On Cachazo-Douglas-Seiberg-Witten Conjecture for Simple Lie Algebras (Talk by Shrawan Kumar)

Abstract: Let \mathfrak{g} be a finite dimensional simple Lie algebra over the complex numbers. Consider the exterior algebra $R := \wedge (\mathfrak{g} \oplus \mathfrak{g})$ on two copies of \mathfrak{g} . Then, the algebra R is bigraded with the two copies of \mathfrak{g} sitting in bidegrees (1,0) and (0,1) respectively. To distinguish, we denote them by \mathfrak{g}_1 and \mathfrak{g}_2 respectively.

The diagonal adjoint action of $\mathfrak g$ gives rise to a $\mathfrak g$ -algebra structure on R compatible with the bigrading. We isolate three 'standard' copies of the adjoint representation $\mathfrak g$ in the total degree 2 component R^2 . The $\mathfrak g$ -module map $\partial:\mathfrak g\to \Lambda^2(\mathfrak g)$, $x\mapsto \partial x=\sum_i[x,e_i]\wedge f_i$, considered as a map to $\Lambda^2(\mathfrak g_1)$ will be denoted by c_1 , and similarly, $c_2:\mathfrak g\to \Lambda^2(\mathfrak g_2)$, and $c_3:\mathfrak g\to \mathfrak g_1\otimes \mathfrak g_2$, $x\mapsto \sum_i[x,e_i]\otimes f_i$, where $\{e_i\}_{i\leq i\leq N}$ is any basis of $\mathfrak g$ and $\{f_i\}_{1\leq i\leq N}$ is the dual basis of $\mathfrak g$ with respect to the Killing form. We denote by C_i the image of c_i .

Let J be the (bigraded) ideal of R generated by the three copies C_1, C_2, C_3 of \mathfrak{g} (in R^2) and define the bigraded \mathfrak{g} -algebra A := R/J. The Killing form gives rise to a \mathfrak{g} -invariant $S \in A^{1,1}$.

Motivated by supersymmetric gauge theory, Cachazo-Douglas-Seiberg-Witten made the following conjecture.

Conjecture (i) The subalgebra $A^{\mathfrak{g}}$ of \mathfrak{g} -invariants in A is generated, as an algebra, by the element S.

- (ii) $S^h = 0$.
- (iii) $S^{h-1} \neq 0$.

The aim of this talk is to give a uniform proof of the above conjecture part (i). In addition, we give a conjecture, the validity of which would imply part (ii) of the above conjecture.

The main ingredients in the proof are: Garland's result on the Lie algebra cohomology of $\hat{\mathfrak{u}}:=\mathfrak{g}\otimes t\mathbb{C}[t]$; Kostant's result on the 'diagonal' cohomology of $\hat{\mathfrak{u}}$ and its connection with abelian ideals in a Borel subalgebra of \mathfrak{g} ; and a certain deformation of the singular cohomology of the infinite Grassmannian introduced by Belkale-Kumar.