 for k = 1, 3, 5.

• f(A∞) = B∞.

The restriction of f to

A′ = A0 ∪A2 ∪ · · · ∪A∞

is an injective piecewise isometry and the restriction of g−1 to

A′′ = A−A′ = A1 ∪A3 ∪A5...

is also an injective piecewise isometry. (Note that A′′ does not include
A∞.) Define h(a) = f(a) if a ∈ A′ and h(a) = g−1(a) if a ∈ A′′. By

construction

f(A′) ∩ g−1(A′′) = ∅.

Hence h is an injection. Also,

B = f(A′) ∪ g−1(A′′).

Hence h is a surjection. Hence h is a bijection. By construction h is

a piecewise isometric map. �
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22.3. The Doubling Theorem

We write B ≻ A if there is a partition B = B1∪· · ·∪Bn and isometries

I1, . . . , In such that A ⊂ ⋃
Ij(Bj). In other words, we can break B

into finitely many pieces and use these pieces to cover A. The sets

I1(B1), . . . , In(Bn) need not be disjoint from each other.

Here is a result that sounds simpler (but not really much less

surprising) than the Banach–Tarski Theorem.

Theorem 22.3 (Doubling). Assume the RAC Then there exist 3

disjoint unit balls A,B1, B2 such that A ≻ B, where B = B1 ∪B2.

Now we will reduce the Banach–Tarski Theorem to the Doubling

Theorem.

Lemma 22.4. If B ≻ A, then A ≺ B.

Proof. Assume B ≻ A. Define

• A1 = A ∩ I1(B1).

• A2 = A ∩ I2(B2)−A1.

• A3 = A ∩ I3(B3)−A1 −A2, etc.

Then A = A1 ∪ · · · ∪ An is a partition. Let B′
j = I−1

j Aj and let

B′ =
⋃
B′

j . Then B′
1 ∪ · · · ∪B′

n is a partition of B′. By construction

A ∼ B′ ⊂ B. Hence A ≺ B. �

Let Br denote the unit ball of radius r centered at the origin.

We will assume the RAC and the Doubling Theorem. We claim

that Br ∼ Bs for any r, s > 0. By scaling, we can assume that

1 = r < s. Clearly, B1 ≺ Bs. In light of the lemmas in the previous

section, it suffices to prove that B1 ≻ Bs. There is some n such that

Bs can be covered by 2n translates of B1. Iterating the Doubling

Theorem n times, we see that B1 is equivalent to 2
n disjoint translates

of B1. But then B1 ≻ Bs. This proves what we want. Now we know

that Br ∼ Bs for all r, s > 0.

We have already mentioned that it suffices to prove the Banach–

Tarski Theorem when B = B1, the unit ball. But Br ⊂ A ⊂ Bs for

some pair of balls Br and Bs. Since Br ∼ Bs and A ⊂ Bs, we have
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Br ≻ A. This implies that A ≺ Br. But Br ≺ A. Hence A ∼ Br.

But Br ∼ B1. Hence A ∼ B1. This finishes the reduction of the

Banach–Tarski Theorem to the Doubling Theorem.

22.4. Depleted Balls

We are left to prove the Doubling Theorem. The Doubling Theorem

is about as simple as can be, but unfortunately some technical com-

plications arise when we try to prove the Doubling Theorem directly.

The way around these complications is to prove a related result in-

stead.

Say that a depleted ball is a set of the form B − X, where B is

a unit ball andX is a countable union of lines through the center of B.

Exercise 2. Prove that any unit ball can be covered by 3 isometric

images of any depleted ball.

Theorem 22.5 (Depleted Ball). Assume the RAC Then there exists

a depleted ball Σ and a partition Σ = Σ1 ∪ Σ2 ∪ Σ3 such that the

following hold:

• Σi and Σj are isometric for all pairs i, j.

• Σ3 ≻ Σ1 ∪ Σ2.

Lemma 22.6. Assume the RAC Then there are 9 disjoint depleted

balls A, B1, . . . , B8 such that A ∼ B where B = B1 ∪ · · · ∪B8.

Proof. Iterating the conclusion of the Depleted Ball Theorem, we

see that Σ1 ≻ Y , where Y is any finite union of isometric copies of

Σ1. Our lemma follows almost immediate from this. �

Exercise 3. Deduce the Doubling Theorem from the last lemma.

To finish the proof of the Banach–Tarski Theorem, we just have

to prove the Depleted Ball Theorem.
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22.5. The Depleted Ball Theorem

Proving the Depleted Ball Theorem is the most interesting part of the

proof of the Banach–Tarski Theorem. The rest is really just “window

dressing”. This is the part of the proof that brings in the modular

group.

Consider the countable group

Γ = 〈A,B|A3 = B2 = identity〉.
In other words, Γ is the group of all words in A and B subject to the

relations that A3 and B2 are the identity word.

Exercise 4. Prove that Γ is isomorphic, as a group, to the modular

group discussed in §19.3 and §19.4. (Hint : Put together Exercises 7

and 8 in §19.4.)

We have a partition Γ = Γ1 ∪ Γ2 ∪ Γ3, where

• Γ1 consists of those words starting with A.

• Γ2 consists of those words starting with A2.

• Γ3 consists of the empty word and also those words starting

with B.

We have the following structure:

AΓk = Γk+1, Γ1 ∪ Γ2 ⊂ BΓ3.

Indices are taken mod 3 for the first equation. These two algebraic

facts are quite close to the conclusion of the Depleted Ball Theorem.

The trick is to convert the algebra into geometry. Let B denote the

unit ball in R3, and let SO(3) denote the group of rotations of B.

Below we will prove the following technical lemma.

Lemma 22.7. There exists an injective homomorphism ρ : Γ →
SO(3).

We choose our injective homomorphism, and we identify A and

B with their images under ρ. So, A is an order 3 rotation of B and

B is an order 2 rotation of B. In general, we identify elements of Γ

with their images under ρ.
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A nontrivial element of SO(3) is a rotation about some line

through the origin. We say that a line in R3 is bad if it is the line

fixed by some element of Γ. Since Γ is a countable group, there are

only countably many bad lines. Let X denote the union of these bad

lines, and let Σ = B −X. Then Σ is a depleted ball. Moreover, the

group Γ acts freely on Σ in the following sense. If γ(p) = p for some

γ ∈ Γ and some p ∈ Σ, then γ is the identity element.

We have an equivalence relation on Σ. We write p1 ∼ p2 if and

only if p1 = γ(p2) for some γ ∈ Γ. The fact that Γ is a group implies

easily that ∼ is an equivalence relation. This gives us an uncountable

partition

Σ =
⋃

Σα

into the equivalence classes. By the RAC, we can find a new set

S ⊂ Σ such that S has one member in common with each Sα.

Lemma 22.8. Let γ1, γ2 ∈ Γ be distinct elements. Then γ1(S) ∩
γ2(S) = ∅.

Proof. We argue by contradiction. Suppose that p ∈ γ1(S) ∩ γ2(S).

We have γ−1
j (p) ∈ S for j = 1, 2. But γ−1

1 (p) and γ−1
2 (p) are in the

same Γ orbit. Since S intersects each Γ orbit exactly once, we have

γ−1
1 (p) = γ−1

2 (p). But then γ2γ
−1
1 (p) = p. Since Γ acts freely on Σ, we

have γ2γ
−1
1 = identity. Hence γ1 = γ2. This is a contradiction. �

Lemma 22.9.

Σ =
⋃

γ∈Γ

γ(S).

Proof. Choose p ∈ Σ. By construction, there is some q ∈ S such that

p ∼ q. This means that p = γ(q) for some γ ∈ Γ. Hence p ∈ γ(S). �

Now define

Σk = Γk(S) :=
⋃

γ∈Γk

(S).

The previous two results show that Σ = Σ1 ∪ Σ2 ∪ Σ3 is a partition

of Σ. At the same time

A(Σk) = Σk+1, B(Σ3) = BΓ3(S) ⊃ (Γ1 ∪ Γ2)(S) = Σ1 ∪ Σ2.
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The first part of this equation shows that Σi and Σj are isometric for

all i, j. The second part shows that Σ1∪Σ2 is isometric to a subset of

Σ3. Hence Σ3 ≻ (Σ1 ∪ Σ2). This proves the Depleted Ball Theorem.

22.6. The Injective Homomorphism

The last piece of unfinished business is to produce an injective ho-

momorphism ρ : Γ → SO(3). Let φ : S2 → C ∪∞ be stereographic

projection, as in §9.5 and §14.3. We say that two points z, w ∈ C∪∞
are partner points if

(22.1) w = −1/z.

In particular, 0 and ∞ are partner points.

Exercise 5. Prove that φ maps antipodal points on S2 to part-

ner points.

Exercise 6. Let T1 and T2 be two linear fractional transformations,

both of which fix two distinct points z, w ∈ C. Suppose also that the

differentials dT1 and dT2 are the same map at z. Prove that T1 = T2.

Lemma 22.10. Suppose that α is an order 3 linear fractional trans-

formation that fixes two partner points z and −1/z in C. Then the

map φ−1 ◦ α ◦ φ is an isometric rotation of S2.

Proof. Let α be as in Lemma 22.10. We know by Exercise 5 that

the map α′ = φ−1 ◦ α ◦ φ fixes two antipodal points and has order

3. We can find an isometry I ′ of S2 that has order 3 and fixes these

same two points. Let I = φ◦I ′ ◦φ−1. By Lemma 14.6, the map I is a

linear fractional transformation. Note that I and α fix the same two

points and dI and dα have the same action at either point. Hence

I = α, by Exercise 6. Hence I ′ = α′, as desired. This completes the

proof. �

Let SL2(C) denote the group of 2 × 2 matrices, with complex

entries, having determinant 1. As in Chapter 10, these matrices rep-

resent linear fractional transformations.

Exercise 7. Let z, w ∈ C − {0} be distinct points. Prove that
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there exists an element Tz,w of SL2(C) that represents a linear frac-

tional transformation that carries 0 to z and ∞ to w.

The matrix

β =

[
i 0

0 −i

]

represents the linear fractional transformation that has order 2 rota-

tion about 0 and ∞. The matrix

αz,w = Tz,w ◦
[
ω 0

0 ω5

]
◦ T−1

z,w, ω = exp(πi/3),

represents an order 3 linear fractional transformation that fixes z and

w. The entries of αz,w are polynomials in z and w.

Once we pick z ∈ C − {0}, we define a homomorphism ρz : Γ →
SL2(C) by the rule

ρz(A) = αz,w, w = 1/z, ρz(B) = β.

Note that ρz(β) doesn’t depend on z. Now we define ρ : Γ → SO(3)

by the rule

ρ = φ−1 ◦ ρz ◦ φ,
where φ is stereographic projection. Lemma 22.10 guarantees that

ρ(A) is an isometric rotation, and this is obvious for ρ(B). Note

that ρ is injective if and only if ρz is injective. So, at this point,

we can forget about ρ entirely and just worry about choosing z so

that ρz is injective. This is a problem entirely about linear fractional

transformations.

Given any γ ∈ Γ, let S(γ) ⊂ C denote those z ∈ C − {0} such

that ρz(γ) is not the identity matrix. Setting z = x + iy, we see

that the coordinates of w = 1/z are rational functions of x and y.

Therefore, the entries of ρz(γ) are rational functions of x and y. Any

rational function of x and y either vanishes identically or vanishes on

a nowhere dense set. In particular, S(γ) is either empty or else an

open dense set.

Exercise 8. The Baire Category Theorem (for the plane) says that

the intersection of a countable collection of open dense subsets of C
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is nonempty. Prove this result.

Suppose for the moment that S(γ) is nonempty for all nontrivial

γ ∈ Γ. Then, by the Baire Category Theorem, the intersection
⋂

γ

S(γ)

is nonempty. Choosing any z in this intersection leads to an injective

ρz. So, to finish our proof, we just have to show that S(γ) is always

nonempty.

We will fix γ and show that S(γ) is nonempty. Recall that the

element αz,w is defined for all pair of distinct z, w ∈ C. Accordingly,

we can define the homomorphism ρz,w by sending A to αz,w and B

to β. This lets us speak about the matrix entries of ρz,w(γ). These

are polynomials on the two complex variables z and w. Let Fij be

one of these polynomials.

Lemma 22.11. Fij is nontrivial for some i, j.

Proof. Here is the crucial observation. We can choose (z, w) so that

the image ρ(Γ) is conjugate to the hyperbolic modular group discussed

in §19.3 and §20.3. For this choice of (z, w), the matrix ρz,w(γ) is

not the identity. The point is that the corresponding element in the

modular group does something nontrivial to the hyperbolic plane.

Hence, the matrix coefficients of this matrix, as functions of z and w,

cannot be constant. �

We let F = Fij for the indices guaranteed by the previous result.

Let

R∆ = {(z,−1/z)| z ∈ C − {0}}.
We really only care about the restriction of F to R∆, because the

other points in C2 do not correspond to homomorphisms from Γ into

SO(3).

Intuitively, what makes the next lemma work is that R∆ is a

“big” subset of C2. An algebraic geometer would say that R∆ is

Zariski dense, and that would be the end of the proof, but we will

work out what we need from scratch. For the interested reader, most
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books on algebraic geometry will have a discussion of Zariski Density.

See, for instance, [KEN].

Lemma 22.12. F is nonconstant on R∆.

Proof. This is a general result about polynomials in C2 and does

not depend on the specific structure of F . We will suppose that F

is constant in R∆ and derive a contradiction. Consider the following

rational map on C2:

θ(z1, z2) =

(
z1 + 1/z2, i(z1 − 1/z2)

)
.

By construction θ(R∆) is open in R2. The function θ ◦ F ◦ θ−1 is

a rational function on C2 that is constant on an open subset of R2.

(A rational function is the ratio of two polynomials.) This forces

θ ◦ F ◦ θ−1 to be globally constant. But then F is globally constant

as well. This contradiction completes the proof. �

Since F is not constant on R∆, the matrix ρz(γ) cannot be con-

stant on all of R∆. Hence S(γ) is nonempty. This completes the last

piece of unfinished business. There is an injective homomorphism

ρ : Γ → SO(3).





Chapter 23

Dehn’s Dissection
Theorem

We saw in §8.5 that any two polygons of the same area are dissection

equivalent to each other. The purpose of this chapter is to prove

Dehn’s Dissection Theorem, which shows that the analogous result in

3 dimensions is false.

23.1. The Result

A polyhedron is a solid body whose boundary is a finite union of poly-

gons, called faces . We require that any two faces are either disjoint or

share a common edge or share a common vertex. Finally, we require

that any edge common to two faces is not common to any other face.

A dissection of a polyhedron P is a description of P as a finite

union of smaller polyhedra,

(23.1) P = P1 ∪ · · · ∪ Pn,

such that the smaller polyhedra have pairwise disjoint interiors. Note

that there is not an additional assumption, say, that the smaller poly-

hedra meet face to face.

Two polyhedra P and Q are scissors congruent if there are dis-

sections P = P1∪· · ·∪Pn and Q = Q1∪· · ·∪Qn such that each Pk is

isometric to Qk. Sometimes, one requires that all the isometries are

287
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orientation-preserving, but in fact and two shapes that are scissors

congruent via general isometries are also scissors congruent via ori-

entation preserving isometries. (This little fact isn’t something that

is important for our purposes.)

In 1900, David Hilbert posed 23 problems, now known as the

Hilbert Problems . Hilbert’s Third Problem asks if every two polyhe-

dra of the same volume are scissors congruent to each other. (Hilbert

conjectured that the answer was no.) The Hilbert Problems have in-

spired a huge amount of mathematics since 1900, but the third one

was solved in 1901, by Max Dehn. In 1901, Dehn proved the following

result.

Theorem 23.1. The cube and the regular tetrahedron (of the same

volume) are not scissors congruent.

Exercise 1. Say that a prism is a polyhedron with 5 faces, two of

which are parallel. So, a prism has a triangular cross-section. Prove

that any two prisms of the same volume are scissors congruent. (Hint :

After some effort you can boil this down to the the polygon dissection

theorem.)

23.2. Dihedral Angles

The dihedral angle is an angle we attach to an edge of a polyhedron.

To define this angle, we rotate the polyhedron so that the edge in

question is vertical, and then we look directly down on the polyhe-

dron. The two faces containing our edge appear as line segments, and

the dihedral angle is the angle between these line segments. We will

measure dihedral angles in such a way that a right angle has measure

1/4. All the dihedral angles of a cube are 1/4.

All edges of a regular tetrahedron have the same dihedral angle.

We are going to prove that this common angle is irrational. Geomet-

rically, this is the same as saying that one cannot fit finitely many

tetrahedra precisely around an edge, even if these tetrahedra are per-

mitted to wrap around more than once before closing back up.

We will place our tetrahedron in space so that one edge is vertical.

Rather than work in R3, it is useful to work in C×R, where C is the
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complex plane. This is a nice way to distinguish the vertical direction.

Consider the complex number

(23.2) ω =
1

3
+

2
√
2

3
i.

Note that |ω| = 1. Let T0 be the tetrahedron with vertices

(1, 0), (ω, 0),

(
0,

1√
3

)
,

(
0,

−1√
3

)
.

Exercise 2. Check that T0 is a regular tetrahedron.

Consider the new tetrahedron Tn, with vertices

(ωn, 0), (ωn+1, 0),

(
0,

1√
3

)
,

(
0,

−1√
3

)
.

The tetrahedra T0, T1, T2, . . . are just rotated copies of T0. We are

rotating about the vertical axis. Notice that Tn+1 and Tn share a face

for every n. To say that the dihedral angle is irrational is the same

as saying that the list T0, T1, T2, . . . is infinite. This is the same as

saying that there is no n such that ωn = 1.

In the next section, we will rule out the possibility that ωn = 1

for any positive integer n. This means that T0, T1, T2 . . . really is

an infinite list. Hence, the common dihedral angle associated to the

edges of a regular tetrahedron is irrational.

23.3. Irrationality Proof

The point of this section is to prove the following result: The complex

number

(23.3) ω =
1

3
+

2
√
2

3
i

does not satisfy the equation ωn = 1 for any positive integer n.

Exercise 3. Check that ωn 6= 1 for n = 1, 2, 3, 4, 5, 6. Also check

that ω2 = (2/3)ω − 1.

In light of Exercise 2, we just have to check the case n ≥ 7. Let

G(ω) be the set of numbers of the form a + bω, where a and b are
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integers. This set is discrete: every disk intersects only finitely many

elements of G(ω). The point here is that ω is not real. So, considered

as vectors in the plane, 1 and ω are linearly independent over the

reals.

Let n ≥ 7 be the smallest value such that (supposedly) ωn = 1.

Let Z[ω] denote the set of numbers of the form

(23.4) a1ω + a2ω
2 + · · ·+ anω

n

where a1, . . . , an are integers. Z[ω] has the nice property that

(23.5) (ωa − ωb)c ∈ Z[ω]

for any positive integers a, b, c. This comes from the fact that ωn = 1.

There are at least 7 powers of ω crowded on the unit circle, so at

least 2 of them must be closer than 1 unit apart. But that means

we can find integers a and b such that |z| < 1, where z = ωa − ωb.

The numbers z, z2, z3 . . . all belong to Z[ω], and these numbers are

distinct because |zn+1| = |z||zn| < |zn|. So, Z[ω] is not discrete.

Using Exercise 3, we get

ω3 = ω × ω2 = ω ×
(
(2/3)ω − 1

)
= (2/3)ω2 − ω = (5/9)ω − (2/3),

and similarly for higher powers of ω. In general,

(23.6) 3n(a1ω + · · ·+ anω
n) = integer + integer× ω.

for any choice of integers a1, . . . , an. But then Z[ω] is contained in

a scaled-down copy of G(ω) and hence is discrete. But Z[ω] is not

discrete, and we have a contradiction.

23.4. Rational Vector Spaces

Let R = {r1, . . . , rn} be a finite list of real numbers. Let V be the

set of all numbers of the form

a0 + a1r1 + · · ·+ aNrN , a0, a1, · · · , aN ∈ Q.

V is a finite dimensional Q-vector space.

We declare two elements v1, v2 ∈ V to be equivalent if v1−v2 ∈ Q.

In this case we write v1 ∼ v2. Let [v] denote the set of all elements
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of V that are equivalent to v. Let W denote the set of equivalence

classes of V . The two operations are given by

[v] + [w] = [v + w], r[v] = [rv].

The 0-element is given by [0].

Exercise 4. Prove that these definitions make sense, and turn W

into another finite-dimensional Q-vector space.

Let v1, . . . , vm be a basis for V , and let w1, . . . , wn be a basis for

W . The tensor product V ⊗W is the Q-vector space of formal linear

combinations

(23.7)
∑

i,j

aij(vi ⊗ wj), aij ∈ Q

Here vi ⊗ wj is just a formal symbol, but in a compatible way the

symbol ⊗ defines a bilinear map from V ×W into V ⊗W :

(23.8)

(∑
aivi

)
⊗
(∑

bjwj

)
=

∑
aibj(vi ⊗ wj).

The m× n elements {1(vi ⊗ wj)} serve as as a basis for V ⊗W .

Here is a basic property of V ⊗W . If v ∈ V is nonzero and w ∈ W

is nonzero, then v ⊗ w is nonzero. One sees this simply by writing v

and w out in a basis and considering equation (23.8). At least one

product aibj will be nonzero. In particular

(23.9) 6⊗ δ 6= 0,

where δ is the dijedral angle of the regular tetrahedron, and R is

chosen so as to contain δ.

23.5. Dehn’s Invariant

Let R = {r1, . . . , rN} be a finite list of real numbers, and let V and

W be the two examples of vector spaces given in Examples 1 and 2

above. Once again, V is the set of all numbers of the form

a0 + a1r1 + · · ·+ anrN , a0, . . . , aN ∈ Q,

and W is the set of equivalence classes in V .
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Suppose that X is a polyhedron. Let λ1, . . . , λk denote the side

lengths of all the edges of X. Let θ1, . . . , θk be the dihedral angles,

listed in the same order. We say that X is adapted to R if

(23.10) λ1, . . . , λk, θ1, . . . , θk ∈ R.

If X is adapted to R, we define the Dehn invariant as

(23.11) 〈X〉 =
k∑

i=1

(λi ⊗ [θi]) ∈ V ⊗W.

The operation ⊗ is as in equation (23.7), and the addition makes

sense because V ⊗W is a vector space.

Suppose now that P and Q are a cube and a regular tetrahedron

having the same volume. Assume R is chosen large enough so that

P and Q are both adapted to R. Let λP and λQ denote the side

lengths of P and Q, respectively. Let δP and δQ denote the respective

dihedral angles. We have [δP ] = [1/4] = [0], because 1/4 is rational.

On the other hand, we have already seen that δQ is irrational. Hence

[δQ] 6= [0]. This gives us

(23.12) 〈P 〉 = 12λP ⊗ [δP ] = [0], 〈Q〉 = 6λQ ⊗ [δQ] 6= [0].

In particular,

(23.13) 〈P 〉 6= 〈Q〉.

To prove Dehn’s Theorem, our strategy is to show that the Dehn

invariant is the same for two polyhedra that are scissors congruent.

The result in the next section is the key step in this argument.

23.6. Clean Dissections

Say that a clean dissection of a polyhedron X is a dissection X =

X1 ∪ · · · ∪ XN , where each pair of polyhedra are either disjoint or

share precisely a lower-dimensional face. Let R be as above.

Lemma 23.2. Suppose that X = X1 ∪ · · · ∪XN is a clean dissection

and all polyhedra are adapted to R. Then 〈X〉 = 〈X1〉+ · · ·+ 〈XN 〉.
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Proof. We will let Y stand for a typical polyhedron on our list. Say

that a flag is a pair (e, Y ), where e is an edge of Y . Then

〈X1〉+ · · ·+ 〈XN 〉 = S =
∑

f∈F

λ(f)⊗ θ′(f).

Here F is the set of all flags and λ(f) and θ′(f) are the length and

dihedral angle associated to the flag f .

We classify the flag (e, Y ) as one of three types:

• Type-1. e does not lie on the boundary of P .

• Type-2. e lies in the boundary of P , but not in an edge.

• Type-3. e lies in an edge of P .

We can write S = S1 + S2 + S3, where Sj is the sum over flags of

Type j.

Call two flags (e, Y ) and (e′, Y ′) strongly equivalent iff e = e′.
Given a Type-1 edge e, let θ1, . . . , θm denote the dijedral angles as-

sociated to the flags involving e. From the clean dissection property,

these polyhedra fit exactly around e, so that (with our special units)

θ1 + · · ·+ θm = 1. Hence
∑

λ(e)⊗ [θj ] = λ(e)⊗
∑

[θj ] = λ(e)⊗ [1] = 0.

Summing over all Type-1 equivalence classes, we find that S1 = 0. A

similar argument shows that S2 = 0. In this case θ1 + · · ·+ θk = 1/2.

Now we show that S3 = 〈X〉. Define a weak equivalence class as

follows. (e, P ) and (e′, P ′) are weakly equivalent iff e and e′ lie in

the same edge of X. The set of weak equivalence classes is bijective

with the set of edges of X. Let e be some edge of X, with length

and dihedral angle λ and θ. Let e1, . . . , em be the different edges

that appear in weak equivalence class named by e. With the obvious

notation λ = λ1 + · · · + λk. Let θj1, . . . , θjmj
denote the dihedral

angles associated to the strong equivalence class involving ej . We

have θj1+ · · · θjmj
= θ. Summing over the weak equivalence class, we

get ∑

jk

λj ⊗ [θjk] =
∑

j

λj ⊗ [θ] = λ(e)⊗ [θ(e)].

Summing over all weak equivalence classes, we get S3 = 〈X〉, as

desired. �
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23.7. The Proof

Let P be a cube, and let Q be a tetrahedron. We will suppose that

we have a scissors congruence between P = P1 ∪ · · · ∪ Pn and Q =

Q1 ∪ · · · ∪Qn.

We first produce new dissections of P and Q that are clean. Here

is the construction. Let Π1, . . . ,Πk denote the union of all the planes

obtained by extending the faces of any polyhedron in the above dis-

section of P . Say that a chunk is the closure of a component of

R−⋃
Πj . Then we have clean dissections

(23.14) Pi = Pi1 ∪ · · · ∪ Pini

of each Pi into chunks, and also the clean dissection

(23.15) P =
⋃

Pij

of P into chunks. We make all the same definitions for Q. The

dissections in equation (23.15) for P and Q might not define a scissors

congruence, but we don’t care.

Let R denote the finite list of lengths and dihedral angles that

arise in any of the polyhedra appearing in our constructions involving

P and Q. Let V ⊗W be the vector space defined as in the previous

sections, relative to R. Computing the Dehn invariants in V ⊗W , we

have

(23.16) 〈P 〉 =
∑

〈Pij〉 =
∑

〈Pi〉 =
∑

〈Qi〉 =
∑

〈Qij〉 = 〈Q〉.
The first equality is obtained by applying Lemma 23.2 to the dissec-

tion in equation (23.15). The second equality is obtained by applying

Lemma 23.2 to each dissection in equation (23.14) and adding the

results. The middle equality comes from the obvious isometric invari-

ance of the Dehn invariant. The last two equalities have the same

explanations as the first two. In short, 〈P 〉 = 〈Q〉. This contradicts

our computation that 〈P 〉 6= 〈Q〉. The only way out of the contradic-

tion is that the cube and the tetrahedron are not scissors congruent.

Exercise 5. Consider all the unit area platonic solids. Which are

scissors congruent to which?



Chapter 24

The Cauchy Rigidity
Theorem

The purpose of this chapter is to prove the Cauchy Rigidity Theorem

for strictly convex polyhedra. One can find another proof in the

book [AIZ] As the authors point out therein, Cauchy’s original proof

was flawed, and a correct proof from comes from a letter from I.J.

Schoenberg to K. Zaremba.

The proof is half geometrical and half combinatorial. The geo-

metrical half of the proof I give is very similar to what Aigner and

Ziegler do, except that I spell out some of the intermediate steps

in more detail. The combinatorial half can be done in many ways,

and I give an argument based on the combinatorial Gauss–Bonnet

Theorem; see §17.3.

24.1. The Main Result

A polyhedron is a solid body whose boundary is a finite union of

polygons, called faces . A polyhedron P is called strictly convex if,

for each face f of P , there is a half-space Πf such P ⊂ Πf and

P ∩∂Πf = f . The boundary ∂Πf is the plane extending f . The cube

is a classic example of a strictly convex polyhedron.

295
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Say that two polyhedra P and P ′ are flexes of each other if there

is a homeomorphism from ∂P to ∂P ′ which is an isometry when

restricted to each face. In other words, there is a combinatorics-

respecting bijection between the faces of P and the faces of P ′ such
that corresponding faces are isometric to each other. Making the

same definition for polygons, we observe that any pair of rhombuses,

having unit side length, are flexes of each other. The Cauchy Rigidity

Theorem rules out this behavior in 3 dimensions, at least for strictly

convex polyhedra.

Theorem 24.1 (Cauchy). Let P and P ′ be two strictly convex polyhe-

dra. If P and P ′ are flexes of each other then P and P ′ are isometric.

Exercise 1. Show by example that the Cauchy Rigidity Theorem is

false when the convexity assumption is dropped.

Amazingly, Robert Connelly discovered examples of continuous

families of polyhedra, in which every two are flexes of each other. In

other words, Connelly’s examples actually flex in a literal sense.

24.2. The Dual Graph

There is a nice graph that lies on the surface of P , called the dual

graph. We place one new vertex per face of P , and join two vertices

by an edge if and only if the corresponding faces share an edge.

There is a nice geometric way to picture the dual graph. Let S

denote a set of points, one per interior face of P . Just to be definite,

we choose the center of mass of each face of P . Then, let P ∗ denote

the convex polygon whose vertex set is S. Formally, we can say that

P ∗ is the convex hull of S, namely the intersection of all closed and

convex subsets of R3 that contain S. The dual graph is exactly the

union of edges and vertices of P ∗.

Exercise 2. When P is a platonic solid, P ∗ is also a platonic solid.

The construction pairs up the cube with the octahedron, the dodec-

ahedron with the icosahedron, and the tetrahedron with itself, or,

rather, a slightly smaller tetrahedron. Try to draw pictures of these
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cases.

To get perhaps the nicest picture of the dual graph, we surround

P ∗ by a large sphere and then project the dual graph onto the surface

of the sphere by a radial projection from some point in the interior

of P ∗. Finally, we identify this large sphere with S2, the unit sphere.

This gives us a graph Γ on S2, all of whose edges are arcs of circles.

Each component of S2−Γ is a polygon whose boundary is made from

circular arcs. The important thing for us is just that each component

is homeomorphic to a disk.

There is a natural correspondence between the edges of the poly-

gon and the edges of the dual graph. When we draw the dual graph

directly on P , each edge of the dual graph crosses one edge of P , and

vice versa. So, if we have some kind of labelling of the edges of P ,

we can transfer it in the obvious way to a labelling of the edges of

the dual graph Γ, which we think about in its final incarnation, as a

graph on S2.

24.3. Outline of the Proof

Each edge e of P has a partner edge e′ of P ′. Let θ(e) be the dihedral
angle of P at e, and let θ(e′) be the corresponding dihedral angle of

P ′ at e′. (Recall that the dihedral angle is the angle made by the

planes incident to the edge.) We label the edge e by (+), (−), or (0)

according as to whether the sign of θ(e)− θ(e′) is positive, negative,
or zero.

We transfer our labelling to the dual graph, Γ ⊂ S2. Each com-

ponent C of S2 − Γ is bounded by a circuit in Γ. We get a cyclically

ordered list L(C) of members of {+,−, 0} by reading the labels of

this circle, say, in clockwise order.

We call L = L(C) bad if, after we delete all the 0’s from L, we have

a nonempty list that changes from + to − at most once as we cycle

through it. Otherwise, we call L good . For instance (+0+−−−00+)

is a bad list, and (+ +−−−+−) is a good list.

Below we will prove two results. The first is geometrical and the

second is combinatorial.



298 24. The Cauchy Rigidity Theorem

Lemma 24.2. For any component C of S2−Γ, the list L(C) is good.

Lemma 24.3. Let Γ be a graph on S2 such that each component of

S2 − Γ is an embedded topological disk. Suppose that the edges of Γ

are labelled nontrivially by elements of {+,−, 0}. Then there is at

least one component C of S2 − Γ such that L(C) is a bad list.

Our two lemmas contradict each other unless the labelling of Γ

is completely trivial. But then θ(e) = θ(e′) for all edges e of P . But

this easily implies that P and P ′ are isometric.

Exercise 3. Build half an octahedron by taping together 4 card-

board equilateral triangles about a vertex. The portion of Γ corre-

sponding to these faces is a quadrilateral. Physically flex the object

and observe that the only possible nontrivial labelling is (+ − +−)

or, of course, (−+−+). Compare this with Exercise 5 from Chapter 9.

Exercise 4. Without looking at the long-winded proof below, prove

Lemma 24.3 for the cube.

Exercises 3 and 4 combine to prove Cauchy’s Theorem for P and

P ′, when P is a regular octahedron.

Exercise 5. Imitating Exercises 3 and 4, Give a proof of Cauchy’s

Theorem for the regular icosahedron.

24.4. Proof of Lemma 24.3

Let P be a polygon whose edges are labelled (+) and (−). We say that

P has a good labelling if the list of labels around its edges is good; that

is, there at least 2 sign changes from (+) to (−). A quadrilateral with

a good labelling must be labelled (+,−,+,−), up to cyclic ordering.
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Figure 24.1. Adding edges and vertices

Figure 24.1 shows examples of how one can divide a polygon with

a good labelling into quadrilaterals with good labellings. In the sub-

division process, you are allowed to add both edges and vertices.

Exercise 6. Prove Lemma 24.4 below.

Lemma 24.4. Suppose that P is a polygon with a good labelling. Let

Pv denote the vertex set of P . We can partition P into alternately

labelled quadrilaterals, extending the labelling on P , such that the fol-

lowing is true:

• Let w be a vertex of a quadrtilateral that lies in the interior

of P . Then w is a vertex of at least 4 quadrilaterals.

• Let w be a vertex of a quadrilateral that lies in ∂P − Pv.

Then w is a vertex of 2 quadrilaterals.

First we prove Lemma 24.3 in the special case that all labels of

Γ are nonzero. By Lemma 24.4, we can partition each component of

S2 − Γ into alternately labelled quadrilaterals. These partitions fit

together to partition S2 itself into alternately labelled quadrilaterals.

Now we make 3 observations.

• Each quadrilateral vertex in the interior of a component of

S2 − Γ is a vertex of 4 quadrilaterals.

• Each vertex in the interior of an edge is a vertex of exactly

4 quadrilaterals, two coming from each side.

• Each vertex of Γ is a vertex of at least 3 quadrilaterals, by

the valence condition. However, the edges emanating from a
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vertex must alternate in sign, given that our quadrilaterals

are all alternately labelled. Hence, each vertex of Γ is a

vertex of at least 4 quadrilaterals.

In short, every quadrilateral vertex is the vertex of at least 4 quadri-

laterals.

Now we build a Euclidean cone surface based on our partition.

We glue together unit squares using the combinatorial pattern given

by our quadrilaterals. Call the resulting surface Σ. By construction,

the cone angle of Σ is at least 2π at each quadrilateral vertex. The

remaining points of Σ are locally Euclidean. Hence, the total com-

binatorial curvature of Σ is nonpositive. But Σ is homeomorphic to

S2. This contradicts the combinatorial Gauss–Bonnet Theorem.

Now consider the general case, where there are possibly edges

labelled with a zero. Our proof goes by induction on the number Z

of edges that have the zero label. We already treated the case when

Z = 0. In general, suppose that e is an edge labelled 0. There are

two cases.

In the first case, suppose that the closed edge E is embedded.

We can form a new graph Γe in S2 by collapsing e to a point and

dragging all the edges of Γ incident to e to this new point; see Figure

24.3.

d

a

b

e

d

c

b

a
c

Figure 24.2. Collapsing an edge

Our operation only changes the two components of S2 − Γ that

share e. These components remain topological disks: we are just

shrinking one of their edges to a point. Moreover, since e is labelled

0, the lists associated to each of these two components remain good.

In short Γe satisfies the same hypotheses as Γ but has one fewer edge

labelled 0.
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e

Figure 24.3. Replacing the inner part of the graph with a disk

In the other case, e is a loop in S2. Note that e divides S2 into

two disks. At least one of these disks—say the outer one, as in Figure

24.3—contains some edges of Γ. Pick such a disk, and then erase the

portion of Γ contained in the other disk – the inner disk in Figure

24.3. Finally, erase e. Figure 24.4 shows this operation. The result is

a smaller graph that satisfies the hypotheses of Lemma 24.3 but the

Z value has decreased by one.

24.5. Proof of Lemma 24.2

Say that a spherical arm is a connected polygonal arc contained in

the boundary of a convex spherical polygon. Thus, a spherical arm is

made from a finite union of arcs of great circles, meeting end to end.

We insist that the two endpoints of the spherical arm are distinct, so

that the spherical arm does not make a complete circuit around the

spherical polygon. Given the notion of convexity discussed in Chapter

9, a spherical arm is necessarily contained in a hemisphere.

Suppose that A(0) and A(1) are spherical arms, each consisting of

n geodesic segments. Let A1(k), . . . , An(k) be the geodesic segments

comprising A(k), taken in order. Let a1(k), . . . , an(k) be the vertices

of A(k). Finally, let θj(k) be the interior angle of A(k) at aj(k). The

choice of interior angle makes sense, thanks to convexity.
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3

1
A2

A3

A4

a

a

3

4

2a

θ4

2θ
θ

A

Figure 24.4. A spherical arm of length 4

Below we will prove Cauchy’s Arm Lemma:

Lemma 24.5 (Cauchy’s Arm Lemma). Assume that θj(0) ≤ θj(1)

for all j, with strict inequality for at least one index. Then

d(a0(0), an(0)) < d(a0(1), an(1)).

Here d denotes spherical distance.

Before proving Cauchy’s Arm Lemma, let’s use it to prove Lemma

24.2. Let v be a vertex of a strictly convex polyhedron. Let Σ be a

small sphere centered at v. The intersection ∂P ∩ Σ is a convex

spherical polygon. Dilating the picture, we think of this polygon as

existing on S2, the unit sphere.

We can make this construction for partner vertices v and v′ on
P and P ′, respectively. This produces two convex spherical polygons

C and C ′. The lengths of the edges of C are the same as the lengths

of the corresponding edges of C ′. We label the vertices of C as in

Cauchy’s Arm Lemma from the previous chapter, depending on the

comparison between the two internal angles at the vertices.

If our list of labels is not good, we can find a chord of C so that

all the (+) labels occur on one side and all the (−) labels occur on the

other. This is shown in Figure 24.5. Let p and q be the endpoints of

this chord. Let C1 denote one of the arcs of C connecting p to q, and

let C2 denote the other. Let C ′
1 and C ′

2 be the corresponding chords

on C ′.
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C1
C2+

p

q

0

+

−

−

Figure 24.5. Dividing the polygon in half

Applying Cauchy’s Arm Lemma to C1 and C ′
1, we conclude that

‖p− q‖ > ‖p′ − q′‖.

Applying the Arm Lemma to C2 and C ′
2, we get the opposite inequal-

ity. This is a contradiction.

24.6. Flexing is Tricky

The proof of Cauchy’s Arm Lemma is actually rather difficult, so I

thought I’d include an preliminary section which highlights some of

the problems. My reason for doing this is to justify the difficulty it

takes to actually prove Cauchy’s Arm Lemma.

Consider a Euclidean version of the main construction. We say

that a Euclidean arm is a connected arc of a convex Euclidean poly-

gon. Suppose that A(0) is a Euclidean arm. We can make a polygonal

arc A(t), for t > 0 by increasing the last angle of A(0). Call this an-

gle θ(t). We keep everything else fixed. One should picture a person

flexing his finger; Figure 24.6 shows the situation.
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Figure 24.6. Flexing a Euclidean arm.

Exercise 7. Give an example where A(t0) is convex for some 0 <

t0 < π but A(t1) is not convex for t with t0 < t1 < π.

Exercise 8. Referring to the notation in Exercise 7, prove that

that the distance between the endpoints of A(t) is greater than the

distance between the endpoints of A(t0) whenever t ∈ (t0, π).

24.7. Proof of Cauchy’s Arm Lemma

The natural approach to proving Cauchy’s Arm Lemma is to simply

open up one of the arms a bit at a time, showing that the distance

between the endpoints keeps increasing. Unfortunately, in the spher-

ical case, the object can cease to be an arm at some point because

one can lose the convexity.

Let’s analyze the problem of flexing a spherical arm. Let B(t) be

a spherical arm for all 0 ≤ t < s. Let b0, . . . , bn−1, bn(t) be the points

of B(t). Only the last point changes. Let B1, . . . , Bn−1, Bn(t) be the

segments of B(t). We suppose that the angle θ(t) at bn−1 increases

as t → s, but that θ(s) < π.

Lemma 24.6. Whether or not B(s) is a spherical arm, B(s) lies in

some open hemisphere.

Proof. Suppose not. Let B̂n(t) be the great circle extending Bn(t),

and let H(t) denote the open hemisphere containing B(t)−Bn(t) for

t small. By Exercise 4 of Chapter 9, and continuity, H(t) contains

B(t) − Bn(t) for all t < s. But H(s) cannot contain B(s) − Bn(s),

because then we could move B(s) by a tiny amount so that it lies in

H(s).
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B

H

bn−1
n

γ
jb

γ

Figure 24.7. An arm and a great circle

The only possibility is that there is some vertex bj(s) contained

in B̂n(s). Here j ≤ n − 2. Let γ be the geodesic joining bn−1 to bj .

The angle between γ and Bn(t) is bounded away from both 0 and

π. The endpoints of γ are not antipodal because they are vertices of

a spherical arm. Therefore, γ is the unique geodesic connecting its

endpoints. But, the condition bj ∈ B̂n(s) forces γ ⊂ B̂n(s). This is a

contradiction. �

We keep going with the same set-up as in the previous lemma.

Lemma 24.7. If B(s) is not a spherical arm, then b0, b1, and bn(s)

lie on the same arc of a great semicircle, with b1 between b0 and bn(s).

Proof. From the previous result, we know that B(t) lies in some

open hemisphere for all t ≤ s. Since B(s) is not a spherical arm,

there are 3 points β0, β1, β2 ∈ B(s), not all on the same edge of B(s)

but all lying on the same geodesic segment β. These 3 points cannot

lie in any spherical arm, so one of the points, say β0, must lie in

Bn(s)− bn−1.

For the same reason as in the previous lemma, β does not lie in

the great circle B̂n(s). At the same time, β cannot be transverse to

B(s) at any βj . Otherwise, by stability, we would have a similar triple

of points for all t sufficiently close to s.
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Suppose β0 is an interior point of Bn(s). Since β 6∈ B̂n(s), the

segment β is transverse to B(s) at β0. This is a contradiction. Hence

β0 = Bn(s).

The points β1 and β2 both lie on the spherical arm A = B(s) −
Bn(s). If β1 and β2 do not lie on the same edge of A, then β is

transverse to A at both β1 and β2. This is a contradiction. Hence β1

and β2 lie on the same edge of A. Since A ⊂ B(s), we see that β1

and β2 lie on the same side, say, the jth side, of B(s).

If j > 1 then we have the topological picture shown (for j = 2)

in Figure 24.8. This picture is implied by the fact that B(s)−Bn(s)

is a spherical arm. But then there is a geodesic nearby β, through

bn(s), which intersects B(s) transversely at the two other intersection

points. The same stability argument as above gives us a contradiction.

β

B2

bn

Figure 24.8. The limiting shape

Now we know that b0 and b1 and bn(s) lie on the same great

circle. Since all these points lie in an open hemisphere, all these

points lie in the interior of some great semicircle. Finally, observe

that the geodesic connecting b0 to b2 crosses the geodesic connecting

b1 to bn(t) for all t < s. Taking a limit, as t → s, establishes that b1
lies between b0 and bn(s). �

Finally, we prove Cauchy’s Arm Lemma. The proof goes by in-

duction on n. In the case where n = 2, the result follows from Ex-

ercise 5 of Chapter 9. Consider the special case when θj(0) = θj(1)

for some j. Then we can produce a new spherical arm B by re-

placing Aj ∪ Aj+1 by the single geodesic segment connecting aj to

aj+1. Here we are just cutting off a corner. The spherical arms

B(0) and B(1) satisfy the same hypotheses as do A(0) and A(1), and
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our basic move has not changed the endpoints. Hence, by induction

d(a0(0), an(0)) < d(a0(1), an(1)).

For t ∈ [0, 1], let θn−1(t) be the angle that linearly interpolates

between θn−1(0) and θn−1(1). Let B(t) denote the polygonal curve

that is the same as A(0), except that we move An so that the angle

between An and An−1 is θ(t). Let Bj(t) be the jth segment of B(t),

and let bj(t) be the jth vertex. We have set things up so that Bj(t) =

Aj(0) for j = 1, . . . , n−1 and bj(t) = aj(0) for j = 1, . . . , n−1. Only

the last segment moves.

Suppose that B(1) is a spherical arm. Only one angle of B(1)

differs from A(1). At the same time, the last angle of B(1) is the

same as the last angle of A(1). Thus, we may apply the special

case we have already considered, twice, to get the following chain of

inequalities:

d(a0(0), an(0)) < d(b0(0), bn(0)) < d(a0(1), an(1)).

Now we come to the hard part of the proof. Suppose that B(1) is

not a spherical arm. As Exercise 7 illustrates in the Euclidean case,

this really can happen. If B(1) is not a spherical arm, then there is

some s such that B(t) is a spherical arm for all t < s, but B(s) is

not a spherical arm. By Lemma 24.7, the points b0(s), b1(s), bn(s)

lie on the same great half-circle, with b0(s) between b1(s) and bn(s).

Therefore

(24.1) d(b1(s), bn(s)) = d(b0(s), b1(s)) + d(d0(s), bn(s)).

We have

d(a0(1), an(1))

≥1 d(a1(1), an(1))− d(a0(1), a1(1))

≥2 lim
t→s

d(a1(t), an(t))− d(a0(1), a1(1))

=3 lim
t→s

d(a1(t), an(t))− d(a0(t), a1(t))

=4 d(a1(s), an(s))− d(a0(s), a1(s)))

=5 d(a0(s), an(s)).

(24.2)

The first inequality is the triangle inequality. The second in-

equality is the induction step applied to the spherical arm obtained
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from B(t) by chopping off the first segment B1(t). The third equality

comes from the fact that b0(t) and b1(t) are independent of t. The

fourth equality is continuity. The fifth equality is equation (24.1).

On the other hand, choosing any u ∈ (0, s), we have

d(a0(s), an(s))

= lim
t→s

d(a0(t), an(t))

≥1 d(a0(u), an(u))

> d(a0(0), an(0).

(24.3)

The first inequality comes from the special case (some angles equal)

applied to B(u) and B(u). The last inequality comes from the special

case appied to B(u) and B(0). Our last two equations combine to give

the statement in Cauchy’s Arm Lemma. This completes the proof.
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