
Some Symplectic Geometry

1 The Goal

The purpose of these notes is to explain (to myself) the three basic facts about
symplectic manifolds, Hamiltonian vector fields, and the Poisson bracket. I
wrote these notes by filling in the proofs of the claims made on the Lie
derivatives page of Wikipedia.

Let M be a smooth (2n)-dimensional manifold and let ω be a symplectic
form on M . This means that ω is a closed nondegenerate 2-form. For any
function f : M → R we introduce the Hamiltonian Hf . It has the property
that

ω(Hf ,W ) = Wf = df(W ); (1)

for any vector field W . You need the nondegeneracy of ω to guarantee the
existence of Hf . We also define the Poisson bracket

{f, g} = ω(Hf , Hg) (2)

Here are the three basic facts.

1. The flow generated by Hf preserves f . That is, Hf is tangent to the
level sets of f . This fact is easy: df(Hf ) = ω(Hf , Hf ) = 0. That’s it.

2. The flow generatd by Hf preserves ω. That is, the flow is a symplec-
tomorphism for each time value.

3. If {f, g} = 0 then Hf and Hg generate commuting flows.

These three basic facts are all you need to understand the miracle of
completely integrable systems. A completely integrable system on M is a
collection f1, ..., fn of functions such that {fi, fj} = 0 for all i, j and such
that the vector fields {H1, ..., Hn} are linearly independent.

The generic common level set L of {f1, ..., fn} is an n-dimensional compact
smooth manifold, and the vectors H1, ..., Hn generate pairwise commuting
flows tangent to L. But then these flows give coordinate charts from L to
R

n in which the overlap functions are translations. This forces L to be a
torus, and each flow to be an isometric motion in the given coordinates.

The rest of the notes are devoted to proving Fact 2 and Fact 3.
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2 The Lie Derivative

Let M be a smooth manifold and let V be a vector field on M . Suppose that
M generates the flow φt : M → M . For a function f , we have

LV f =
d

dt
(f ◦ φt) = V f = df(V ). (3)

Here V f is the directional derivative of f along V .
If W is another vector field, we define

LVW =
d

dt

(

(φ−1
t )∗(Wφt

)
)

= [V,W ]. (4)

So, if we are interested at the derivative at the point p, we evaluate the vector
field W at φt(p) and map the vector back to the tangent plane at p using the
tangent map of φ−1

t .
If ω is a differential form, we define

LV ω =
d

dt

(

(φ−1
t )∗(ωφt

)
)

. (5)

Suppose that ω is a 2-form and X, Y are vector fields. Then ω(X, Y ) is
a function. From the product rule

LV (ω(X, Y )) = (LV ω)(X, Y ) + ω([V,X], Y ) + ω(X, [V, Y ]). (6)

Equation 6 is one of the key equations we will use when establishing Fact 3
about symplectic geometry.

We introduce the contraction operator iV , which maps (n + 1)-forms to
n-forms. Here is the formula

(iV β)(X1, ..., Xn) = β(V,X1, ..., Xn). (7)

We have Cartan’s formula

LV β = iV (dβ) + d(iV β). (8)

This holds for any differential form β. We wil prove Cartan’s formula below,
in the case we need. Cartan’s formula is the key equation we need to establish
Fact 2 about symplectic geometry.
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3 Some Cases of Cartan’s Formula

We need Cartan’s formula for 1-forms and for closed 2-forms. Here we prove
these 2 cases. For closed 2-forms, Cartan’s formula reduces to

LV ω = d(iV ω). (9)

Lemma 3.1 If Cartan’s formula holds for 1-forms, then Cartan’s formula

holds for closed 2-forms.

Proof: Let ω be a closed 2-form. Cartan’s formula is a local calculation,
and so we may assume that ω = dα where α is a closed 1-form. The pullback
map commutes with the d-operator. Hence L and d commute. This gives us

LV ω = LV (dα) = d(LV α) = d(iV dα) + d(d(iV α)) = d(IV ω), (10)

since d2 = 0. ♠

Lemma 3.2 Cartan’s formula holds for 1-forms.

Proof: Any 1-form can be expressed as a finite sum
∑

i fidgi for smooth
functions fi and gi. So, it suffices to prove Cartan’s formula for fdg. Using
the fact that d and L commute, we have

LV (fdg) = fLV (dg) + (V f)dg = fd(LV g) + (V f)dg = fd(V g) + (V f)dg.
(11)

On the other hand

iV d(fdg) = iV (df ∧ dg) = iV (df ⊗ dg − dg ⊗ df) = (V f)dg − (V g)df, (12)

and
d(iV (fdg)) = d(fV g) = fd(V g) + (V g)df. (13)

Adding the last two equations, we get that

iV d(fdg) + d(IV (fdg)) = fd(V g) + (V f)dg = LV (fdg), (14)

so it works. ♠
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4 Proof of the Facts

Fact 2: We first prove Fact 2. This amounts to showing that LV ω = 0 when
V = Hf . Using the special case of Cartan’s formula, we have

LHf
ω = d(iHf

(ω)) = d(df) = 0.

The point here is that iHf
(ω)(X) = ω(Hf , X) = df(X), by definition. That’s

the proof.

Fact 3: We will show that H{f,g} = [Hf , Hg], the Lie bracket of Hf and
Hg. When {f, g} = 0 it means that [Hf , Hg] = 0, and this means that Hf

and Hg generate commuting flows.
Let V = Hf and W = Hg. Below we will derive the identity.

i[V,W ]ω = d(iV iWω). (15)

Assuming this identity, we get the following for any vector field X:

ω([Hf , Hg], X) = ω([V,W ], X) = i[V,W ]ω(X) =

d(iV iWω)(X) = Xω(V,W ) = X{f, g} = ω(H{f,g}, X). (16)

This proves what we want. It only remains to prove Equation 15. Choose X
to be a vector field which commutes with V . We have the identity

LV (ω(W,X)) = (LV ω)(W,X) + ω(LVW,X) + ω(W,LVX) = ω([V,W ], X).
(17)

Here we have used the fact that LV ω = 0 and LVW = [V,W ] and LVX = 0.
Since Equation 17 is true for any choice of commuting X, and we can arrange
for such a vector field to be arbitrary at a point of interest to us, we get

LV (iW (ω)) = i[V,W ]ω. (18)

Let α = iW (ω). Note that α = dg. Hence dα = 0. Applying Cartan’s
formula to α, we have

LV (iW (ω)) = LV α = d(iV α) = d(iV iWω). (19)

Equation 15 comes from putting together Equations 18 and 19.
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